4,582 research outputs found

    Is there evidence to support Porter-type policies?

    Get PDF
    The paper examines the views, often associated with Porter, that clusters with deep collaborative networks and established local supply chains have good performance. The view that good cluster performance is not connected to the industrial sector is also assessed. Data from a Department of Trade and Industry (DTI) study on UK clusters are used to assess the impact on performance (employment growth and international competitiveness) of cluster depth, the stage of development of local supply chains, and industrial sector. The results of the analysis of the DTI data on clusters do not provide strong support for Porter-type views on cluster policy. Although established clusters are linked to employment growth, deep clusters are not associated with employment growth or international competitiveness, and clusters in the services, and media, computer-related and biotechnology sectors are more likely than manufacturing clusters to have good performance. Some of the major policy implications of the results are discussed in the light of the literature on the importance of regional, national, and international networks for the performance of clusters

    Wetting and bonding characteristics of selected liquid-metals with a high power diode laser treated alumina bioceramic

    Get PDF
    Changes in the wettability characteristics of an alumina bioceramic occasioned by high power diode laser (HPDL) surface treatment were apparent from the observed reduction in the contact angle. Such changes were due to the HPDL bringing about reductions the surface roughness, increases in the surface O2 content and increases in the polar component of the surface energy. Additionally, HPDL treatment of the alumina bioceramic surface was found to effect an improvement in the bonding characteristics by increasing the work of adhesion. An electronic approach was used to elucidate the bonding characteristics of the alumina bioceramic before and after HPDL treatment. It is postulated that HPDL induced changes to the alumina bioceramic produced a surface with a reduced bandgap energy which consequently increased the work of adhesion by increasing the electron transfer at the metal/oxide interface and thus the metal-oxide interactions. Furthermore, it is suggested that the increase in the work of adhesion of the alumina bioceramic after HPDL treatment was due to a correlation existing between the wettability and ionicity of the alumina bioceramic; for it is believed that the HPDL treated surface is less ionic in nature than the untreated surface and therefore exhibits better wettability characteristics

    Bimodal regulation of axonal transport by the GDNF-RET signalling axis in healthy and diseased motor neurons

    Get PDF
    Deficits in axonal transport are one of the earliest pathological outcomes in several models of amyotrophic lateral sclerosis (ALS), including SOD1G93A mice. Evidence suggests that rescuing these deficits prevents disease progression, stops denervation, and extends survival. Kinase inhibitors have been previously identified as transport enhancers, and are being investigated as potential therapies for ALS. For example, inhibitors of p38 mitogen-activated protein kinase and insulin growth factor receptor 1 have been shown to rescue axonal transport deficits in vivo in symptomatic SOD1G93A mice. In this work, we investigated the impact of RET, the tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), as a modifier of axonal transport. We identified the fundamental interplay between RET signalling and axonal transport in both wild-type and SOD1G93A motor neurons in vitro. We demonstrated that blockade of RET signalling using pharmacological inhibitors and genetic knockdown enhances signalling endosome transport in wild-type motor neurons and uncovered a divergence in the response of primary motor neurons to GDNF compared with cell lines. Finally, we showed that inhibition of the GDNF-RET signalling axis rescues in vivo transport deficits in early symptomatic SOD1G93A mice, promoting RET as a potential therapeutic target in the treatment of ALS

    Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter

    Full text link
    We extract the positron and electron fluxes in the energy range 10 - 100 GeV by combining the recent data from PAMELA and Fermi LAT. The {\it absolute positron and electron} fluxes thus obtained are found to obey the power laws: E2.65E^{-2.65} and E3.06E^{-3.06} respectively, which can be confirmed by the upcoming data from PAMELA. The positron flux appears to indicate an excess at energies E\gsim 50 GeV even if the uncertainty in the secondary positron flux is added to the Galactic positron background. This leaves enough motivation for considering new physics, such as annihilation or decay of dark matter, as the origin of positron excess in the cosmic rays.Comment: Accepted by JCA

    Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) : precision gene editors for neurodegenerative diseases?

