
 1 

 

 

Wetting and bonding characteristics of selected liquid-

metals with a high power diode laser treated alumina 

bioceramic  

 

J. Lawrence  

Manufacturing Engineering Division, School of Mechanical & Production Engineering, Nanyang 

Technological University (NTU), Nanyang Avenue, Singapore 639798. 

 

 

 

Correspondence 

Dr. Jonathan Lawrence, 

Manufacturing Engineering Division, 

School of Mechanical & Production Engineering,  

Nanyang Technological University (NTU),  

Nanyang Avenue,  

Singapore 639798. 

Tel :  (65) 6790 5542 

Fax :  (65) 6791 1859 

e-mail: mjlawrence@ntu.edu.sg 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/52962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Abstract 

Changes in the wettability characteristics of an alumina bioceramic occasioned by high power diode 

laser (HPDL) surface treatment were apparent from the observed reduction in the contact angle. Such 

changes were due to the HPDL bringing about reductions the surface roughness, increases in the 

surface O2 content and increases in the polar component of the surface energy. Additionally, HPDL 

treatment of the alumina bioceramic surface was found to effect an improvement in the bonding 

characteristics by increasing the work of adhesion. An electronic approach was used to elucidate the 

bonding characteristics of the alumina bioceramic before and after HPDL treatment. It is postulated 

that HPDL induced changes to the alumina bioceramic produced a surface with a reduced bandgap 

energy which consequently increased the work of adhesion by increasing the electron transfer at the 

metal/oxide interface and thus the metal-oxide interactions. Furthermore, it is suggested that the 

increase in the work of adhesion of the alumina bioceramic after HPDL treatment was due to a 

correlation existing between the wettability and ionicity of the alumina bioceramic; for it is believed 

that the HPDL treated surface is less ionic in nature than the untreated surface and therefore exhibits 

better wettability characteristics. 

Keywords: High power diode laser (HPDL); Alumina; Bioceramic; Wettability; Bonding  
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1. Introduction 

For many different types of materials, excimer laser radiation has been shown to be a viable means 

for transforming the surface properties of materials so as to bring about improvements to their 

wettability characteristics. Such materials include aluminium (Zhou & DeHosson 1993; 1994) and 

other metals (Heitz et al. 1992; Henari & Blau 1995; Olfert et al. 1996) coated with various ceramics, 

polymer materials like polyethylene terephthalate (PET) (Andrew et al. 1983; Watanabe et al. 1993), 

polyparaphenylene terephthalamide (PPTA) (Watanabe & Takata 1994) and polyether-etherketon 

(PEEK) (Laurens et al. 1998; 2000) and even textile fibres (Bahners 1993; Bahners et al. 1993). 

Comprehensive and detailed investigations by Song & Netravali (1998; 1998
1
; 1999) into the effects 

of excimer laser radiation on the interfacial characteristics of UHSPE fibres and epoxy resin revealed 

a considerable increase in the interfacial shear strength resulted after laser treatment. The 

considerable amount work conducted by Lawrence and Li is meaningful insofar as it demonstrates 

the practicability of employing different types of lasers to effect changes in the wettability 

characteristics of ceramics (1998; 1999; 1999
1
) metals (1999

2
; 2000) and polymers (2001) for 

improved adhesion and bonding. Moreover, Lawrence recently identified the reasons for the changes 

in the wetting characteristics after laser surface treatment with regard to changes in the material’s 

surface topography, surface composition and surface energy for ceramics (2002) and metals (2002
1
). 

This paper examines the interfacial bonding and adhesion characteristics of a number of liquid-metals 

on the untreated and high power diode laser (HPDL) treated surface of a alumina bioceramic in 

electronic terms. Furthermore, this investigation will provide valuable insight and permit a fuller 

understanding of the adhesion and bonding mechanisms active in the alumina bioceramic, especially 

the alterations to these mechanisms after HPDL treatment. 

