55 research outputs found
Evidence for a disaggregation of the universe.
Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the univers
The Strong Energy Condition and the S-Brane Singularity Problem
Recently it has been argued that, because tachyonic matter satisfies the
Strong Energy Condition [SEC], there is little hope of avoiding the
singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and
Wohlfarth have suggested an ingenious way of circumventing the SEC in such
situations, and other suggestions for actually violating it in the S-Brane
context have recently been proposed. Of course, the natural context for
discussions of [effective or actual] violations of the SEC is the theory of
asymptotically deSitter spacetimes, which tend to be less singular than
ordinary FRW spacetimes. However, while violating or circumventing the SEC is
necessary if singularities are to be avoided, it is not at all clear that it is
sufficient. That is, we can ask: would an asymptotically deSitter S-brane
spacetime be non-singular? We show that this is difficult to achieve; this
result is in the spirit of the recently proved "S-brane singularity theorem".
Essentially our results suggest that circumventing or violating the SEC may not
suffice to solve the S-Brane singularity problem, though we do propose two ways
of avoiding this conclusion.Comment: 13 pages, minor corrections and improvements, references adde
The dS/CFT Correspondence and the Big Smash
Recent observations suggest that the cosmological equation-of-state parameter
w is close to -1. To say this is to imply that w could be slightly less than
-1, which leads to R.Caldwell's "Phantom cosmologies". These often have the
property that they end in a "Big Smash", a final singularity in which the
Universe is destroyed in a finite proper time by excessive *expansion*. We show
that, classically, this fate is not inevitable: there exist Smash-free Phantom
cosmologies, obtained by a suitable perturbation of the deSitter equation of
state, in which the spacetime is in fact asymptotically deSitter. [Contrary to
popular belief, such cosmologies, which violate the Dominant Energy Condition,
do not necessarily violate causality.] We also argue, however, that the
physical interpretation of these classically acceptable spacetimes is radically
altered by ``holography'', as manifested in the dS/CFT correspondence. It is
shown that, if the boundary CFTs have conventional properties, then recent
ideas on "time as an inverse renormalization group flow" can be used to rule
out these cosmologies. Very recently, however, it has been argued that the CFTs
in dS/CFT are of a radically unconventional form, and this opens up the
possibility that Smash-free Phantom spacetimes offer a simple model of a
"bouncing" cosmology in which the quantum-mechanical entanglement of the field
theories in the infinite past and future plays an essential role.Comment: 22 pages, clarification of triple analytic continuation, additional
Comments added in the light of hep-th/020724
Wormholes and Ringholes in a Dark-Energy Universe
The effects that the present accelerating expansion of the universe has on
the size and shape of Lorentzian wormholes and ringholes are considered. It is
shown that, quite similarly to how it occurs for inflating wormholes, relative
to the initial embedding-space coordinate system, whereas the shape of the
considered holes is always preserved with time, their size is driven by the
expansion to increase by a factor which is proportional to the scale factor of
the universe. In the case that dark energy is phantom energy, which is not
excluded by present constraints on the dark-energy equation of state, that size
increase with time becomes quite more remarkable, and a rather speculative
scenario is here presented where the big rip can be circumvented by future
advanced civilizations by utilizing sufficiently grown up wormholes and
ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.