    Get PDF
    Topoisomerases are essential enzymes that recognize and modify the topology of DNA to allow DNA replication and transcription to take place. Topoisomerases are divided into type I topoisomerases, that cleave one DNA strand to modify DNA topology, and type II, that cleave both DNA strands. Topoisomerases normally rapidly religate cleaved-DNA once the topology has been modified. Topoisomerases do not recognize specific DNA sequences, but actively cleave positively supercoiled DNA ahead of transcription bubbles or replication forks, and negative supercoils (or precatenanes) behind, thus allowing the unwinding of the DNA-helix to proceed (during both transcription and replication). Drugs that stabilize DNA-cleavage complexes with topoisomerases produce cytotoxic DNA damage and kill fast-dividing cells; they are widely used in cancer chemotherapy. Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) have given drugs that stabilize DNA-cleavage complexes specificity by linking them to either: (i) DNA duplex recognizing triplex forming oligonucleotide (TFO-OTIs) or DNA duplex recognizing pyrrole-imidazole-polyamides (PIP-OTIs) (ii) or by conventional Watson–Crick base pairing (WC-OTIs). This converts compounds from indiscriminate DNA-damaging drugs to highly specific targeted DNA-cleaving OTIs. Herein we propose simple strategies to enable DNA-duplex strand invasion of WC-OTIs giving strand-invading SI-OTIs. This will make SI-OTIs similar to the guide RNAs of CRISPR/Cas9 nuclease bacterial immune systems. However, an important difference between OTIs and CRISPR/Cas9, is that OTIs do not require the introduction of foreign proteins into cells. Recent successful oligonucleotide therapeutics for neurodegenerative diseases suggest that OTIs can be developed to be highly specific gene editing agents for DNA lesions that cause neurodegenerative diseases

    Radiative Muon Capture on Hydrogen and the Induced Pseudoscalar Coupling

    Full text link
    The first measurement of the elementary process μpνμnγ\mu^- p \rightarrow \nu_{\mu} n \gamma is reported. A photon pair spectrometer was used to measure the partial branching ratio (2.10±0.22)×1082.10 \pm 0.22) \times 10^{-8} for photons of k > 60 MeV. The value of the weak pseudoscalar coupling constant determined from the partial branching ratio is gp(q2=0.88mμ2)=(9.8±0.7±0.3)ga(0)g_p(q^{2}=-0.88m_{\mu}^2) = (9.8 \pm 0.7 \pm 0.3) \cdot g_a(0), where the first error is the quadrature sum of statistical and systematic uncertainties and the second error is due to the uncertainty in λop\lambda_{op}, the decay rate of the ortho to para pμpp \mu p molecule. This value of g_p is \sim1.5 times the prediction of PCAC and pion-pole dominance.Comment: 13 pages, RevTeX type, 3 figures (encapsulated postscript), submitted to Phys. Rev. Let

    Determining the in-plane Fermi surface topology in underdoped high Tc superconductors using angle-dependent magnetic quantum oscillations

    Full text link
    We propose a quantum oscillation experiment by which the rotation of an underdoped YBa2Cu3O6+x sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetry of electron and hole cyclinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations

    Dynamical Dark Energy or Simply Cosmic Curvature?

    Get PDF
    We show that the assumption of a flat universe induces critically large errors in reconstructing the dark energy equation of state at z>~0.9 even if the true cosmic curvature is very small, O(1%) or less. The spuriously reconstructed w(z) shows a range of unusual behaviour, including crossing of the phantom divide and mimicking of standard tracking quintessence models. For 1% curvature and LCDM, the error in w grows rapidly above z~0.9 reaching (50%,100%) by redshifts of (2.5,2.9) respectively, due to the long cosmological lever arm. Interestingly, the w(z) reconstructed from distance data and Hubble rate measurements have opposite trends due to the asymmetric influence of the curved geodesics. These results show that including curvature as a free parameter is imperative in any future analyses attempting to pin down the dynamics of dark energy, especially at moderate or high redshifts.Comment: 5 pages, 2 figures. To appear in JCA

    Unparticle Searches Through Compton Scattering

    Full text link
    We investigate the effects of unparticles on Compton scattering, e gamma -> e gamma based on a future e^+e^- linear collider such as the CLIC. For different polarization configurations, we calculate the lower limits of the unparticle energy scale Lambda_U for a discovery reach at the center of mass energies sqrt(s)=0.5 TeV- 3 TeV. It is shown that, especially, for smaller values of the mass dimension d, (1 <d <1.3), and for high energies and luminosities of the collider these bounds are very significant. As a stringent limit, we find Lambda_U>80 TeV for d<1.3 at sqrt(s)=3 TeV, and 1 ab^(-1) integrated luminosity per year, which is comparable with the limits calculated from other low and high energy physics implications.Comment: Table 1 and 2 have been combined as Table 1, references updated, minor typos have been correcte
    corecore