Some time ago McDonald & Eberhart (1965) proposed that there were two different surface sites for 

bonding metal atoms of liquid transition metals with Al2O3. The first type took the form of van der 

Waals interactions between the metal atoms and the O
2-
 anions present on the Al2O3 surface. The 

second type involves the metal/O2 chemical bonds whose energy was assumed to be proportional to 

the free energy of the metal oxide formation. Consequently the work of adhesion can be expressed as 

the sum of these two bonding energies. Work by Chatain et al. (1986) elaborated further and found 

that it was necessary to take into account the metal/Al chemical interactions along with the metal/O2 

reactions. Indeed, this approach yielded good agreement with an empirical equation comprising bulk 
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thermodynamic quantities of both metal/O2 and metal/Al2O3 bonds. Although these approaches are 

undoubtedly useful, Stoneham & Tasker (1985) maintain that many phenomena associated with 

metal/non-metal interfaces with large dielectric constant mismatch can be explained in terms of the 

image interactions. More particularly, it was stated that the chief contributor to adhesion between 

non-reactive metals and oxides is the electrostatic interaction between ionic charges in the oxide and 

the induced image charges in the metal. This notion was substantiated theoretically by Johnson & 

Pepper (1982) who showed that, for transition metals in contact with sapphire, the primary interaction 

occurred between the metal atoms and the O
2-
 anions present on the sapphire surface and was 

essentially covalent. Further, Hicter et al. (1988) suggested that the adhesion between a non-reactive 

metal and Al2O3 was brought about through electron transfer from the metal into the Al2O3 

conduction band which was assumed be initially empty. Using an electronic approach, an 

encompassing and comprehensive study by Li (1992) found that the work of adhesion of non-reactive 

liquid-metals with transition metal carbides was a simultaneous function of the valence electron 

concentrations of both metal and carbide. In the same way, the work of adhesion of different metals 

on TiC was found to increase linearly with increasing electron density at the boundary of the Wigner-

Seitz cell of the corresponding metals. At the same time, the work of adhesion of Cu on a number of 

transition metal carbides was seen to increase with decreasing thermodynamic stability of the 

carbides. From this work it was concluded that the interactions between a metal and a carbide are 

basically metallic in nature, resulting from the overlapping of the valence electrons at the 

metal/carbide interface. What is more, Li (1992
1
) extended this approach to reveal that this 

dependency of the work of adhesion on the electron density of the liquid-metal and the 

thermodynamic stability of the solid compound was the case for various liquid-metal/solid-

ionocovalent oxides. 

2. Experimental procedures 

2.1. Alumina bioceramic specifications 

The alumina bioceramic studied in this work was alpha-alumina which is typically used for hip ball & 

cup replacements. For the purpose of experimental convenience the alpha-alumina was fabricated 

into blocks (25 x 25 x 5 mm
3
) prior to laser treatment. The alpha-alumina used was 99.4% pure Al2O3 

with impurities of CaO, Fe2O3, K2O, MgO, Na2O, SiO2 and TiO2 constituting the remaining 0.6%. In 

order to carry out analytical analyses of the untreated and HPDL treated specimens, they were 
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sectioned with a cutting machine (Struers, Ltd.) using a diamond rimmed cutting blade and examined 

using optical microscopy, scanning electron microscopy (SEM), energy disperse X-ray analysis 

(EDX) and X-ray diffraction (XRD) techniques. 

2.2. High power diode laser processing procedures 

The HPDL (Rofin-Sinar GmbH DL 020 S) used in this work emitted a high order mode beam at 808 

±10 nm and was operated in the CW mode with optical powers ranging from 40-120 W. A schematic 

illustration of the laser processing experimental arrangement is given in Figure 1. The HPDL beam 

was delivered to the work area by means of an optical fibre 10 m long and of 1500 µm core diameter. 

