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We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of 
matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This 
mechanism, which is naturally present in beyond the standard model (BSM) theories exhibiting C and 
CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective 
Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, 
below the BSM scale.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The origin of the matter–antimatter asymmetry of the universe 
remains one of the outstanding questions in particle physics and 
cosmology. Following the framework of the celebrated Sakharov 
[1] conditions, a popular and long-standing explanation has in-
volved the out-of-equilibrium decay of heavy particles [2,3], in 
which matter and antimatter are produced at different rates due to 
C and CP violation in the underlying theory. An alternative to this 
picture was proposed by Cohen and Kaplan [4] who noted that 
an asymmetry could, in fact, be generated in equilibrium through 
the coupling of C and CP violating operators involving the baryon 
or lepton currents to background fields, e.g., ∂μ� jμ for a back-
ground scalar field. For isotropic background fields, this results in a 
chemical potential proportional to the time derivative �̇. More re-
cently, Davoudiasl et al. [5] built on this idea by suggesting gravity 
could play the same role as � with an interaction ∂μR jμ , where 
R is the Ricci scalar. Since then, many authors have gone on to 
postulate gravitational couplings as a means of generating mat-
ter asymmetry [6–13]. However, with the exception of [6] (where 
the gravitational coupling arises from the axial anomaly), in almost 
all of these papers the required operators are introduced by hand, 
with no account of their dynamical origin, in the expectation that 
they may arise from some unspecified, more fundamental theory.

In this Letter, we present a new mechanism for gravitational 
leptogenesis in which the matter–antimatter asymmetry is gen-
erated dynamically at the quantum loop level, without the need 
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to postulate additional interactions beyond the minimally coupled 
Lagrangian. Specifically, we show how in a C and CP violating the-
ory, in which the light leptons are coupled to heavy states with 
mass M , the effective Lagrangian describing low-energy physics 
below this scale involves operators coupling directly to the back-
ground curvature, including the C and CP violating interaction 
∂μR jμ/M2, which leads to a lepton–antilepton asymmetry.1,2 The 
coupling of C and CP violating operators to a time-dependent grav-
itational field circumvents the third Sakharov condition and allows 
the lepton–antilepton asymmetry to be generated in equilibrium.

The presence of explicit curvature-dependent operators in the 
effective Lagrangian represents a violation of the strong equiva-
lence principle [14,15]. The physical picture is that, at loop level, 
the light leptons propagate surrounded by a self-energy cloud of 
virtual particles, including the heavy states. This virtual cloud has 
a length scale of order 1/M and so interacts with the background 
gravitational field through tidal, curvature-dependent forces, while 
its composition encodes the dynamics and symmetries of the 
heavy particles. In this way, gravity probes the physics of the high-
scale fundamental theory and transmits this information to the 
low-energy effective Lagrangian describing the light leptons.

1 A careful analysis of the modification to the dispersion relations implied by an 
operator ∂μ R jμ/M2 has been given recently in [11], showing the same implica-
tions for lepton–antilepton asymmetry as follow from the interpretation of Ṙ as a 
chemical potential [4,5].

2 Another way to motivate the appearance of matter–antimatter asymmetry is 
to view ∂μ R ∼ Ṙ as a fixed background coupling to the CPT odd current jμ . In 
this sense, as originally presented in [4], the effect can be thought of as an “envi-
ronmental CPT violation”, with phenomenological consequences normally associated 
with a genuine breaking of CPT symmetry. The full operator ∂μR jμ is however CPT 
invariant. See [11] for a further discussion.

http://dx.doi.org/10.1016/j.physletb.2015.10.075
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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The existence of C and CP violating operators coupling to the 
curvature leads directly to a difference in the propagation of mat-
ter and antimatter. Of course, this would be inconsistent with 
the (strong) equivalence principle and, in particular, could not oc-
cur in flat space. In sec. 2, we give a formal proof that CPT and 
translation invariance forbids this situation for interacting theo-
ries in Minkowski space, regardless of whether there is any C 
(or CP) violation in the theory, which is of course a necessary
condition for asymmetric propagation. Conversely, when gravity, 
C and CP violation are present, we show there is indeed a dif-
ference in the propagation of matter and antimatter. Only if all 
these conditions are met will this happen, meaning that the effect 
is intrinsic to gravitational backgrounds and not simply a conse-
quence of C and CP violation already present in the original La-
grangian.

The mechanism described here is very general. For clarity, how-
ever, we illustrate it in a specific model familiar in the BSM 
literature, namely the “see-saw” Lagrangian, in which the light, 
left-handed lepton doublets �i (i = e, μ, τ ) and Higgs field3 are 
coupled to heavy right-handed sterile neutrinos Nα with non-
degenerate masses Mα (α = 1, . . . , n):

L = √−g

[
N/DN + λiα�̄iφNα + 1

2
(Nc) M N + h.c.

]
, (1)

λiα is a complex Yukawa matrix, providing the required C and 
CP violation. For clarity, we omit any explicit labelling of L and 
R handed fields in what follows.

