5,195 research outputs found

    Mesoscale cyclic crystal plasticity with dislocation substructures

    Get PDF
    Constitutive formulations have increasingly focused on physically-based approaches that are less phenomenological and incorporate information from multiple scales. Most dislocation-based plasticity approaches reflect many-body dislocation physics without considering the length scales introduced by the self-organization of dislocations into mesoscale structures. These structures promote internal stresses or back stresses that are heterogeneous and long-range in nature and play a critical intermediary role in distinguishing the stress at micro- and nano-scales under cyclic loading. We present a framework that explicitly incorporates length-scales and evolution laws associated with mesoscale dislocation substructures such as cells and persistent slip bands (PSBs) in metallic materials under cyclic loading. A physically-based formulation for the back stress based on the Eshelby inclusion formalism is introduced that explicitly depends on morphology of mesoscale dislocation structures. The approach employs material parameters that can be measured or computed at lower length scales to contrast the response of models and experiments for multiple single crystals orientation and polycrystals for a wide range of strains

    On the micro mechanics of one-dimensional normal compression

    Get PDF
    Discrete-element modelling has been used to investigate the micro mechanics of one-dimensional compression. One-dimensional compression is modelled in three dimensions using an oedometer and a large number of particles, and without the use of agglomerates. The fracture of a particle is governed by the octahedral shear stress within the particle due to the multiple contacts and a Weibull distribution of strengths. Different fracture mechanisms are considered, and the influence of the distribution of fragments produced for each fracture on the global particle size distribution and the slope of the normal compression line is investigated. Using the discrete-element method, compression is related to the evolution of a fractal distribution of particles. The compression index is found to be solely a function of the strengths of the particles as a function of size

    Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    Get PDF
    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS (Abaqus unified FEA, 2016) [1], with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress [2]. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law [3] with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. The relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures

    Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster?

    Get PDF
    Hidden from optical view in the starburst region of the dwarf galaxy NGC 5253 lies an intense radio source with an unusual spectrum which could be interpreted variously as nebular gas ionized by a young stellar cluster or nonthermal emission from a radio supernova or an AGN. We have obtained 11.7 and 18.7 micron images of this region at the Keck Telescope and find that it is an extremely strong mid-infrared emitter. The infrared to radio flux ratio rules out a supernova and is consistent with an HII region excited by a dense cluster of young stars. This "super nebula" provides at least 15% of the total bolometric luminosity of the galaxy. Its excitation requires 10^5-10^6 stars, giving it the total mass and size (1-2 pc diameter) of a globular cluster. However, its high obscuration, small size, and high gas density all argue that it is very young, no more than a few hundred thousand years old. This may be the youngest globular cluster yet observed.Comment: 6 pages, 2 color figures, Submitted to the ApJL, Revised 4/6/01 based on referee's comment

    Chest pain while gardening: a Stanford type A dissection involving the aortic root extending into the iliac arteries-an uncommon and potentially catastrophic disease process

    Get PDF
    BACKGROUND: An aortic dissection is an uncommon and potentially catastrophic disease process that carries with it a high morbidity and mortality. The inciting event is a tear in the intimal lining of the aorta. This allows passage of blood through the tear and into the aortic media, resulting in the creation of a false lumen. CASE PRESENTATION: We describe the case of a 71-year-old male with a history of hypertension that suffered a Stanford type A dissection with an intimal flap beginning at the level of the aortic root and extending into the bilateral iliac arteries. His clinical presentation was further complicated by shock, cardiac tamponade, severe coagulopathy, an ischemic right lower extremity, infarction of his thoracic spinal cord, and subacute infarcts secondary to malperfusion and embolic disease. Despite maximal intervention, the patient continued to clinically decline and ultimately died on day 5. CONCLUSION: The clinical presentation of an acute aortic dissection is often atypical and mimics other common disease processes. The signs and symptoms largely depend on the extent of the aortic dissection and the presence or absence of malperfusion. With a mortality increasing by 1-2% for every hour until definitive treatment, early recognition and prompt operative intervention are crucial for patient survival

    A rationale for modeling hydrogen effects on plastic deformation across scales in FCC metals

    Get PDF
    Although there have been many investigations on the effects of hydrogen on the plastic deformation of metals, an intense debate continues about the physical mechanisms responsible. Most puzzling is the fact that hydrogen appears to be able to both harden and soften FCC metals, depending on the loading conditions. In addition, experiments have shown that hydrogen affects slip system activity differentially, resulting in shear localization of plastic deformation. The work reported in this paper employs a physics-based crystal plasticity model to reproduce the macroscopic response of hydrogen-charged FCC metals through the hydrogen effects on dislocation interactions proposed herein. Different micro-scale mechanisms by which hydrogen may affect plastic deformation are considered, and their resulting macroscopic stress-strain responses under monotonic and cyclic loading are compared. The results support the conclusion that hydrogen screening of dislocations alone cannot explain all the observed macroscopic responses. Instead, it is argued that hydrogen can promote hardening or softening through an increase in glide activation energy and a reduction in dislocation line tension

    Soil Aggregate Dynamics, Particulate Organic Matter and Phosphate under Dryland and Irrigated Pasture

    Get PDF
    Soil aggregate formation and turnover affects the rate of occlusion or release of soil organic matter and therefore the availability for mineralisation or stabilisation of soil carbon (C) and phosphorus (P). Furthermore, differences in soil type, management and the quantity and quality of organic inputs can affect aggregate turnover rates (Six et al., 2000). Under pastoral farming the ratio of coarse particulate organic matter (inter-POM) inside macroaggregates but outside microaggregates to fine POM (intra-POM) within microaggregates may provide an indication of physical processes influencing mineralisation and stabilisation of soil C and organic P (Po). Our aim was to determine the coarse and fine POM and associated C and P contents in water stable macro and microaggregates under long term irrigated and dryland pasture grazed by sheep

    Complexity-based learning and teaching: a case study in higher education

    Get PDF
    This paper presents a learning and teaching strategy based on complexity science and explores its impacts on a higher education game design course. The strategy aimed at generating conditions fostering individual and collective learning in educational complex adaptive systems, and led the design of the course through an iterative and adaptive process informed by evidence emerging from course dynamics. The data collected indicate that collaboration was initially challenging for students, but collective learning emerged as the course developed, positively affecting individual and team performance. Even though challenged, students felt highly motivated and enjoyed working on course activities. Their perception of progress and expertise were always high, and the academic performance was on average very good. The strategy fostered collaboration and allowed students and tutors to deal with complex situations requiring adaptation

    Does gender matter? A cross-national investigation of primary class-room discipline.

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis GroupFewer than 15% of primary school teachers in both Germany and the UK are male. With the on-going international debate about educational performance highlighting the widening gender achievement gap between girl and boy pupils, the demand for more male teachers has become prevalent in educational discourse. Concerns have frequently been raised about the underachievement of boys, with claims that the lack of male ‘role models’ in schools has an adverse effect on boys’ academic motivation and engagement. Although previous research has examined ‘teaching’ as institutional talk, men’s linguistic behaviour in the classroom remains largely ignored, especially in regard to enacting discipline. Using empirical spoken data collected from four primary school classrooms in both the UK and in Germany, this paper examines the linguistic discipline strategies of eight male and eight female teachers using Interactional Sociolinguistics to address the question, does teacher gender matter?Peer reviewedFinal Accepted Versio
    • …
    corecore