The end of the fibre was connected to a focusing lens assembly with a focal length of 42 mm and was 

mounted on the z-axis of a 3-axis CNC gantry table. This arrangement produced a defocused HPDL 

beam with a spot diameter of 2.5 mm. The alumina bioceramic was irradiated with the HPDL beam 

by traversing the samples beneath the beam using the x- and y-axis of the CNC gantry table at a speed 

of 360 - 480 mm/min with an O2 process gas being coaxially blown at a rate of 3 l/min. 

2.3. Wettability and bonding characteristics analysis procedures 

To examine the wetting and surface energy characteristics of the alumina bioceramic, and hence 

quantify any surface energy changes in the material resulting from HPDL interaction, a series of 

control experiments were carried out using the sessile drop technique with a variety of liquids with 

known surface energy properties. The control test liquids were: human blood; human blood plasma; 

glycerol and 4-octanol. This particular test liquid series was selected as it has been shown in previous 

studies (Agathopoulos & Nikolopoulos 1995; Lawrence & Li 1999; 2001) to be most suitable for 

ceramic materials. The experiments were conducted in normal atmospheric conditions at a 

temperature of 20
0
C ±20C with the temperature of the liquids themselves throughout the experiments 

also being maintained at around 20
0
C. The droplets were released onto the surface of the test alumina 

bioceramic (HPDL treated and untreated) from the tip of a micropipette, with the resultant volume of 

the drops being approximately 6 x 10
-3
 cm

3
. Each experiment lasted for three minutes with profile 

photographs of the sessile drops being obtained every minute and the contact angle, θ, subsequently 

being measured. The standard deviation due to experimental error was calculated as being ±0.20. 

To obtain a fuller appreciation of the adhesion and bonding mechanisms active in the alumina 

bioceramic, before and after HPDL treatment, wettability experiments were conducted using selected 
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liquid-metals. In this way it was possible to examine the adhesion and bonding characteristics from 

an electronic stand point. The metals chosen were: Al; Cu; Fe; Mn; Pb and Sn and were supplied in 

cubes of 3 x 3 x 3 mm
3
. The metals were selected on account of the fact that full details of their 

surface energy characteristics. The experiments were completed by placing a cube of each metal on 

the untreated and HPDL treated surface of the alumina bioceramic samples. The samples were then 

placed in turn inside a vacuum furnace whereupon each sample was heated to the various melting 

temperatures of the metals at a rate of 75
0
C/min in a vacuum of 2 x 10

-5
 torr. At the appropriate time 

the liquid-metal sessile drops were photographed through the glass window of the furnace every 

minute for three minutes. The sessile drop photographs were subsequently analysed to obtain a value 

for θ. The standard deviation due to experimental error was calculated as being ±0.40. 

3. Wetting and the work of adhesion at the liquid-metal/ceramic interface 

In practice, for wetting to occur, θ, must be less than 900, otherwise if θ is greater than 900 then the 

liquid does not wet the solid and no adhesion occurs (Fowkes 1964). When a drop of liquid is 

brought into contact with a flat solid surface, the final shape taken by the drop, and thus whether it 

will wet the surface or not, depends upon the relative magnitudes of the molecular forces that exist 

within the liquid (cohesive) and between the liquid and the solid (adhesive) (Fowkes 1964). The 

index of this effect is θ and it is related to the solid and liquid surface energies, γsv and γlv, and the 

solid-liquid interfacial energy γsl, through the principle of virtual work expressed by the rearranged 

Young’s equation: 

   cosθ
γ γ

γ
=

−sv sl

lv

 (1) 

Clearly, to achieve wetting γsv should be large, while γsl and γlv should be small. Hence liquids of a 

lower surface tension will always spread over a solid surface of higher surface tension in order to 

reduce the total free-energy of the system (Zisman 1964). This is on account of the fact that the 

molecular adhesion between solid and liquid is greater than the cohesion between the molecules of 

the liquid (Fowkes 1964). 