This is simply the model used by Fukugita and Yanagida [2] in 
their original demonstration of leptogenesis in flat space through 
the out-of-equilibrium decays of the heavy neutrinos, Nα → �iφ

∗ . 
Rather than using the heavy neutrinos in this way, however, we 
integrate them out to obtain the low-energy effective Lagrangian 
describing the physics of the leptons �i below the BSM scale Mα . 
In this Letter, we show that this gives rise to the operator

Li = ∂μR �̄iγ
μ�i

∑
α, β, j

Im
[
λ

†
βiλiαλ

†
β jλ jα

]
3Mα Mβ

I[αβ] (2)

The function Iαβ = I
(
Mα, Mβ

)
, which we calculate exactly, gives 

an antisymmetric part under interchange of Mα and Mβ and is 
determined from a certain class of two-loop self-energy diagrams. 
Eq. (2) is of exactly the form required to generate a lepton–
antilepton asymmetry. This is maintained by �L = 2, φ�c ↔ φ∗�
reactions in equilibrium which, in the conventional heavy-decay 
model, can wash out the lepton asymmetry but are essential in our 
scenario. We therefore have a mechanism for radiatively-induced 
gravitational leptogenesis, in which the asymmetry can be gener-
ated in equilibrium long after the decay of the heavy particles, at 
energies and temperatures well below their mass.

2. Propagation and CPT

In a C invariant theory, the propagation of matter and anti-
matter will be identical, so the presence of complex λ is crucial 
to have an asymmetry in matter/anti-matter propagation, regard-
less of the background. We now show that the propagation of 
matter and antimatter must be the same in any theory in which 
translation and CPT symmetry holds. We demonstrate this ex-
plicitly for spin 1/2 Dirac fermions. CPT symmetry is realised by 

3 In this notation, the Higgs doublet φ̃ appearing in the SM lepton sector is re-

lated by φa = εab φ̃†b .

Fig. 1. One-loop lepton self-energy.

an anti-unitary operator  such that the lepton propagator satis-
fies

Sab(x′, x) = 〈�a(x′)�̄b(x)〉
=

〈(
�a(x′)−1

)(
�̄b(x)−1

)〉∗
, (3)

where a, b label spinor components. The CPT transformations can 
be written as �(x′)−1 = γ 0γ5C−1�c(−x) and �̄(x′)−1 =
�c(−x′)Cγ5γ

0, where �c = C �̄T is the Dirac charge conjugate and 
C is the charge-conjugation matrix satisfying C

(
γ μ

)T
C−1 = −γ μ . 

Inserting these expressions, and taking note of the overall complex 
conjugation, we find, after some algebra

S(x′, x) = γ5C[Sc(−x,−x′)]T C−1γ5 , (4)

where Sc(x, y) = 〈�c(x)�c(y)〉 is the antiparticle propagator. Trans-
lation symmetry means that Sc(x, y) = Sc(x − y) which implies 
that Sc(−x, −x′) = Sc(x′, x). From Lorentz invariance (inherent to a 
discussion of spinors) we can write

Sc(x′, x) = Sc(x′ − x) =
∫

dd p

(2π)d

[
A(p2)/p + B(p2)

]
e−ip·(x′−x)

(5)

for some functions A and B . Substituting this expression into (4)
and using the properties of the matrix C gives

S(x′, x) = Sc(x′, x) , (6)

establishing that matter and antimatter propagate identically in a 
translational invariant and CPT conserving theory.

We now examine how loop corrections in gravitational back-
grounds, which in general violate translation symmetry, can cre-
ate a difference in lepton and antilepton self-energies �(x, x′) −
�c(x, x′) associated to the propagators 〈�(x)�(x′)〉 and 〈�c(x)�c(x′)〉.

First, note that in the model of Eq. (1), the Majorana mass term 
for the heavy neutrinos means that there are two classes of prop-
agators, charge-violating propagators S×

α (x, x′) = 〈N(x)Nc(x′)〉 and 
charge-conserving propagators Sα(x, x′) = 〈Nα(x)Nα(x′)〉 where the 
C script denotes the Dirac charge conjugate. In flat space, transla-
tion invariance allows us to write them in momentum space as

Sα(p) = i/p

p2 − M2
α

, S×
α (p) = iMα

p2 − M2
α

. (7)

As we see below, the charge violating propagators are key to gen-
erating a matter–antimatter asymmetry.

At one loop (see Fig. 1), the lepton and anti-lepton propagators 
are the same:

�i(x, x′) = �c
i (x, x′) =

∑
α

λ
†
αiλiαG(x, x′)Sα(x, x′) . (8)

However, at two loops there are two diagrams (Fig. 2), which give 
non-zero contributions to �(x, x′) − �c(x, x′). For instance, in the 
case of the charge violating heavy neutrino propagators, the first 
diagram gives
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Fig. 2. Two-loop corrections to lepton self-energies giving non-zero contributions to 
� − �c .

