4,090 research outputs found
On ordinal utility, cardinal utility, and random utility
Though the Random Utility Model (RUM) was conceived
entirely in terms of ordinal utility, the apparatus throughwhich it is widely practised exhibits properties of
cardinal utility. The adoption of cardinal utility as a
working operation of ordinal is perfectly valid, provided
interpretations drawn from that operation remain faithful
to ordinal utility. The paper considers whether the latterrequirement holds true for several measurements commonly
derived from RUM. In particular it is found that
measurements of consumer surplus change may depart from
ordinal utility, and exploit the cardinality inherent in
the practical apparatus.
Remote sensing of Pacific hurricane and radiometric measurements from foam and slicks
There are no author-identified significant results in this report
© Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Natural Hazards and Earth System Sciences
Abstract. A major impediment to an understanding of the links between climate and landscape change, has been the relatively coarse resolution of landscape response measures (rates of weathering, sediment production, erosion and transport) relative to the higher resolution of the climatic signal (precipitation and temperature on hourly to annual time scales). A combination of high temporal and spatial resolution dendroclimatic and dendrogeomorphic approaches were used to study relationships between climatic variability and hillslope and valley floor dynamics in a small drainage basin in the Colorado Plateau of northeastern Arizona, USA Dendrogeomorphic and vegetation evidence from slopes and valley bottoms, including root exposure, bending of trunks, change in plant cover and burial and exhumation of valley bottom trees and shrubs, suggest that the currently observe
Holographic predictions for cosmological 3-point functions
We present the holographic predictions for cosmological 3-point correlators,
involving both scalar and tensor modes, for a universe which started in a
non-geometric holographic phase. Holographic formulae relate the cosmological
3-point functions to stress tensor correlation functions of a holographically
dual three-dimensional non-gravitational QFT. We compute these correlators at
1-loop order for a theory containing massless scalars, fermions and gauge
fields, and present an extensive analysis of the constraints due to Ward
identities showing that they uniquely determine the correlators up to a few
constants. We define shapes for all cosmological bispectra and compare the
holographic shapes to the slow-roll ones, finding that some are distinguishable
while others, perhaps surprisingly, are not.Comment: 51pp; 4 fig
The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft
We analyzed 44 passes of the MAVEN spacecraft through the magnetosphere,
arranged by the angle between electric field vector and the projection of
spacecraft position radius vector in the YZ plane in MSE coordinate system
( E ). All passes were divided into 3 angular sectors near 0{\deg},
90{\deg} and 180{\deg} E angles in order to estimate the role of IMF
direction in plasma and magnetic properties of dayside Martian magnetosphere.
The time interval chosen was from January 17 through February 4, 2016 when
MAVEN was crossing the dayside magnetosphere at SZA ~ 70{\deg}. Magnetosphere
as the region with prevailing energetic planetary ions is always found between
the magnetosheath and the ionosphere. 3 angular sectors of dayside interaction
region in MSE coordinate system with different orientation of the solar wind
electric field vector E = -1/c V x B showed that for each sector one can find
specific profiles of the magnetosheath, the magnetic barrier and the
magnetosphere. Plume ions originate in the northern MSE sector where motion
electric field is directed from the planet. This electric field ejects
magnetospheric ions leading to dilution of magnetospheric heavy ions
population, and this effect is seen in some magnetospheric profiles. Magnetic
barrier forms in front of the magnetosphere, and relative magnetic field
magnitudes in these two domains vary. The average height of the boundary with
ionosphere is ~530 km and the average height of the magnetopause is ~730 km. We
discuss the implications of the observed magnetosphere structure to the
planetary ions loss mechanism.Comment: 24 pages, 13 figure
Phase field modeling of electrochemistry II: Kinetics
The kinetic behavior of a phase field model of electrochemistry is explored
for advancing (electrodeposition) and receding (electrodissolution) conditions
in one dimension. We described the equilibrium behavior of this model in [J. E.
Guyer, W. J. Boettinger, J.A. Warren, and G. B. McFadden, ``Phase field
modeling of electrochemistry I: Equilibrium'', cond-mat/0308173]. We examine
the relationship between the parameters of the phase field method and the more
typical parameters of electrochemistry. We demonstrate ohmic conduction in the
electrode and ionic conduction in the electrolyte. We find that, despite making
simple, linear dynamic postulates, we obtain the nonlinear relationship between
current and overpotential predicted by the classical ``Butler-Volmer'' equation
and observed in electrochemical experiments. The charge distribution in the
interfacial double layer changes with the passage of current and, at
sufficiently high currents, we find that the diffusion limited deposition of a
more noble cation leads to alloy deposition with less noble species.Comment: v3: To be published in Phys. Rev. E v2: Attempt to work around
turnpage bug. Replaced color Fig. 4a with grayscale 13 pages, 7 figures in 10
files, REVTeX 4, SIunits.sty, follows cond-mat/030817
- …