In fundamental terms, the driving force for the formation of a liquid-metal/ceramic interface is the 

energy relinquished when the intimate contact between the metal and the ceramic is formed. This 
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driving force is usually characterised by the adhesion energy. The adhesion energy, or work of 

adhesion, Wad, is defined as the work per unit area which needs to be provided to separate reversibly a 

solid/liquid interface so as to create distinct solid/vapour and liquid/vapour interfaces. Thus 

   sllvsvadW γγγ −+=  (2) 

If one takes into account Young’s equation then Equation (1) can be rearranged to form the Young-

Dupre equation. Thus the Wad can be expressed as 

   ( )Wad lv= +γ θ1 cos  (3) 

In this way experimental values of Wad can be determined from the γlv value of the liquid and the 

value of θ produced when the liquid is in contact with the solid.  

Generally the value of Wad in metal/ceramic systems can be expressed as the sum of the different 

contributions of the interfacial interactions between two phases: 

   equilnonequilad WWW −+=  (4) 

where Wnon-equil denotes the non-equilibrium contribution to the work of adhesion when a chemical 

reaction takes place at the metal/ceramic interface, while Wequil represents the equilibrium 

contribution which corresponds to non-reactive systems. This contribution can be further divided into 

two separate terms: Wchem-equil, which is the cohesive energy between the two contacting phases that 

results from the establishment of chemical equilibrium bonds achieved by the mutual saturation of 

the free valences of the contacting surfaces and WVDW, which signifies the van der Waals interaction 

or dispersion forces. As such, Equation (4) becomes 

   equilnonVDWequilchemad WWWW −− ++=  (4a) 

4. Analysis of the wetting and bonding characteristics  

4.1. High power diode laser interaction with the alumina bioceramic and the effects thereof on 

wettability characteristics 

In order to investigate accurately the bonding characteristics of the alumina bioceramic, both before 

and after HPDL surface treatment, it is essential that consideration is given to the wettability 

characteristics changes that are effected by HPDL interaction. Using a selected control test liquid 
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series it can be seen from Table 1 that interaction of the alumina bioceramic with the HPDL beam 

resulted in the θ between the alumina bioceramic and the control test liquids reducing appreciably, 

implying that marked changes in the wettability characteristics have been realised. Previous studies 

have shown that such laser-induced changes in the wettability characteristics of ceramics are due to 

changes in three factors: the surface roughness; the surface O2 content and the surface energy 

(Lawrence 2002). 

4.1.1. Surface roughness 

Irregularities on the surface of a material that cause roughness generally take the form of grooves. 

Rough grooves on a surface can be categorised as either radial or circular grooves. In practical terms, 

any rough surface can be represented by a combination of these two cases (Zhou &DeHosson 1995), 

with two roughness parameters being defined as the Wenzel type, DR (Wenzel 1936) and the 

Cassie/Baxter type, FR (Cassie & Baxter 1944). In the case that wetting spreads radially, as is the 

likely case with the alumina bioceramic, then the resulting radial contact angle, θrad, is related to the 

theoretical contact angle, θth, by 

 ( )cos cosθ θrad R R th RD F F= − −1  (14) 

According to Neumann (1974), only if FR is equal to zero, then a model similar to that for 

heterogeneous solid surfaces can be developed in order to account for surface irregularities, being 

given by a rearrangement of Wenzel’s equation: 

     γ γ
γ θ

sl sv

lv w

r
= −









cos
 (15) 

where, r is the roughness factor defined as the ratio of the real and apparent surface areas and θw is 

the contact angle for the wetting of a rough surface. It is important to note that Wenzel’s treatment is 

only effective at the position of wetting triple line (Zhou & DeHosson 1995). Nonetheless, it is 

evident from Equation (15) that if the roughness factor, r, is large, that is the solid surface is smooth, 

then γsl will become small, thus, a reduction in the contact angle will be inherently realised by the 

liquid if θw<90
0
. Conversely, if θw>90

0
 then the opposite will be observed. Although other, more 

sophisticated approaches may be taken to examine the effects of surface roughness on wetting 

