693 research outputs found

    Acupuncture's Effects in Treating the Sequelae of Acute and Chronic Spinal Cord Injuries: A Review of Allopathic and Traditional Chinese Medicine Literature

    Get PDF
    Each year, there are an estimated 12 000 individuals who sustain a spinal cord injury (SCI) in the United States. Improved understanding of the pathophysiology of SCI and its sequelae has over the past 50 years led to the development of medical treatments (especially urologic) that have enhanced short- and long-term survival from these injuries. The prevalence of individuals with SCI in this country is ~250 000 individuals; and beyond the incalculable personal consequences of these devastating neurologic injuries, substantial direct and indirect societal costs result from the sequelae of SCI including paralysis, sensory loss, chronic pain, decubiti and bladder and/or bowel incontinence. The purpose of this treatise is to review the allopathic and traditional Chinese medicine (TCM) literature available through MEDLINE, PubMed and eCAM search engines that discuss the potential uses of acupuncture to treat acute and chronic spinal cord injuries and their sequelae, and present the neurophysiologic mechanisms for acupuncture's beneficial effects. There is evidence that use of electroacupuncture in acute SCI may significantly improve long-term neurologic recovery from these injuries both in terms of motor, sensory and bowel/bladder function with essentially no risk. Acupuncture may even improve neurourologic function in individuals with chronic SCI, and help with management with chronic pain associated with these injuries

    Neurogenic Bladder

    Get PDF
    Congenital anomalies such as meningomyelocele and diseases/damage of the central, peripheral, or autonomic nervous systems may produce neurogenic bladder dysfunction, which untreated can result in progressive renal damage, adverse physical effects including decubiti and urinary tract infections, and psychological and social sequelae related to urinary incontinence. A comprehensive bladder-retraining program that incorporates appropriate education, training, medication, and surgical interventions can mitigate the adverse consequences of neurogenic bladder dysfunction and improve both quantity and quality of life. The goals of bladder retraining for neurogenic bladder dysfunction are prevention of urinary incontinence, urinary tract infections, detrusor overdistension, and progressive upper urinary tract damage due to chronic, excessive detrusor pressures. Understanding the physiology and pathophysiology of micturition is essential to select appropriate pharmacologic and surgical interventions to achieve these goals. Future perspectives on potential pharmacological, surgical, and regenerative medicine options for treating neurogenic bladder dysfunction are also presented

    On red shifs in the transition region and corona

    Full text link
    We present evidence that transition region red-shifts are naturally produced in episodically heated models where the average volumetric heating scale height lies between that of the chromospheric pressure scale height of 200 km and the coronal scale height of 50 Mm. In order to do so we present results from 3d MHD models spanning the upper convection zone up to the corona, 15 Mm above the photosphere. Transition region and coronal heating in these models is due both the stressing of the magnetic field by photospheric and convection `zone dynamics, but also in some models by the injection of emerging magnetic flux.Comment: 8 pages, 9 figures, NSO Workshop #25 Chromospheric Structure and Dynamic

    Novel Family of Gynecologic Cancer Antigens Detected by Anti-HIV Antibody

    Get PDF
    Objective: The reactivity of gynecologic cancer proteins with monoclonal antibody (MAb) directed against the human immunodeficiency virus I (HIV-I) was tested

    Evidence of Explosive Evaporation in a Microflare Observed by Hinode/EIS

    Full text link
    We present a detailed study of explosive chromospheric evaporation during a microflare which occurred on 2007 December 7 as observed with the EUV Imaging Spectrometer (EIS) onboard Hinode. We find temperature-dependent upflows for lines formed from 1.0 to 2.5 MK and downflows for lines formed from 0.05 to 0.63 MK in the impulsive phase of the flare. Both the line intensity and the nonthermal line width appear enhanced in most of the lines and are temporally correlated with the time when significant evaporation was observed. Our results are consistent with the numerical simulations of flare models, which take into account a strong nonthermal electron beam in producing the explosive chromospheric evaporation. The explosive evaporation observed in this microflare implies that the same dynamic processes may exist in events with very different magnitudes.Comment: 14 pages, 8 figures. Accepted for publication in the Astrophysical Journa

    Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    Get PDF
    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia

    Beyond Spheroids and Discs: Classifications of CANDELS Galaxy Structure at 1.4 < z < 2 via Principal Component Analysis

    Get PDF
    Important but rare and subtle processes driving galaxy morphology and star-formation may be missed by traditional spiral, elliptical, irregular or S\'ersic bulge/disk classifications. To overcome this limitation, we use a principal component analysis of non-parametric morphological indicators (concentration, asymmetry, Gini coefficient, M20M_{20}, multi-mode, intensity and deviation) measured at rest-frame BB-band (corresponding to HST/WFC3 F125W at 1.4 1010M10^{10} M_{\odot}) galaxy morphologies. Principal component analysis (PCA) quantifies the correlations between these morphological indicators and determines the relative importance of each. The first three principal components (PCs) capture \sim75 per cent of the variance inherent to our sample. We interpret the first principal component (PC) as bulge strength, the second PC as dominated by concentration and the third PC as dominated by asymmetry. Both PC1 and PC2 correlate with the visual appearance of a central bulge and predict galaxy quiescence. PC1 is a better predictor of quenching than stellar mass, as as good as other structural indicators (S\'ersic-n or compactness). We divide the PCA results into groups using an agglomerative hierarchical clustering method. Unlike S\'ersic, this classification scheme separates compact galaxies from larger, smooth proto-elliptical systems, and star-forming disk-dominated clumpy galaxies from star-forming bulge-dominated asymmetric galaxies. Distinguishing between these galaxy structural types in a quantitative manner is an important step towards understanding the connections between morphology, galaxy assembly and star-formation.Comment: 31 pages, 24 figures, accepted for publication in MNRA

    A mindful approach to physician self-care

    Get PDF
    There has been an increasing awareness of the importance of physician mental health. Several South African studies show a high prevalence of burnout among doctors. Burnout is characterised by three components: exhaustion, depersonalisation, and a sense of a lack of efficacy. Burnout is a result of both external and internal pressures. While lifestyle modification is essential, mindfulness-informed programmes promote self-regulation and resilience. Mindfulness programmes comprise three components: present moment awareness, perspective-taking and wisdom, and compassion. Physician wellness begins with individuals recognising the need of self-care and giving themselves permission to prioritise this. Ongoing identification of self-care needs and acting compassionately to address these needs is essential

    Prevalence of Small-scale Jets from the Networks of the Solar Transition Region and Chromosphere

    Full text link
    As the interface between the Sun's photosphere and corona, the chromosphere and transition region play a key role in the formation and acceleration of the solar wind. Observations from the Interface Region Imaging Spectrograph reveal the prevalence of intermittent small-scale jets with speeds of 80-250 km/s from the narrow bright network lanes of this interface region. These jets have lifetimes of 20-80 seconds and widths of 300 km or less. They originate from small-scale bright regions, often preceded by footpoint brightenings and accompanied by transverse waves with ~20 km/s amplitudes. Many jets reach temperatures of at least ~100000 K and constitute an important element of the transition region structures. They are likely an intermittent but persistent source of mass and energy for the solar wind.Comment: Figs 1-4 & S1-S5; Movies S1-S8; published in Science, including the main text and supplementary materials. Reference: H. Tian, E. E. DeLuca, S. R. Cranmer, et al., Science 346, 1255711 (2014

    General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    Get PDF
    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by- case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch
    corecore