331 research outputs found

    Radiatively-induced gravitational leptogenesis

    Get PDF
    AbstractWe demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM) theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale

    Superradiance in stars: non-equilibrium approach to damping of fields in stellar media

    Get PDF
    Superradiance in black holes is well-understood but a general treatment for superradiance in stars has until now been lacking. This is surprising given the ease with which we can observe isolated neutron stars and the array of signatures which would result from stellar superradiance. In this work, we present the first systematic pipeline for computing superradiance rates in rotating stars. Our method can be used with any Lagrangian describing the interaction between the superradiant field and the constituents of the star. Our scheme falls into two parts: firstly we show how field theory at finite density can be used to express the absorption of long wavelength modes into the star in terms of microphsyical scattering processes. This allows us to derive a damped equation of motion for the bosonic field. We then feed this into an effective theory for long wavelengths (the so-called worldline formalism) to describe the amplification of superradiant modes of arbitrary multipole moment for a rapidly rotating star. Our method places stellar superradiance on a firm theoretical footing and allows the calculation of the superradiance rate arising from any interaction between a bosonic field and stellar matter

    Leptogenesis and gravity: Baryon asymmetry without decays

    Get PDF
    A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.Comment: Journal version, published in Phys. Lett.

    A united front against marine invaders: Developing a cost‐effective marine biosecurity surveillance partnership between government and industry

    Get PDF
    Successful detection of introduced marine pests (IMP) relies upon effective surveillance. However, the expedience of responding following IMP detection is often dependent upon the relationship between regulators and stakeholders. Effective detection of IMP in areas such as commercial ports requires a collaborative approach, as port environments can be highly complex both above and below the water. This complexity can encompass physical, logistical, safety and legislative issues. With this in mind, the aquatic pest biosecurity section within the Department of Primary Industries and Regional Development (DPIRD) developed the State‐Wide Array Surveillance Program (SWASP) in collaboration with Western Australian Port Authorities and port industry stakeholders. The SWASP is primarily based on passive settlement arrays for IMP detection. Arrays are deployed at strategic locations within Ports. Marine growth samples collected from the arrays are processed using Next‐Generation Sequencing (NGS) to identify the presence of IMP within a specific geographical location. Over 8 years, participation in SWASP has grown from 3 to 11 ports, spanning over 11,000 km, from the tropical north to temperate south of Western Australia. The programme has proven to be highly effective as a means of fostering stakeholder involvement and, importantly for IMP surveillance. The growth and success of SWASP has continued primarily because of the commitment and farsightedness of the ports involved. The regular presence of the biosecurity regulator as a partner in SWASP has provided a consistent face for biosecurity and fostered good stakeholder relationships, ensuring there is a reliable and effective ongoing marine surveillance programme for the state. Synthesis and applications. Through a united and collaborative approach to marine biosecurity surveillance, port authorities, industry and biosecurity regulators have developed the State‐Wide Array Surveillance Program (SWASP) and closed a major gap in biosecurity surveillance. The SWASP collaboration uses passive settlement arrays and molecular analyses to provide regular marine pest surveillance from the tropics to temperate regions of Western Australia. The continued commitment has embedded valuable relationships between stakeholder and regulator ensuring ongoing surveillance in marine biosecurity for the state. The Western Australian SWASP example has inspired other jurisdictions around Australia to develop similar collaborative approaches which will have far‐reaching marine biosecurity benefits

    Electroweak phase diagram at finite lepton number density

    Full text link
    We study the thermodynamics of the electroweak theory at a finite lepton number density. The phase diagram of the theory is calculated by relating the full 4-dimensional theory to a 3-dimensional effective theory which has been previously solved using nonperturbative methods. It is seen that the critical temperature increases and the value of the Higgs boson mass at which the first order phase transition line ends decreases with increasing leptonic chemical potential.Comment: 16 pages, 14 figures, RevTex4, v2: references added, minor corrections, v3: small changes, references added, published in Phys. Rev.

    Symmetry Nonrestoration in a Gross-Neveu Model with Random Chemical Potential

    Full text link
    We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with random chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well as Z_2 chiral symmetry. At high temperature the Z_2 chiral symmetry is always restored. In three dimensions the initially broken charge conjugation symmetry is not restored at high temperature, irrespective of the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry undergoes a quantum phase transition from a symmetric state (for weak disorder) to a broken state (for strong disorder) as the disorder strength is varied. For any given value of disorder strength, the high-temperature behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high temperature.Comment: 16 pages, 3 figure

    Saturn's icy satellites and rings investigated by Cassini - VIMS. III. Radial compositional variability

    Full text link
    In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturn's icy satellites and rings. After having analyzed the satellites' spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites' hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturn's system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus' leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapke's theory to retrieve the best spectral fits to Saturn's inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).Comment: 44 pages, 27 figures, 7 tables. Submitted to Icaru

    Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Get PDF
    Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH). There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI) or pulse wave velocity (PWV) is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20) with hypertension whose blood pressure (BP) was under control (<140/90 mmHg) with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05) linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s). In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population
    corecore