72 research outputs found

    Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis

    Get PDF
    Previous studies have evaluated how changes in atmospheric nitrogen (N) inputs and climate affect stream N concentrations and fluxes, but none have synthesized data from sites around the globe. We identified variables controlling stream inorganic N concentrations and fluxes, and how they have changed, by synthesizing 20 time series ranging from 5 to 51 years of data collected from forest and grassland dominated watersheds across Europe, North America, and East Asia and across four climate types (tropical, temperate, Mediterranean, and boreal) using the International Long-Term Ecological Research Network. We hypothesized that sites with greater atmospheric N deposition have greater stream N export rates, but that climate has taken a stronger role as atmospheric deposition declines in many regions of the globe. We found declining trends in bulk ammonium and nitrate deposition, especially in the longest time-series, with ammonium contributing relatively more to atmospheric N deposition over time. Among sites, there were statistically significant positive relationships between (1) annual rates of precipitation and stream ammonium and nitrate fluxes and (2) annual rates of atmospheric N inputs and stream nitrate concentrations and fluxes. There were no significant relationships between air temperature and stream N export. Our long-term data shows that although N deposition is declining over time, atmospheric N inputs and precipitation remain important predictors for inorganic N exported from forested and grassland watersheds. Overall, we also demonstrate that long-term monitoring provides understanding of ecosystems and biogeochemical cycling that would not be possible with short-term studies alone.publishedVersio

    The design, implementation, and performance of the LZ calibration systems

    Get PDF
    LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments

    New constraints on ultraheavy dark matter from the LZ experiment

    Get PDF
    Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/c2 to a few TeV/c2. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a reanalysis of the first science run of the LZ experiment, with an exposure of 0.9  tonne×yr, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 1017  GeV/c2. Published by the American Physical Society 2024 </jats:sec

    Systematics, taxonomy and floristics of Brazilian Rubiaceae: an overview about the current status and future challenges

    Full text link

    Microbial immobilization and mineralization of dissolved organic nitrogen from forest floors.

    No full text
    Dissolved organic nitrogen (DON) plays a key role in the N cycle of many ecosystems, as DON availability and biodegradation are important for plant growth, microbial metabolism and N transport in soils. However, biodegradation of DON (defined as the sum of mineralization and microbial immobilization) is only poorly understood. In laboratory incubations, biodegradation of DON and dissolved organic carbon (DOC) from Oi and Oa horizons of spruce, beech and cypress forests ranged from 6 to 72%. Biodegradation of DON and DOC was similar in most samples, and mineralization of DON was more important than microbial immobilization. Nitrate additions (0-10 mg N L(-1)) never influenced either DON immobilization by microorganisms or mineralization. We conclude that soil microorganisms do not necessarily prefer mineral N over DON for meeting their N demand, and that biodegradation of DON seems to be driven by the microbial demand for C rather than N. Quantifying the dynamics of DON in soils should include consideration of both C and N demands by microbes

    A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources.

    No full text
    The importance of dissolved organic matter (DOM) in many soil processes is determined in large part by its availability to microbial uptake and decomposition, as this biodegradation can yield both energy and limiting nutrients. Despite its importance in soil ecology, there are no standard approaches to measuring the biodegradable fraction of DOC (BDOC) in soils. Here, we evaluate the comparability and reproducibility of methods employed in six laboratories including batch, kinetic, and bioreactor methods. Solutions from a variety of sources (throughfall, soil solution and soil extracts) were analysed using methods typically employed in each of the six participating laboratories. Our results show that the precision of various BDOC methods was similar (5–15%) across a broad range of BDOC (from 12% to 56% of total DOC). Differences in mean BDOC for the various test solutions were statistically significant when results were pooled across all the methods, and only a 90-day incubation resulted in consistently higher values for BDOC than the other methods. For 4 of 6 test solutions, measured BDOC increased by 6–13% with added nutrients. Current methods produce largely comparable results, providing the justification for comparisons among existing data sets collected with different methodologies. We recommend two standard methods for future studies: (1) a rapid determination of relatively labile DOC (measurement of DOC removal after 7 days of incubation with added nutrients) and (2) a 42-day incubation with repeated analysis of CO2 production when determination of decomposition rate constants and a labile and relatively refractory component of DOC is desired

    Global abundance and size distribution of streams and rivers

    Get PDF
    To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 continents to estimate the fraction of continental area occupied by streams worldwide and corrected remote sensing stream inventories for unresolved small streams. Our estimates of global fluvial area are 485 000 to 662 000 km2 and are +30–300% of published appraisals. Moderately sized rivers (orders 5–9) seem to comprise the greatest global area, with less area covered by low and high order streams, while global stream length, and therefore the riparian interface, is dominated by 1st order streams. Rivers and streams are likely to cover 0.30–0.56% of the land surface and make contributions to global processes and greenhouse gas emissions that may be +20–200% greater than those implied by previous estimates.
    • …
    corecore