14 research outputs found

    The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context?

    Get PDF
    International audienceIn most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1

    Factors Contributing to Volcano Lateral Collapse

    No full text
    Many factors can lead to volcano lateral collapse, which can produce devastating debris avalanches that travel up to several tens to over 100 km and cover hundreds to more than a thousand km2 with debris. Volcanic lateral collapses are severe hazards because of their destructive power and size, and sudden onset. Although their frequency of occurrence is not as high as those of smaller volcanic mass movements, such as rock falls and lahars, globally large collapses ≄0.1 km3 have occurred at least five times per century over the last 500 years. A large variety of destabilizing factors such as over-steepened slopes, magma intrusions, hydrothermal activity, climate fluctuations, deformation of the basement, and faulting can create the conditions for volcano collapse. Once a volcano reaches its critical point, a mechanism is necessary to trigger the failure event. We present the state-of-the-art of the knowledge acquired in the last few decades concerning the causes of large-scale volcanic failures to better understand the triggers, preparatory factors, and timing of volcano lateral collapse

    Monogen vererbte HypophosphatÀmien

    No full text

    The Impact of Trust and Company Law on Institutional Investors and Combined Codees Expectation

    No full text

    The Hemotrophic Bacteria: The Families Bartonellaceae and Anaplasmataceae

    No full text

    Metal homeostasis and resistance in bacteria

    No full text
    corecore