131 research outputs found

    Molecular genetics of 22q11.2 deletion syndrome

    Get PDF
    The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome‐wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior

    A neurogenetic model for the study of schizophrenia spectrum disorders: The International 22q11.2 Deletion Syndrome Brain Behavior Consortium

    Get PDF
    Rare copy number variants contribute significantly to the risk for schizophrenia, with the 22q11.2 locus consistently implicated. Individuals with the 22q11.2 deletion syndrome (22q11DS) have an estimated 25-fold increased risk for schizophrenia spectrum disorders, compared to individuals in the general population. The International 22q11DS Brain Behavior Consortium is examining this highly informative neurogenetic syndrome phenotypically and genomically. Here we detail the procedures of the effort to characterize the neuropsychiatric and neurobehavioral phenotypes associated with 22q11DS, focusing on schizophrenia and subthreshold expression of psychosis. The genomic approach includes a combination of whole genome sequencing and genome-wide microarray technologies, allowing the investigation of all possible DNA variation and gene pathways influencing the schizophrenia-relevant phenotypic expression. A phenotypically rich data set provides a psychiatrically well-characterized sample of unprecedented size (n=1,616) that informs the neurobehavioral developmental course of 22q11DS. This combined set of phenotypic and genomic data will enable hypothesis testing to elucidate the mechanisms underlying the pathogenesis of schizophrenia spectrum disorders

    A neurogenetic model for the study of schizophrenia spectrum disorders: The International 22q11.2 Deletion Syndrome Brain Behavior Consortium

    Get PDF
    Rare copy number variants contribute significantly to the risk for schizophrenia, with the 22q11.2 locus consistently implicated. Individuals with the 22q11.2 deletion syndrome (22q11DS) have an estimated 25-fold increased risk for schizophrenia spectrum disorders, compared to individuals in the general population. The International 22q11DS Brain Behavior Consortium is examining this highly informative neurogenetic syndrome phenotypically and genomically. Here we detail the procedures of the effort to characterize the neuropsychiatric and neurobehavioral phenotypes associated with 22q11DS, focusing on schizophrenia and subthreshold expression of psychosis. The genomic approach includes a combination of whole genome sequencing and genome-wide microarray technologies, allowing the investigation of all possible DNA variation and gene pathways influencing the schizophrenia-relevant phenotypic expression. A phenotypically rich data set provides a psychiatrically well-characterized sample of unprecedented size (n=1,616) that informs the neurobehavioral developmental course of 22q11DS. This combined set of phenotypic and genomic data will enable hypothesis testing to elucidate the mechanisms underlying the pathogenesis of schizophrenia spectrum disorders

    A Genetics-First Approach to Dissecting the Heterogeneity of Autism: Phenotypic Comparison of Autism Risk Copy Number Variants

    Get PDF
    OBJECTIVE: Certain copy number variants (CNVs) greatly increase the risk of autism. The authors conducted a genetics-first study to investigate whether heterogeneity in the clinical presentation of autism is underpinned by specific genotype-phenotype relationships. METHODS: This international study included 547 individuals (mean age, 12.3 years [SD=4.2], 54% male) who were ascertained on the basis of having a genetic diagnosis of a rare CNV associated with high risk of autism (82 16p11.2 deletion carriers, 50 16p11.2 duplication carriers, 370 22q11.2 deletion carriers, and 45 22q11.2 duplication carriers), as well as 2,027 individuals (mean age, 9.1 years [SD=4.9], 86% male) with autism of heterogeneous etiology. Assessments included the Autism Diagnostic Interview-Revised and IQ testing. RESULTS: The four genetic variant groups differed in autism symptom severity, autism subdomain profile, and IQ profile. However, substantial variability was observed in phenotypic outcome in individual genetic variant groups (74%-97% of the variance, depending on the trait), whereas variability between groups was low (1%-21%, depending on the trait). CNV carriers who met autism criteria were compared with individuals with heterogeneous autism, and a range of profile differences were identified. When clinical cutoff scores were applied, 54% of individuals with one of the four CNVs who did not meet full autism diagnostic criteria had elevated levels of autistic traits. CONCLUSIONS: Many CNV carriers do not meet full diagnostic criteria for autism but nevertheless meet clinical cutoffs for autistic traits. Although profile differences between variants were observed, there is considerable variability in clinical symptoms in the same variant

    A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay.