(Palasantzas & DeHosson 2001), for this present study the use of Equation (15) is quite sufficient. 
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Reductions in the surface roughness of the alumina bioceramic were observed (using a Taylor-

Hobson Surtronic 3+ profileometer) after interaction with the HPDL beam (see Table 1). Similar 

results were obtained by Nicolas et al. (1997), who observed that excimer laser treatment of a ZrO2 

ceramic resulted in a smoother surface and Feng et al. (1998), who noted that θ was inversely 

proportional to surface roughness.  

4.1.2. Surface O2 contact 

The O2 content of a material’s surface is an influential factor governing the wetting performance of 

the material; where an increase will inherently produce a reduction in θ , and vice versa (Ueki et al. 

1986; Li 1993). Now, wetting is governed by the first atomic layers of the surface of a material, so to 

determine the element content of O2 at the surface of the alumina bioceramic, it was necessary to 

examine the surface using XPS. The results of the XPS analysis of the alumina bioceramic in terms 

of the surface O2 content are given in Table 1.  

4.1.3. Surface energy 

Surface energy, γ, arises from a variety of intermolecular forces whose contribution to the total 

surface energy is additive (Fowkes 1964). The majority of these forces are functions of the particular 

chemical nature of a certain material, and as such the total surface energy comprises of γp
 (polar or 

non-dispersive interaction) and γd
 (dispersive component; since van der Waals forces are present in 

all systems regardless of their chemical nature). Therefore, the surface energy of any system can be 

described by (Fowkes 1964) 

 γ γ γ= +d p  (16) 

Likewise, Wad can be expressed as the sum of the different intermolecular forces that act at the 

interface (Fowkes 1964): 

 ( ) ( )W W Wad ad

d

ad

p

sv

d

lv

d

sv

p

lv

p= + = +2 2
1 2 1 2

γ γ γ γ
/ /

 (17) 

By equating Equation (17) with Equation (2), θ for solid/liquid systems can be related to the surface 

energies of the respective liquid and solid by 

 
( ) ( )

cos

/ /

θ
γ γ γ γ

γ
=

+
−

2 2
1

1 2 1 2

sv

d

lv

d

sv

p

lv

p

lv

 (18) 
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Fowkes (1964) has stated that γ sv

d
 can be estimated by using Equation (18) and plotting the graph of 

cos θ against (γ lv

d
)
1/2
/γlv (see Figure 2). Hence the value of γ sv

d
 is estimated by the gradient 

(=2(γ sv

d
)
1/2
) of the line which connects the origin (cos θ = -1) with the intercept point of the straight 

line (cos θ against (γ lv

d
)
1/2
/γlv) correlating the data point with the abscissa at cos θ = 1.  

It is not possible to determine the value of the polar component of the alumina bioceramic surface 

energy directly from Figure 2 since the intercept of the straight line (cos θ against (γ lv

d
)
1/2
/γlv) being 

at ( )2
1 2

γ γsv

p

lv

p
/

/γlv and as such, only referring to individual control liquids and not the control liquid 

system as a whole. Having said that, it has been established that the entire amount of the surface 

energies owing to dispersion forces of either the solids or the liquids are active in the wettability 

performance (Fowkes 1964; Good & Girifalco 1960). Therefore it is possible to calculate the 

dispersive component of the work of adhesion from Equation (17). The results reveal that for each 

particular control liquid in contact with both the untreated and HPDL treated alumina bioceramic 

surfaces, Wad  can be correlated with Wad

d
 by the relationship 

 W aW bad ad

d= +  (19) 

Also, for the control test liquids used, a linear relationship between the dispersive and polar 

components of the control test liquids surface energies has been deduced which satisfies the equation 

