234 research outputs found
Concurrent Mission and Systems Design at NASA Glenn Research Center: The Origins of the COMPASS Team
Established at the NASA Glenn Research Center (GRC) in 2006 to meet the need for rapid mission analysis and multi-disciplinary systems design for in-space and human missions, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team is a multidisciplinary, concurrent engineering group whose primary purpose is to perform integrated systems analysis, but it is also capable of designing any system that involves one or more of the disciplines present in the team. The authors were involved in the development of the COMPASS team and its design process, and are continuously making refinements and enhancements. The team was unofficially started in the early 2000s as part of the distributed team known as Team JIMO (Jupiter Icy Moons Orbiter) in support of the multi-center collaborative JIMO spacecraft design during Project Prometheus. This paper documents the origins of a concurrent mission and systems design team at GRC and how it evolved into the COMPASS team, including defining the process, gathering the team and tools, building the facility, and performing studies
Estimating of pulsed electric fields using optical measurements.
We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments
Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer
This study identified LIMK2 kinase as a disease-specific target in castration resistant prostate cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 was observed in normal prostates. Most notably, inducible knockdown of LIMK2 fully reverses CRPC tumorigenesis in castrated mice, underscoring its potential as a clinical target for CRPC. We also identified TWIST1 as a direct substrate of LIMK2, which uncovered the molecular mechanism of LIMK2-induced malignancy. TWIST1 is strongly associated with CRPC initiation, progression and poor prognosis. LIMK2 increases TWIST1 mRNA levels upon hypoxia; and stabilizes TWIST1 by direct phosphorylation. TWIST1 also stabilizes LIMK2 by inhibiting its ubiquitylation. Phosphorylation-dead TWIST1 acts as dominant negative and fully prevents EMT and tumor formation in vivo, thereby highlighting the significance of LIMK2-TWIST1 signaling axis in CRPC. As LIMK2 null mice are viable, targeting LIMK2 should have minimal collateral toxicity, thereby improving the overall survival of CRPC patients
Improved Therapy for Medulloblastoma: Targeting Hedgehog and PI3K-mTOR Signaling Pathways in Combination with Chemotherapy
Aberrant activation and interactions of hedgehog (HH) and PI3K/AKT/mTOR signaling pathways are frequently associated with high-risk medulloblastoma (MB). Thus, combined targeting of the HH and PI3K/AKT/mTOR pathways could be a viable therapeutic strategy to treat high-risk patients. Therefore, we investigated the anti-MB efficacies of combined HH inhibitor Vismodegib and PI3K-mTOR dual-inhibitor BEZ235 together or combined individually with cisplatin against high-risk MB. Using non-MYC- and MYC-amplified cell lines, and a xenograft mouse model, the in vitro and in vivo efficacies of these therapies on cell growth/survival and associated molecular mechanism(s) were investigated. Results showed that combined treatment of Vismodegib and BEZ235 together, or with cisplatin, significantly decreased MB cell growth/survival in a dose-dependent-fashion. Corresponding changes in the expression of targeted molecules following therapy were observed. Results demonstrated that inhibitors not only suppressed MB cell growth/survival when combined, but also significantly enhanced cisplatin-mediated cytotoxicity. Of these combinations, BEZ235 exhibited a significantly greater efficacy in enhancing cisplatin-mediated MB cytotoxicity. Results also demonstrated that the MYC-amplified MB lines showed a higher sensitivity to combined therapies compared to non-MYC-amplified cell lines. Therefore, we tested the efficacy of combined approaches against MYC-amplified MB growing in NSG mice. In vivo results showed that combination of Vismodegib and BEZ235 or their combination with cisplatin, significantly delayed MB tumor growth and increased survival of xenografted mice by targeting HH and mTOR pathways. Thus, our studies lay a foundation for translating these combined therapeutic strategies to the clinical setting to determine their efficacies in high-risk MB patients
Treatment of a chemoresistant neuroblastoma cell line with the antimalarial ozonide OZ513.
BACKGROUND: Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c.
METHODS: The activity of 12 ozonides, artemisinin, and two semisynthetic artemisinins were tested for activity against two neuroblastoma cell-lines (BE (2)-c and IMR-32) and the Ewing\u27s Sarcoma cell line A673 in an MTT viability assay. Time course data indicated that peak effect was seen 18 h after the start of treatment thus 18 h pre-treatment was used for all subsequent experiments. The most active ozonide (OZ513) was assessed in a propidium iodide cell cycle flow cytometry analysis which measured cell cycle transit and apoptosis. Metabolic effects of OZ513 in BE (2)-c cells was evaluated. Western blots for the apoptotic proteins cleaved capase-3 and cleaved PARP, the highly amplified oncogene MYCN, and the cell cycle regulator CyclinD1, were performed. These in-vitro experiments were followed by an in-vivo experiment in which NOD-scid gamma immunodeficient mice were injected subcutaneously with 1 × 10(6) BE (2)-c cells followed by immediate treatment with 50-100 mg/kg/day doses of OZ513 administered IP three times per week out to 23 days after injection of tumor. Incidence of tumor development, time to tumor development, and rate of tumor growth were assessed in DMSO treated controls (N = 6), and OZ513 treated mice (N = 5).
