4,178 research outputs found

    Complexity-based learning and teaching: a case study in higher education

    Get PDF
    This paper presents a learning and teaching strategy based on complexity science and explores its impacts on a higher education game design course. The strategy aimed at generating conditions fostering individual and collective learning in educational complex adaptive systems, and led the design of the course through an iterative and adaptive process informed by evidence emerging from course dynamics. The data collected indicate that collaboration was initially challenging for students, but collective learning emerged as the course developed, positively affecting individual and team performance. Even though challenged, students felt highly motivated and enjoyed working on course activities. Their perception of progress and expertise were always high, and the academic performance was on average very good. The strategy fostered collaboration and allowed students and tutors to deal with complex situations requiring adaptation

    Potential of Deshi Cattle of India for Dairy Production

    Get PDF
    There were 1,405 lactation records of 336 cows at the Central Livestock Research- cum-Breeding Station, Haringhata, India from 1958 to 1968 used to estimate the potential dairy merit of Deshi cattle. This breed is native to northeast India and one of the smallest breeds in India (mature females 200 kg and males 250 kg). Averages and standard deviations for milk yield (exclusive of that suckled), age of first calving, calving interval, lactation length, days open, and days dry were 412 ± 178 kg, 44.5 ± 6.8 months, 419 ± 90 days, 264 ± 81 days, 135 ± 86 days, and 139 ± 80 days. Mortality, culling, and retention rates for females from birth to first calving were 24, 27, and 49%. Lactation number, season of calving, and death of calf early in lactation had significant effects on milk yield. Repeatabilities of milk yield, lactation length, calving interval, dry period, and days open were .42, .19, .21, .03, and .23 with corresponding heritabilities .64, .19, .09, .19, and .27. Heritability for age of first calving was .84. Confounding by some environmental effects probably biased heritability estimates upward. Potential genetic improvement of milk yield by mass selection was estimated at .8% per year. Contemporary Jersey X Deshi crosses exceeded Deshi for milk yield, age of first calving, lactation length, calving interval, and days open by +923 kg, -15 months, +41, -84, and -96 days. At least one generation of crossing with European breeds is recommended over mass selection of Deshi

    On Exchange of Orbital Angular Momentum Between Twisted Photons and Atomic Electrons

    Full text link
    We obtain an expression for the matrix element for a twisted (Laguerre-Gaussian profile) photon scattering from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓℏ\ell \hbar, carried by a factor of eiℓϕe^{i \ell \phi} not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ+2\ell units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulae for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ\lambda is large compared with the atomic target size aa, and small compared the Rayleigh range zRz_R, which characterizes the collimation length of the twisted photon beam.Comment: 16 page

    Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front

    Get PDF
    Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors

    p53-mediated delayed NF-ÎșB activity enhances etoposide-induced cell death in medulloblastoma

    Get PDF
    Medulloblastoma (MB) is an embryonic brain tumour that arises in the cerebellum. Using several MB cell lines, we have demonstrated that the chemotherapeutic drug etoposide induces a p53- and caspase-dependent cell death. We have observed an additional caspase-independent cell death mechanism involving delayed nuclear factor ÎșB (NF-ÎșB) activity. The delayed induction was controlled by a p53-dependent transcription step and the production of death receptors (especially CD95/Fas). We further demonstrated that in both MB and glioblastoma (GM) cell lines, in which the p53 pathway was not functional, no p65 activation could be detected upon etoposide treatment. MB cell lines that have mutations in p53 or NF-ÎșB are either less sensitive (NF-ÎșB mutant) or even completely resistant (p53 mutant) to chemotherapeutic intervention. The optimal cell death was only achieved when both p53 and NF-ÎșB were switched on. Taken together, our results shed light on the mechanism of NF-ÎșB activation by etoposide in brain tumours and show that the genetic background of MB and GM cells determines their sensitivity to chemotherapy and has to be taken into account for efficient therapeutic intervention