  ( ) ( ) 15.145.0
2/12/1

+= d

lv

p

lv γγ  (20) 

By introducing Equation (19) into Equation (17) and rearranging, then 

       ( )W a W bad

p

ad

d= − +1  (21) 

or 

              ( ) ( ) ( )( ) ( )γ γ γ γsv

p

lv

p

sv

d

lv

da
b1 2 1 2 1 2 1 2

1
2

/ / / /

= − +  (22) 

What is more, by introducing Equation (20) into Equation (22) and differentiating with respect to 

( )γ lv

d
1 2/

, considering that ( )γ sv

d
1 2/

 and ( )γ sv

p
1 2/

are constant, then the following is valid: 
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                         ( ) ( ) ( )
γ

γ
sv

p sv

d a1 2

1 2

1

0 45

/

/

.
=

−
 (23) 

Now, the value of a for the untreated and HPDL treated alumina bioceramic can be determined from 

a plot of Equation (19) (0.74 and 1.26 respectively) and γ sv

d
 has already been determined for the 

untreated and HPDL treated alumina bioceramic from Figure 2. As such it is possible to calculate 

γ sv

p
 for untreated and HPDL treated alumina bioceramic by simply using Equation (23). 

It is evident from Table 1 that the HPDL melting of the surface of the alumina bioceramic leads to a 

reduction in the total surface energy whilst increasing γ sv

p
, thereby improving the action of wetting 

and adhesion. Such changes in the surface energy of the alumina bioceramic after HPDL melting are 

due to the fact partial vitrification of the surface is occasioned, a transition that is known to bring 

about an increase in γ sv

p
 (Lawrence et al. 1998).  

It is important to realise at this point that owing to the long range ionic interactions in the alumina 

bioceramic and the composite nature of the interfaces between the alumina bioceramic and the 

control test liquids, it is probable that the thermodynamically defined total solid surface energy, as 

defined in Equation (16), will be higher than the sum of the γd and γp components of the surface 

energy. Indeed, the derivations that lead to Equation (18) can only be done under the specific 

assumption that the ionisation potentials are all equal and that dipole-dipole random orientation 

interactions dominate over dipole-induced dipole random interactions. Still, the increase in (excess) 

surface free energy will doubtless be less then the increase in the total lattice energy. On the other 

hand, an absorbed liquid layer may shield the ionic fields substantially. Consequently, all the data 

derived from Equations (16) - (23) should be considered as being semi-empirical. Nevertheless, as the 

studies by Agathopoulos & Nikolopoulos (1995) and Lawrence (1999; 2001; 2002) found, it is 

reasonable to conclude from the data obtained from Equations (16) - (23) that HPDL treatment of the 

alumina bioceramic has caused an increase γp . 

4.2. The bonding characteristics between the high power diode laser treated alumina 

bioceramic and the selected liquid-metals 

When two dissimilar materials are brought into contact, complex combinations of a range of bonding 

mechanisms actually occur, varying according to the types of materials used (Greenhut 1991). For 
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most materials in intimate contact with the alumina bioceramic, the mechanisms active will 

principally involve physical bonding (van der Waals forces), chemical bonding and electronic 

reactions (Greenhut 1991). In the particular case of the alumina bioceramic, the primary bonding 

mechanism active will be physical. This is because adhesion between many materials is assured by 

electron transfer and is therefore related to bandgap energy (Li 1995). Thus, for non-conducting 

materials with large bandgaps such as the alumina bioceramic, there will be very few free charges 

inside the ceramic crystals, even at elevated temperatures. In this case the electron transfer at the 

interface will be minimal as the electron transfer depends exclusively on the concentration of free 

charges in the ceramic crystal (Li 1995). As a result, WVDW will be the major contributor to Wad in 

Equation (4(a)). Even so, evidence of the action of bonding mechanisms other than van der Waals 

forces has been observed in previous studies.  