RESULTS: It was confirmed that five commonly used chemotherapy drugs had no cytotoxic activity in BE (2)-c cells. Six of 12 ozonides tested were active in-vitro at concentrations achievable in vivo with OZ513 being most active (IC50 = 0.5 mcg/ml). OZ513 activity was confirmed in IMR-32 and A673 cells. The Ao peak on cell-cycle analysis was increased after treatment with OZ513 in a concentration dependent fashion which when coupled with results from western blot analysis which showed an increase in cleaved capase-3 and cleaved PARP supported an increase in apoptosis. There was a concentration dependent decline in the MYCN and a cyclinD1 protein indicative of anti-proliferative activity and cell cycle disruption. OXPHOS metabolism was unaffected by OZ513 treatment while glycolysis was increased. There was a significant delay in time to tumor development in mice treated with OZ513 and a decline in the rate of tumor growth.
CONCLUSIONS: The antimalarial ozonide OZ513 has effective in-vitro and in-vivo activity against a pleiotropic drug resistant neuroblastoma cell-line. Treatment with OZ513 increased apoptotic markers and glycolysis with a decline in the MYCN oncogene and the cell cycle regulator cyclinD1. These effects suggest adaptation to cellular stress by mechanism which remain unclear
Treatment of a chemoresistant neuroblastoma cell line with the antimalarial ozonide OZ513.
BACKGROUND: Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c.
METHODS: The activity of 12 ozonides, artemisinin, and two semisynthetic artemisinins were tested for activity against two neuroblastoma cell-lines (BE (2)-c and IMR-32) and the Ewing\u27s Sarcoma cell line A673 in an MTT viability assay. Time course data indicated that peak effect was seen 18 h after the start of treatment thus 18 h pre-treatment was used for all subsequent experiments. The most active ozonide (OZ513) was assessed in a propidium iodide cell cycle flow cytometry analysis which measured cell cycle transit and apoptosis. Metabolic effects of OZ513 in BE (2)-c cells was evaluated. Western blots for the apoptotic proteins cleaved capase-3 and cleaved PARP, the highly amplified oncogene MYCN, and the cell cycle regulator CyclinD1, were performed. These in-vitro experiments were followed by an in-vivo experiment in which NOD-scid gamma immunodeficient mice were injected subcutaneously with 1 × 10(6) BE (2)-c cells followed by immediate treatment with 50-100 mg/kg/day doses of OZ513 administered IP three times per week out to 23 days after injection of tumor. Incidence of tumor development, time to tumor development, and rate of tumor growth were assessed in DMSO treated controls (N = 6), and OZ513 treated mice (N = 5).
RESULTS: It was confirmed that five commonly used chemotherapy drugs had no cytotoxic activity in BE (2)-c cells. Six of 12 ozonides tested were active in-vitro at concentrations achievable in vivo with OZ513 being most active (IC50 = 0.5 mcg/ml). OZ513 activity was confirmed in IMR-32 and A673 cells. The Ao peak on cell-cycle analysis was increased after treatment with OZ513 in a concentration dependent fashion which when coupled with results from western blot analysis which showed an increase in cleaved capase-3 and cleaved PARP supported an increase in apoptosis. There was a concentration dependent decline in the MYCN and a cyclinD1 protein indicative of anti-proliferative activity and cell cycle disruption. OXPHOS metabolism was unaffected by OZ513 treatment while glycolysis was increased. There was a significant delay in time to tumor development in mice treated with OZ513 and a decline in the rate of tumor growth.