    Get PDF
    We report the identification of a recurrent, 520-kb 16p12.1 microdeletion associated with childhood developmental delay. The microdeletion was detected in 20 of 11,873 cases compared with 2 of 8,540 controls (P = 0.0009, OR = 7.2) and replicated in a second series of 22 of 9,254 cases compared with 6 of 6,299 controls (P = 0.028, OR = 2.5). Most deletions were inherited, with carrier parents likely to manifest neuropsychiatric phenotypes compared to non-carrier parents (P = 0.037, OR = 6). Probands were more likely to carry an additional large copy-number variant when compared to matched controls (10 of 42 cases, P = 5.7 x 10(-5), OR = 6.6). The clinical features of individuals with two mutations were distinct from and/or more severe than those of individuals carrying only the co-occurring mutation. Our data support a two-hit model in which the 16p12.1 microdeletion both predisposes to neuropsychiatric phenotypes as a single event and exacerbates neurodevelopmental phenotypes in association with other large deletions or duplications. Analysis of other microdeletions with variable expressivity indicates that this two-hit model might be more generally applicable to neuropsychiatric disease

    Detecting 22q11.2 deletion in Chinese children with conotruncal heart defects and single nucleotide polymorphisms in the haploid TBX1 locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conotruncal heart defects (CTDs) are present in 75-85% of patients suffering from the 22q11.2 deletion syndrome. To date, no consistent phenotype has been consistently correlated with the 22q11.2 deletions. Genetic studies have implicated <it>TBX1 </it>as a critical gene in the pathogenesis of the syndrome. The aim of study was to determine the incidence of the 22q11.2 deletion in Chinese patients with CTDs and the possible mechanism for pathogenesis of CTDs.</p> <p>Methods</p> <p>We enrolled 212 patients with CTDs and 139 unrelated healthy controls. Both karyotypic analysis and multiplex ligation-dependent probe amplification were performed for all CTDs patients. Fluorescence <it>in situ </it>hybridization was performed for the patients with genetic deletions and their relatives. The <it>TBX1 </it>gene was sequenced for all patients and healthy controls. The <it>χ</it><sup>2 </sup>and Fisher's exact test were used in the statistical analysis.</p> <p>Results</p> <p>Thirteen of the 212 patients with CTDs (6.13%) were found to have the 22q11.2 deletion syndrome. Of the 13 cases, 11 presented with a hemizygous interstitial microdeletion from <it>CLTCL1 </it>to <it>LZTR1</it>; one presented with a regional deletion from <it>CLTCL1 </it>to <it>DRCR8</it>; and one presented with a regional deletion from <it>CDC45L </it>to <it>LZTR1</it>. There were eight sequence variants in the haploid <it>TBX1 </it>genes of the del22q11 CTDs patients. The frequency of one single nucleotide polymorphism (SNP) in the del22q11 patients was different from that of the non-del patients (<it>P </it>< 0.05), and the frequencies of two other SNPs were different between the non-del CTDs patients and controls (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>CTDs, especially pulmonary atresia with ventricular septal defect and tetralogy of Fallot, are the most common disorders associated with the 22q11.2 deletion syndrome. Those patients with both CTDs and 22q11.2 deletion generally have a typical or atypical deletion region within the <it>TBX1 </it>gene. Our results indicate that <it>TBX1 </it>genetic variants may be associated with CTDs.</p

    Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome

    Get PDF
    Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations

    A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date.</p> <p>Methods</p> <p>We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents.</p> <p>Results</p> <p>Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial <it>de novo </it>1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping.</p> <p>Conclusion</p> <p>The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.</p

    In Search of the Optimal Surgical Treatment for Velopharyngeal Dysfunction in 22q11.2 Deletion Syndrome: A Systematic Review

    Get PDF
    <div><h3>Background</h3><p>Patients with the 22q11.2 deletion syndrome (22qDS) and velopharyngeal dysfunction (VPD) tend to have residual VPD following surgery. This systematic review seeks to determine whether a particular surgical procedure results in superior speech outcome or less morbidity.</p> <h3>Methodology/ Principal Findings</h3><p>A combined computerized and hand-search yielded 70 studies, of which 27 were deemed relevant for this review, reporting on a total of 525 patients with 22qDS and VPD undergoing surgery for VPD. All studies were levels 2c or 4 evidence. The methodological quality of these studies was assessed using criteria based on the Cochrane Collaboration's tool for assessing risk of bias. Heterogeneous groups of patients were reported on in the studies. The surgical procedure was often tailored to findings on preoperative imaging. Overall, 50% of patients attained normal resonance, 48% attained normal nasal emissions scores, and 83% had understandable speech postoperatively. However, 5% became hyponasal, 1% had obstructive sleep apnea (OSA), and 17% required further surgery. There were no significant differences in speech outcome between patients who underwent a fat injection, Furlow or intravelar veloplasty, pharyngeal flap pharyngoplasty, Honig pharyngoplasty, or sphincter pharyngoplasty or Hynes procedures. There was a trend that a lower percentage of patients attained normal resonance after a fat injection or palatoplasty than after the more obstructive pharyngoplasties (11–18% versus 44–62%, p = 0.08). Only patients who underwent pharyngeal flaps or sphincter pharyngoplasties incurred OSA, yet this was not statistically significantly more often than after other procedures (p = 0.25). More patients who underwent a palatoplasty needed further surgery than those who underwent a pharyngoplasty (50% versus 7–13%, p = 0.03).</p> <h3>Conclusions/ Significance</h3><p>In the heterogeneous group of patients with 22qDS and VPD, a grade C recommendation can be made to minimize the morbidity of further surgery by choosing to perform a pharyngoplasty directly instead of only a palatoplasty.</p> </div
    corecore