A direct indication of the energetical interactions that take place between the solid and liquid phases 

of such materials when in contact can be gleaned from Wad; with increases denoting stronger 

interactions. As Table 2 shows, from measurements of θ for selected liquid-metals in contact with the 

surface of the alumina bioceramic, it was possible to calculate the corresponding value of Wad using 

Equation (3). These Wad values are plotted as a function of the electron density, nw-s, at the boundary 

of the Wigner-Seitz cell of the corresponding metals in Figure 3. As can be seen from Figure 3, a 

general increase in Wad between the alumina bioceramic and the selected liquid-metals has been 

occasioned after HPDL treatment. Since metal-oxide interactions are assured by electron transfer at 

the metal/oxide interface, then it would appear from Figure 3 that such an increase has resulted from 

HPDL interaction. The intensity of the electron transfer at the interface depends on the electron 

density of the metal on the one hand, and on the concentration of the holes in the valence band of the 

oxide on the other. So if the oxide type is set and the liquid-metals in contact with it are changed, 

then the intensity of the electron transfer at the interface would exclusively be a function of the 

electron density of the liquid-metals and would increase accordingly with the electron density of the 

metals. This occurrence is borne out somewhat by the linear relationship seen between Wad for the 

selected liquid-metals with the alumina bioceramic (untreated and HPDL treated) on the electron 

density at the boundary of the Wigner-Seitz cell of the corresponding metals. Similarly, if one 

considers Equation (24), which shows the relationship between the concentration of holes in the 

valence band (which is equal to the number of electrons in the conduction band) for an ideal pure 

oxide crystal, C, and the bandgap energy, Eg 



 13 

   






 −
=

KT

E
CC

g

o
2

exp    (24) 

where and Co is a constant, K is Boltzmann’s constant and T is temperature, then it can be seen that 

the concentration of holes in the valence band increases with a decrease in the bandgap energy. 

Accordingly, the intensity of electron transfer at the liquid-metal/oxide interface increases with 

decreasing bandgap energy of the oxide. Thus it is possible to say that Wad of any given liquid-metal 

on an oxide will increase, with θ decreasing accordingly due to Equation (3), with a decrease in the 

bandgap energy of the oxide. This being the case, it is reasonable to maintain that Figure 3 implies 

that HPDL interaction with the alumina bioceramic has brought into being a surface with a reduced 

bandgap energy since Wad has evidently increased after HPDL treatment, whilst at the same time a 

reduction in θ has been realised (see Table 2).  

Findings by Vijh (1970) revealed a linear correlation between the bandgap energy of a number of 

different oxides and the ratio ri/rm of the ionic radius, ri, to the metallic radius, rm, of certain oxide 

metals. Based on the above discussions it is likely that a correlation between the wetting properties of 

the oxide metals and the ratio ri/rm exists. Indeed, the ionicity of a binary solid has been defined in 

terms of the electronegativity of the two components making up the solid, with the values of these 

electronegativities being derived from the excess bond energy above the purely covalent component 

(Vijh 1970; Li 1992
1
). Clearly, if there is a correlation between bandgaps and bond energies, and if 

the electronegativities are derived from bond energies, then it follows that there is a correlation 

between bandgaps and electronegativities. With this rationale a correlation between wettability and 

ionicity is quite conceivable. Thus it can be assumed that as the ionicity of a ceramic increases, the 

material’s propensity to wet will decease and vice versa. The observed increase in Wad in Figure 3 

and the corresponding decrease in θ recorded in Table 2 after HPDL of the alumina bioceramic 

appear to support this assumption. It is, therefore, highly probable that the surface of the alumina 

bioceramic produced by HPDL interaction will be less ionic in nature than the untreated surface and 

will in turn have increased wettability characteristics. 