Dissipative Future Universe without Big Rip
The present study deals with dissipative future universe without big rip in
context of Eckart formalism. The generalized chaplygin gas, characterized by
equation of state , has been considered as
a model for dark energy due to its dark-energy-like evolution at late time. It
is demonstrated that, if the cosmic dark energy behaves like a fluid with
equation of state ; , as well as chaplygin gas
simultaneously then the big rip problem does not arises and the scale factor is
found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy
Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up
We consider late-time cosmology in a (phantom) scalar-tensor theory with an
exponential potential, as a dark energy model with equation of state parameter
close to -1 (a bit above or below this value). Scalar (and also other kinds of)
matter can be easily taken into account. An exact spatially-flat FRW cosmology
is constructed for such theory, which admits (eternal or transient)
acceleration phases for the current universe, in correspondence with
observational results. Some remarks on the possible origin of the phantom,
starting from a more fundamental theory, are also made. It is shown that
quantum gravity effects may prevent (or, at least, delay or soften) the cosmic
doomsday catastrophe associated with the phantom, i.e. the otherwise
unavoidable finite-time future singularity (Big Rip). A novel dark energy model
(higher-derivative scalar-tensor theory) is introduced and it is shown to admit
an effective phantom/quintessence description with a transient acceleration
phase. In this case, gravity favors that an initially insignificant portion of
dark energy becomes dominant over the standard matter/radiation components in
the evolution process.Comment: LaTeX file, 48 pages, discussion of Big Rip is enlarged, a reference
is adde
Time Lumps in Nonlocal Stringy Models and Cosmological Applications
We study lump solutions in nonlocal toy models and their cosmological
applications. These models are motivated by a description of D-brane decay
within string field theory framework. In order to find cosmological solutions
we use the simplest local approximation keeping only second derivative terms in
nonlocal dynamics. We study a validity of this approximation in flat background
where time lump solutions can be written explicitly. We work out the validity
of this approximation. We show that our models at large time exhibit the
phantom behaviour similar to the case of the string kink.Comment: Latex, 24 pages, 13 figures, Typos corrected, references adde
On Isotropic Turbulence in the Dark Fluid Universe
As first part of this work, experimental information about the decay of
isotropic turbulence in ordinary hydrodynamics, u^2(t) proportional to
t^{-6/5}, is used as input in FRW equations in order to investigate how an
initial fraction f of turbulent kinetic energy in the cosmic fluid influences
the cosmological development in the late, quintessence/phantom, universe. First
order perturbative theory to the first order in f is employed. It turns out
that both in the Hubble factor, and in the energy density, the influence from
the turbulence fades away at late times. The divergences in these quantities
near the Big Rip behave essentially as in a non-turbulent fluid. However, for
the scale factor, the turbulence modification turns out to diverge
logarithmically. As second part of our work, we consider the full FRW equation
in which the turbulent part of the dark energy is accounted for by a separate
term. It is demonstrated that turbulence occurrence may change the future
universe evolution due to dissipation of dark energy. For instance,
phantom-dominated universe becomes asymptotically a de Sitter one in the
future, thus avoiding the Big Rip singularity.Comment: 10 pages, no figures, significant revision. Matches published versio
Universal procedure to cure future singularities of dark energy models
A systematic search for different viable models of the dark energy universe,
all of which give rise to finite-time, future singularities, is undertaken,
with the purpose to try to find a solution to this common problem. After some
work, a universal procedure to cure all future singularities is developed and
carefully tested with the help of explicit examples corresponding to each one
of the four different types of possible singularities, as classified in the
literature. The cases of a fluid with an equation of state which depends on
some parameter, of modified gravity non-minimally coupled to a matter
Lagrangian, of non-local gravity, and of isotropic turbulence in a dark fluid
universe theory are investigated in detail
Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy
The unifying approach to early-time and late-time universe based on phantom
cosmology is proposed. We consider gravity-scalar system which contains usual
potential and scalar coupling function in front of kinetic term. As a result,
the possibility of phantom-non-phantom transition appears in such a way that
universe could have effectively phantom equation of state at early time as well
as at late time. In fact, the oscillating universe may have several phantom and
non-phantom phases. As a second model we suggest generalized holographic dark
energy where infrared cutoff is identified with combination of FRW parameters:
Hubble constant, particle and future horizons, cosmological constant and
universe life-time (if finite). Depending on the specific choice of the model
the number of interesting effects occur: the possibility to solve the
coincidence problem, crossing of phantom divide and unification of early-time
inflationary and late-time accelerating phantom universe. The bound for
holographic entropy which decreases in phantom era is also discussed.Comment: 13 pages, clarifications/refs added, to match with published versio
- …