5,708 research outputs found

    Development of an early warning system of crop moisture conditions using passive microwave

    Get PDF
    Emissivities were calculated from the Nimbus 5 electrically scanning microwave radiometer (ESMR) over 25 km grid cells for the southern Great Plains includin the western two-thirds of Kansas and Oklahoma and northwest Texas. These emissivities, normalized for seasonal temperature changes, were in excellent agreement with theory and measurements made from aircraft and truck sensors at the 1.55 cm wavelength of ESMR. These emissivities were related to crop moisture conditions of the winter wheat in the major wheat producing counties of the three states. High correlations were noted between emissitivity and an antecedent precipitation index (API) used to infer soil moisture for periods when the soils were essentially bare. The emissivities from ESMR were related through API and actual crop condition reports to progress of fall planting, adequacy of crop moisture for stand establishment, and periods of excessive moisture that necessitated replanting. Periods of prolonged frozen soil in the winter were observable at several grid points. The average emissivities of the canopy/soil surface during the maximum canopy development times in the spring showed a good agreement with moisture stress inferred from rainfall and yield data

    Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra

    Get PDF
    We study the influence of phase matching on interference minima in high harmonic spectra. We concentrate on structures in atoms due to interference of different angular momentum channels during recombination. We use the Cooper minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure 2d harmonic spectra in argon as a function of wavelength and angular divergence. While we identify a clear CM in the spectrum when the target gas jet is placed after the laser focus, we find that the appearance of the CM varies with angular divergence and can even be completely washed out when the gas jet is placed closer to the focus. We also show that the argon CM appears at different wavelengths in harmonic and photo-absorption spectra measured under conditions independent of any wavelength calibration. We model the experiment with a simulation based on coupled solutions of the time-dependent Schr\"odinger equation and the Maxwell wave equation, including both the single atom response and macroscopic effects of propagation. The single atom calculations confirm that the ground state of argon can be represented by its field free pp symmetry, despite the strong laser field used in high harmonic generation. Because of this, the CM structure in the harmonic spectrum can be described as the interference of continuum ss and dd channels, whose relative phase jumps by π\pi at the CM energy, resulting in a minimum shifted from the photoionization result. We also show that the full calculations reproduce the dependence of the CM on the macroscopic conditions. We calculate simple phase matching factors as a function of harmonic order and explain our experimental and theoretical observation in terms of the effect of phase matching on the shape of the harmonic spectrum. Phase matching must be taken into account to fully understand spectral features related to HHG spectroscopy

    Trends in total column ozone measurements

    Get PDF
    It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record

    Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional Neural Networks

    Get PDF
    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyze sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255255 square degrees of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii 1.4\gtrsim 1.4 arcsec, about twice the rr-band seeing in KiDS. In a sample of 2178921789 colour-magnitude selected Luminous Red Galaxies (LRG), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find 100\sim100 massive LRG-galaxy lenses at z\lsim 0.4 in KiDS when completed. In the most optimistic scenario this number can grow considerably (to maximally \sim2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.Comment: 24 pages, 17 figures. Published in MNRA

    Strongly dispersive transient Bragg grating for high harmonics

    Get PDF
    We create a transient Bragg grating in a high-harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size. © 2010 Optical Society of America

    Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios

    Get PDF
    Agriculture is one of the sectors that is expected to be most significantly impacted by climate change. There has been considerable interest in assessing these impacts and many recent studies investigating agricultural impacts for individual countries and regions using an array of models. However, the great majority of existing studies explore impacts on a country or region of interest without explicitly accounting for impacts on the rest of the world. This approach can bias the results of impact assessments for agriculture given the importance of global trade in this sector. Due to potential impacts on relative competitiveness, international trade, global supply, and prices, the net impacts of climate change on the agricultural sector in each region depend not only on productivity impacts within that region, but on how climate change impacts agricultural productivity throughout the world. In this study, we apply a global model of agriculture and forestry to evaluate climate change impacts on US agriculture with and without accounting for climate change impacts in the rest of the world. In addition, we examine scenarios where trade is expanded to explore the implications for regional allocation of production, trade volumes, and prices. To our knowledge, this is one of the only attempts to explicitly quantify the relative importance of accounting for global climate change when conducting regional assessments of climate change impacts. The results of our analyses reveal substantial differences in estimated impacts on the US agricultural sector when accounting for global impacts vs. US-only impacts, particularly for commodities where the United States has a smaller share of global production. In addition, we find that freer trade can play an important role in helping to buffer regional productivity shocks

    Quantum beat spectroscopy: stimulated emission probe of hyperfine quantum beats in the atomic Cs 8p 2P3/2^{2}P_{3/2} level

    Full text link
    Measurements of hyperfine polarization quantum beats are used determine the magnetic dipole (A) and electric quadrupole (B) coupling constants in the excited atomic Cs 8p level. The experimental approach is a novel combination of pulsed optical pumping and time-delayed stimulated emission probing of the excited level. From the measured evolution of the atomic linear polarization degree as a function of probe delay time, we determine the hyperfine coupling constants A = 7.42(6) MHz and B = 0.14(29) MHz
    corecore