5. Conclusions 

High power diode laser (HPDL)-induced changes in the wettability characteristics of an alumina 

bioceramic are effected as a result of: (i) an ideal level of melting and resolidification being induced 
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which in turn causes a reduction in the surface roughness, thereby directly reducing the contact angle, 

θ, (ii) an increase in the surface O2 content of the alumina bioceramic after HPDL treatment which 

intrinsically brings about a decrease in θ and (iii) the increase in the polar component of the surface 

energy, γ sv

p
, of the alumina bioceramic resulting from the HPDL induced surface melting and 

resolidification which consequently creates a more polar partially vitrified microstructure.  

From an electronic perspective, the bonding characteristics of the alumina bioceramic before and 

after HPDL treatment were determined from wettability experiments carried out with selected liquid-

metals. It was found that HPDL surface treatment yielded an overall increase in the work of adhesion, 

Wad, and a corresponding reduction in θ, between the alumina bioceramic and the selected liquid-

metals. It is believed that this observed increase in Wad and the matching reduction in θ resulted from 

the HPDL induced changes to the alumina bioceramic creating a surface with a reduced bandgap 

energy, which is significant, for metal-oxide interactions are assured by electron transfer at the 

metal/oxide interface. In addition, correlations between bandgaps and bond energies, and in turn 

bandgaps and electronegativities mean that a correlation between the wettability and ionicity of the 

alumina bioceramic is certainly possible, with increases in the ionicity of the alumina bioceramic 

leading to a decreased disposition to wet. Based on this notion it is asserted that the observed increase 

in Wad and the corresponding decrease in θ of the alumina bioceramic after HPDL is due to the 

surface being less ionic in nature than the untreated surface, thereby inherently increasing the 

wettability characteristics. 
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Figure 1 

Schematic diagram of the experimental set-up for the HPDL treatment of the alumina bioceramic. 
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Figure 2 

Plot of cos θ against ( )γ lv

d
1 2/

/γlv for the alumina bioceramic in contact with the wetting test control 

liquids, before and after HPDL treatment. 
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Figure 3 

Work of adhesion of selected liquid-metals with the untreated and HPDL treated alumina bioceramic 

in terms of electron density at the Wigner-Seitz cell of the corresponding metals 
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Table 1 

Values of typical wettability characteristics for the alumina bioceramic before and after HPDL 

surface treatment. (40 W laser power, 360 mm/min traverse speed and O2 process gas) 

 

Property     Alumina Bioceramic Condition 

 Untreated HPDL Treated 

Contact Angle, θ   

   Human blood 76
0 

61
0 

   Human blood plasma 78
0 

63
0 

   Glycerol 55
0 

51
0 

   4-Octanol 51
0 

49
0 

Surface Roughness 8.2 µm 5.1 µm 

Surface O2  32.5 at% 44.8 at% 

Surface Energy   

   Dispersive component, γ sv

d
 59.2 mJ/m

2 
62.0 mJ/m

2 

   Polar component, γ sv

p
 0.3 mJ/m

2 
1.5 mJ/m

2 
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Table 2 

Experimental mean values of contact angle and calculated values of the work of adhesion for the 

selected liquid-metals on the untreated and HPDL treated alumina bioceramic. (40 W laser power, 

360 mm/min traverse speed and O2 process gas) 

 

 Liquid-Metal Alumina Bioceramic Condition 

          Untreated        HPDL Treated 

 θ Wad θ Wad 

Al 101
0
 672 mJ/m

2 
61

0
 1289 mJ/m

2 

Cu 127
0 

492 mJ/m
2 

100
0 

1047 mJ/m
2 

Fe 108
0 

1205 mJ/m
2 

67
0 

2480 mJ/m
2 

Mn 103
0 

860 mJ/m
2
 57

0 
1715 mJ/m

2
 

Pb 132
0 

131 mJ/m
2 

92
0 

378 mJ/m
2 

Sn 124
0 

204 mJ/m
2 

78
0 

576 mJ/m
2 

 

 


