73 research outputs found

    Final Report for "Improved Representations of Cloud Microphysics for Model and Remote Sensing Evaluation using Data Collected during ISDAC, TWP-ICE and RACORO

    Get PDF
    We were funded by ASR to use data collected during ISDAC and TWP-ICE to evaluate models with a variety of temporal and spatial scales, to evaluate ground-based remote sensing retrievals and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. In particular, we proposed to: 1) Calculate distributions of microphysical properties observed in arctic stratus during ISDAC for initializing and evaluating LES and GCMs, and for developing parameterizations of effective particle sizes, mean fall velocities, and mean single-scattering properties for such models; 2) Improve representations of particle sizes, fall velocities and scattering properties for tropical and arctic cirrus using TWP-ICE, ISDAC and M-PACE data, and to determine the contributions that small ice crystals, with maximum dimensions D less than 50 μm, make to mass and radiative properties; 3) Study fundamental interactions between clouds and radiation by improving representations of small quasi-spherical particles and their scattering properties. We were additionally funded 1-year by ASR to use RACORO data to develop an integrated product of cloud microphysical properties. We accomplished all of our goals

    Multi-Layer Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity Experiments

    Get PDF
    A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a factor of 3 due to interactions between the excessive LW radiative cooling and extra cloud water; heating caused by phase change of hydrometeors could affect the LWC and cloud top height by partially canceling out the LW radiative cooling. It is further shown that the resolved dynamical circulation appears to contribute more greatly to the evolution of the MPS cloud layers than the parameterized subgrid-scale circulation

    A New Parameterization of Single Scattering Solar Radiative Properties for Tropical Anvils Using Observed Ice Crystal Size and Shape Distributions

    Get PDF
    Parameterizations of single scattering properties currently used in cloud resolving and general circulation models are somewhat limited in that they typically assume the presence of single particle habits, do not adequately account for the numbers of ice crystals with diameters smaller than 100 mm, and contain no information about the variance of parameterization coefficients. Here, new parameterizations of mean single scattering properties (e.g., single scatter albedo, asymmetry parameter, and extinction efficiency) for distributions of ice crystals in tropical anvils are developed. Using information about the size and shape of ice crystals acquired by a two-dimensional cloud probe during the Central Equatorial Pacific Experiment (CEPEX), a self-organized neural network defines shape based on simulations of how the particle maximum dimension and area ratio (ratio of projected area to that of circumscribed circle with maximum dimension) vary for random orientations of different idealized shapes (i.e., columns, bullet rosettes, rough aggregates, and particles represented by Chebyshev poly-nomials). The size distributions for ice crystals smaller than 100 mm are based on parameterizations developed using representative samples of 11 633 crystals imaged by a video ice particle sampler (VIPS). The mean-scattering properties for distributions of ice crystals are then determined by weighting the single scattering properties of individual ice crystals, determined using an improved geometric ray-tracing method, according t

    Dynamics of Cloud-Top Generating Cells in Winter Cyclones. Part III: Shear and Convective Organization

    Get PDF
    Cloud-top generating cells (GCs) are a common feature atop stratiform clouds within the comma head of winter cyclones. The dynamics of cloud-top GCs are investigated using very high-resolution idealized WRF Model simulations to examine the role of shear in modulating the structure and intensity of GCs. Simulations were run for the same combinations of radiative forcing and instability as in Part II of this series, but with six different shear profiles ranging from 0 to 10ms21 km21 within the layer encompassing the GCs. The primary role of shear was to modulate the organization of GCs, which organized as closed convective cells in simulations with radiative forcing and no shear. In simulations with shear and radiative forcing, GCs organized in linear streets parallel to the wind. No GCs developed in the initially stable simulations with no radiative forcing. In the initially unstable and neutral simulations with no radiative forcing or shear, GCs were exceptionally weak, with no clear organization. In moderate-shear (Du/Dz 5 2, 4ms21 km21) simulations with no radiative forcing, linear organization of the weak cells was apparent, but this organization was less coherent in simulations with high shear (Du/Dz 5 6, 8, 10ms21 km21). The intensity of the updrafts was primarily related to the mode of radiative forcing but was modulated by shear. The more intense GCs in nighttime simulations were either associated with no shear (closed convective cells) or strong shear (linear streets). Updrafts within GCs under conditions with radiative forcing were typically ;1–2 ms21 with maximum values , 4ms21
    • …
    corecore