CONCLUSIONS: The antimalarial ozonide OZ513 has effective in-vitro and in-vivo activity against a pleiotropic drug resistant neuroblastoma cell-line. Treatment with OZ513 increased apoptotic markers and glycolysis with a decline in the MYCN oncogene and the cell cycle regulator cyclinD1. These effects suggest adaptation to cellular stress by mechanism which remain unclear
Hybrid electron spin resonance and whispering gallery mode resonance spectroscopy of Fe3+ in sapphire
The development of a new era of quantum devices requires an understanding of how paramagnetic dopants or impurity spins behave in crystal hosts. Here, we describe a spectroscopic technique which uses traditional electron spin resonance (ESR) combined with the measurement of a large population of electromagnetic whispering gallery modes. This allows the characterization of the physical parameters of paramagnetic impurity ions in the crystal at low temperatures. We present measurements of two ultrahigh-purity sapphires cooled to 20 mK in temperature, and determine the concentration of Fe3 ions and their frequency sensitivity to a dc magnetic field. Our method is different from ESR in that it is possible to track the resonant frequency of the ion from zero applied magnetic field to any arbitrary value, allowing excellent measurement precision. This high precision reveals anisotropic behavior of the Zeeman splitting. In both crystals, each Zeeman component demonstrates a different g factor
Exosomes Secreted Under Hypoxia Enhance Stemness in Ewing\u27s Sarcoma Through miR-210 Delivery
Intercellular communication between tumor cells within the hypoxic microenvironment promote aggressiveness and poor patient prognoses for reasons that remain unclear. Here we show that hypoxic Ewing\u27s sarcoma (EWS) cells release exosomes that promote sphere formation, a stem-like phenotype, in EWS cells by enhancing survival. Analysis of the hypoxic exosomal miRNA cargo identified a HIF-1α regulated miRNA, miR-210, as a potential mediator of sphere formation in cells exposed to hypoxic exosomes. Knockdown of HIF-1α in hypoxic EWS cells led to decreased exosomal miR-210 levels and reduced the capacity of hypoxic exosomes to form spheres. Inhibition of miR-210 in hypoxic spheres attenuated sphere formation and overexpression of miR-210 in normoxic spheres significantly enhanced the number of EWS spheres. Our results indicate that hypoxic exosomal miR-210 targets the proapoptotic protein CASP8AP2 in recipient cells. Moreover, the suppression of CASP8AP2 led to a reduction in apoptotic cells and increased sphere formation. Together, the findings in this study suggest that hypoxic exosomes promote stemness in EWS cells by delivering enriched miR-210 that is capable of down-regulating apoptotic pathways, resulting in the survival of cells with increased sphere formation. Future studies will further investigate the effects of EWS derived exosomal miRNAs on target genes and the role these interactions play in driving aggressiveness in hypoxic EWS tumors
New Oldowan locality Sare-Abururu (ca. 1.7 Ma) provides evidence of diverse hominin behaviors on the Homa Peninsula, Kenya
The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3–2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition
Development of a Multilevel Intervention to Increase Colorectal Cancer Screening in Appalachia
Background
Colorectal cancer (CRC) screening rates are lower in Appalachian regions of the United States than in non-Appalachian regions. Given the availability of various screening modalities, there is critical need for culturally relevant interventions addressing multiple socioecological levels to reduce the regional CRC burden. In this report, we describe the development and baseline findings from year 1 of “Accelerating Colorectal Cancer Screening through Implementation Science (ACCSIS) in Appalachia,” a 5-year, National Cancer Institute Cancer MoonshotSM-funded multilevel intervention (MLI) project to increase screening in Appalachian Kentucky and Ohio primary care clinics.
Methods
Project development was theory-driven and included the establishment of both an external Scientific Advisory Board and a Community Advisory Board to provide guidance in conducting formative activities in two Appalachian counties: one in Kentucky and one in Ohio. Activities included identifying and describing the study communities and primary care clinics, selecting appropriate evidence-based interventions (EBIs), and conducting a pilot test of MLI strategies addressing patient, provider, clinic, and community needs.
Results
Key informant interviews identified multiple barriers to CRC screening, including fear of screening, test results, and financial concerns (patient level); lack of time and competing priorities (provider level); lack of reminder or tracking systems and staff burden (clinic level); and cultural issues, societal norms, and transportation (community level). With this information, investigators then offered clinics a menu of EBIs and strategies to address barriers at each level. Clinics selected individually tailored MLIs, including improvement of patient education materials, provision of provider education (resulting in increased knowledge, p = .003), enhancement of electronic health record (EHR) systems and development of clinic screening protocols, and implementation of community CRC awareness events, all of which promoted stool-based screening (i.e., FIT or FIT-DNA). Variability among clinics, including differences in EHR systems, was the most salient barrier to EBI implementation, particularly in terms of tracking follow-up of positive screening results, whereas the development of clinic-wide screening protocols was found to promote fidelity to EBI components.
Conclusions
Lessons learned from year 1 included increased recognition of variability among the clinics and how they function, appreciation for clinic staff and provider workload, and development of strategies to utilize EHR systems. These findings necessitated a modification of study design for subsequent years.
Trial registration
Trial NCT04427527 is registered at https://clinicaltrials.gov and was registered on June 11, 2020
- …