398 research outputs found

    Rich methane laminar flames doped with light unsaturated hydrocarbons. Part II: 1,3butadiene

    Full text link
    In line with the study presented in the part I of this paper, the structure of a laminar rich premixed methane flame doped with 1,3-butadiene has been investigated. The flame contains 20.7% (molar) of methane, 31.4% of oxygen and 3.3% of 1,3-butadiene, corresponding to an equivalence ratio of 1.8, and a ratio C4H6 / CH4 of 16 %. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The temperature ranged from 600 K close to the burner up to 2150 K. Quantified species included usual methane C0-C2 combustion products and 1,3-butadiene, but also propyne, allene, propene, propane, 1,2-butadiene, butynes, vinylacetylene, diacetylene, 1,3-pentadiene, 2-methyl-1,3-butadiene (isoprene), 1-pentene, 3-methyl-1-butene, benzene and toluene. In order to model these new results, some improvements have been made to a mechanism previously developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reaction pathways of consumption of 1,3-butadiene and of formation of C6 aromatic species have been derived from flow rate analyses. In this case, the C4 route to benzene formation plays an important role in comparison to the C3 pathway

    A Comparative Study of the Formation of Aromatics in Rich Methane Flames Doped by Unsaturated Compounds

    Full text link
    For a better modeling of the importance of the different channels leading to the first aromatic ring, we have compared the structures of laminar rich premixed methane flames doped with several unsaturated hydrocarbons: allene and propyne, because they are precursors of propargyl radicals which are well known as having an important role in forming benzene, 1,3-butadiene to put in evidence a possible production of benzene due to reactions of C4 compounds, and, finally, cyclopentene which is a source of cyclopentadienylmethylene radicals which in turn are expected to easily isomerizes to give benzene. These flames have been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as dilutant, for equivalence ratios (?) from 1.55 to 1.79. A unique mechanism, including the formation and decomposition of benzene and toluene, has been used to model the oxidation of allene, propyne, 1,3 butadiene and cyclopentene. The main reaction pathways of aromatics formation have been derived from reaction rate and sensitivity analyses and have been compared for the three types of additives. These combined analyses and comparisons can only been performed when a unique mechanism is available for all the studied additives

    Political brand image: an investigation into the operationalisation of the external orientation of David Cameron’s Conservative brand

    Get PDF
    This paper seeks to address the limited understanding of how to operationalise the external brand image of a political brand. More specifically, this research critically assesses the transfer potential of the six variables of brand image by Bosch, Venter, Han and Boshoff to deconstruct the UK Conservative Party brand from the perspective of young people aged 18–24 years during the 2010 UK General Election campaign. This research demonstrates the applicability of the six variables otherwise known as the ‘brand image framework’ to the political environment. However, the application of the brand image framework in its original conceptualisation proved problematic. Many of the brand image variables were clarified, rearticulated and simplified to address the political context. This refined conceptualisation provided an in-depth understanding of how to investigate the political brand image of David Cameron’s Conservative Party. This study addresses the paucity of research that operationalises external brand image and provides practitioners and academics within and beyond the context of political branding a mechanism to understand the external orientation of brands. This research may also be used by political and non-political brands as a basis to explore external brand image and compare its consistency with internal brand identity

    An experimental and kinetic modelling study of the oxidation of the four isomers of butanol

    Full text link
    Butanol, an alcohol which can be produced from biomass sources, has received recent interest as an alternative to gasoline for use in spark ignition engines and as a possible blending compound with fossil diesel or biodiesel. Therefore, the autoignition of the four isomers of butanol (1-butanol, 2-butanol, iso-butanol, and tert-butanol) has been experimentally studied at high temperatures in a shock tube and a kinetic mechanism for description of their high-temperature oxidation has been developed. Ignition delay times for butanol/oxygen/argon mixtures have been measured behind reflected shock waves at temperatures and pressures ranging from approximately 1200 to 1800 K and 1 to 4 bar. Electronically excited OH emission and pressure measurements were used to determine ignition delay times. A detailed kinetic mechanism has been developed to describe the oxidation of the butanol isomers and validated by comparison to the shock tube measurements. Reaction flux and sensitivity analysis indicate that the consumption of 1 butanol and iso-butanol, the most reactive isomers, takes place primarily by H-atom abstraction resulting in the formation of radicals, the decomposition of which yields highly reactive branching agents, H-atoms and OH radicals. Conversely, the consumption of tert butanol and 2-butanol, the least reactive isomers, takes place primarily via dehydration, resulting in the formation of alkenes, which lead to resonance stabilized radicals with very low reactivity. To our knowledge, the ignition delay measurements and oxidation mechanism presented here for 2-butanol, iso-butanol, and tert butanol are the first of their kind.

    Brand champion behaviour: Its role in corporate branding

    Get PDF
    yesBrand champions are responsible for encouraging employee commitment to the corporate brand strategy. They strongly believe in and identify with the brand concept—the company’s selected brand meaning, which underpins corporate brand strategy implementation. We conducted research to explore why and how brand champion behaviour operates within companies implementing a new corporate brand strategy. Against a backdrop of growing interest in brand champion behaviour in corporate branding research, we grounded our study in social identity theory and rhetorical theory from change management literature. Our findings show that articulating a compelling brand vision, taking responsibility, and getting the right people involved are the most widely used strategies by brand champions. We uncover how rhetorical strategies within brand champion behaviour generate employee commitment to a new corporate brand strategy. The dimension of brand champion behaviour that is effective depends on the type of brand evolution, involving shifts in the brand concept. We make suggestions for further studies underpinned by social identity theory and rhetorical theory to investigate brand champion behaviour processes within companies introducing a new corporate brand strategy
    corecore