    The Formation of the First Stars. I. The Primordial Star Forming Cloud

    Get PDF
    To constrain the nature of the very first stars, we investigate the collapse and fragmentation of primordial, metal-free gas clouds. We explore the physics of primordial star formation by means of three-dimensional simulations of the dark matter and gas components, using smoothed particle hydrodynamics, under a wide range of initial conditions, including the initial spin, the total mass of the halo, the redshift of virialization, the power spectrum of the DM fluctuations, the presence of HD cooling, and the number of particles employed in the simulation. We find characteristic values for the temperature, T ~ a few 100 K, and the density, n ~ 10^3-10^4 cm^-3, characterising the gas at the end of the initial free-fall phase. These values are rather insensitive to the initial conditions. The corresponding Jeans mass is M_J ~ 10^3 M_sun. The existence of these characteristic values has a robust explanation in the microphysics of H2 cooling, connected to the minimum temperature that can be reached with the H2 coolant, and to the critical density at which the transition takes place betweeb levels being populated according to NLTE, and according to LTE. In all cases, the gas dissipatively settles into an irregular, central configuration which has a filamentary and knotty appearance. The fluid regions with the highest densities are the first to undergo runaway collapse due to gravitational instability, and to form clumps with initial masses ~ 10^3 M_sun, close to the characteristic Jeans scale. These results suggest that the first stars might have been quite massive, possibly even very massive with M_star > 100 M_sun.Comment: Minor revisions. 26 pages, including 24 figures and 5 tables. ApJ, in press. To appear in the Dec. 20, 2001 issue (v563

    Cosmic Renaissance: The First Sources of Light

    Full text link
    I review recent progress in understanding the formation of the first stars and quasars. The initial conditions for their emergence are given by the now firmly established model of cosmological structure formation. Numerical simulations of the collapse and fragmentation of primordial gas indicate that the first stars formed at redshifts z ~ 20 - 30, and that they were predominantly very massive, with M_* > 100 M_sun. Important uncertainties, however, remain. Paramount among them is the accretion process, which builds up the final stellar mass by incorporating part of the diffuse, dust-free envelope into the central protostellar core. The first quasars, on the other hand, are predicted to have formed later on, at z ~ 10, in more massive dark matter halos, with total masses, ~ 10^8 M_sun, characteristic of dwarf galaxies.Comment: 16 pages, 7 figures, invited review, to appear in PASP, Feb. 200

    Dissolved organic carbon uptake in streams: A review and assessment of reach‐scale measurements

    Get PDF
    Quantifying the role that freshwater ecosystems play in the global carbon cycle requires accurate measurement and scaling of dissolved organic carbon (DOC) removal in river networks. We reviewed reach‐scale measurements of DOC uptake from experimental additions of simple organic compounds or leachates to inform development of aquatic DOC models that operate at the river network, regional, or continental scale. Median DOC uptake velocity (vf) across all measurements was 2.28 mm min−1. Measurements using simple compound additions resulted in faster vf (2.94 mm min−1) than additions of leachates (1.11 mm min−1). We also reviewed published data of DOC bioavailability for ambient stream water and leaf leachate DOC from laboratory experiments. We used these data to calculate and apply a correction factor to leaf leachate uptake velocity to estimate ambient stream water DOC uptake rates at the reach scale. Using this approach, we estimated a median ambient stream DOC vf of 0.26 mm min−1. Applying these DOC vf values (0.26, 1.11, 2.28, and 2.94 mm min−1) in a river network inverse model in seven watersheds revealed that our estimated ambient DOC vf value is plausible at the network scale and 27 to 45% of DOC input was removed. Applying the median measured simple compound or leachate vf in whole river networks would require unjustifiably high terrestrial DOC inputs to match observed DOC concentrations at the basin mouth. To improve the understanding and importance of DOC uptake in fluvial systems, we recommend using a multiscale approach coupling laboratory assays, with reach‐scale measurements, and modeling

    Discreet element modeling of under sleeper pads using a box test

    Get PDF
    It has recently been reported that under sleeper pads (USPs) could improve ballasted rail track by decreasing the sleeper settlement and reducing particle breakage. In order to find out what happens at the particle-pad interface, discrete element modelling (DEM) is used to provide micro mechanical insight. The same positive effects of USP are found in the DEM simulations. The evidence provided by DEM shows that application of a USP allows more particles to be in contact with the pad, and causes these particles to transfer a larger lateral load to the adjacent ballast but a smaller vertical load beneath the sleeper. This could be used to explain why the USP helps to reduce the track settlement. In terms of particle breakage, it is found that most breakage occurs at the particle-sleeper interface and along the main contact force chains between particles under the sleeper. The use of USPs could effectively reduce particle abrasion that occurs in both of these regions
    • 

    corecore