�i(x, x′) − �c
i (x, x′)

=
∑

α, β, j

Im
[
λ

†
βiλiαλ

†
β jλ jα

]

× G(x, x′)
∫

d4 y

∫
d4z G(y, z)S×

[α(x, y)S j(y, z)S×
β](z, x′) ,

(9)

whilst the second gives

�i(x, x′) − �c
i (x, x′)

=
∑

α, β, j

Im
[
λ

†
βiλiαλ

†
β jλ jα

]

×
∫

d4 y

∫
d4z G(y, x′)G(x, z)S×

[α(x, y)S j(y, z)S×
β](z, x′) .

(10)

Notice that we have antisymmetrised over α and β in the in-

tegral since Im
[
λ

†
β iλiαλ

†
β jλ jα

]
is antisymmetric in α, β . For the 

other type of heavy neutrino propagator, only the first dia-
gram contributes (due to charge considerations) and the expres-
sion is similar to (9) but with a Yukawa matrix contribution 
Im

[
λ

†
β iλiαλ

†
α jλ jβ

]
. It is now clear that Eqs. (9) and (10) are non-

vanishing in curved spacetime. We therefore see that as a conse-
quence of breaking translation invariance by a general background, 
there is a difference in the propagation of matter and antimatter 
at two loops.

Given the general proof above, we must also find that if we re-
store translation invariance by going to Minkowski space, (9) and 
(10) will vanish. Indeed, substituting the flat space propagators of 
(7), we see explicitly that the integral is symmetric under inter-
change of α and β , and � − �c = 0 as expected.

3. An effective action for leptons

We study the dynamics of leptons at the quantum loop level 
using an effective action in curved spacetime, valid at energies be-
low the heavy neutrino mass scale Mα , i.e. we integrate out the 
heavy neutrinos.

The fundamental physics of how gravity affects the propagation 
of particles in curved backgrounds at loop level is now well un-
derstood (see, e.g. [11,14,16–18]). As an interacting particle prop-
agates, it becomes surrounded by a screening cloud of virtual 
particles, acquiring an effective size and, as a result, experiences 
tidal forces from background curvature. Hence, the effective action, 
which captures the effect of quantum loops, will involve interac-
tions between particle fields and background curvature. The fun-
damental Lagrangian respects the strong equivalence principle, by 
virtue of minimal coupling to gravity through the connection only, 

so particles and antiparticles propagate identically at tree level. 
However, the interaction of the gravitational field with this virtual 
cloud violates strong equivalence, causing the dynamics to become 
sensitive to the background curvature at loop level. As a result, the 
effective Lagrangian will contain strong equivalence violating oper-
ators which couple the curvature tensor to lepton fields, allowing 
– depending on the structure of the cloud – the generation of C 
and CP violating operators such as ∂μR�̄γ μ�.

Since we are interested in the propagation of leptons, we con-
sider an effective action which is quadratic in the lepton field, so 
that tidal effects manifest themselves as couplings between the 
Riemann tensor Rμνρσ (and its various contractions) and fermion 
bilinears �̄(· · ·)�. The most general such action, consistent with the 
symmetries of the tree-level action, namely general covariance and 
gauge symmetry, was discussed in detail in [11]. To leading order 
in the mass dimension of the couplings, it consists of operators of 
the form

Leff = √−g

[
�̄i/D� + ia�̄

(
2Rμνγ

μDν + 1

2
∂μRγ μ

)
�

+ b∂μR�̄γ μ�

+ ic�̄
(
2R/D + ∂μRγ μ

)
�

+ id�̄

(
2D2/D + 1

4
∂μRγ μ

)
�

]
, (11)

where a, b, c, d are real effective couplings of mass dimension mi-
nus two, which will depend on λiα and the masses mH and Mα

in the loops. There is one term in this effective action which is of 
great importance for leptogenesis and is the only C and CP violat-
ing operator in (11), viz.

LC P V = b ∂μR �̄γ μ� . (12)

A careful discussion of the action of C, P and T on each of the 
operators appearing in Leff is given in [11].

We compute the effective coupling b by matching the full and 
effective theories. We can capitalise on the fact that the effective 
couplings are independent of the choice of background and work 
in a conformally flat metric

gμν = �2ημν = (1 + h)ημν , (13)

which is sufficient to distinguish the various components of the 
effective Lagrangian (11). The computation is also simplified if we 
work with conformally rescaled fields,

N → �−(n−1)/2N, � → �−(n−1)/2�, φ → �−(n−2)/2φ. (14)

After conformal rescaling, gravity enters only via

L� = 1

2
�Nc MN + �2

(
m2

H − R

6

)
φ†φ + �−(n−4)/2λiα�̄iφN ,

(15)

where R = −3∂2�2 is the Ricci scalar for (13). This can then be 
expanded to linear order in h to give L� = h(x)O(x). The effec-
tive couplings can be computed by matching the transition ma-
trix elements 〈�(p′) |O|�(p) 〉 to the effective amplitudes (see in 
particular [16,11], as well as [14,19,20], for more details). Since 
R = −3∂2h, the contribution to the effective vertex from the oper-
ator LC P V = b∂μR�̄γ μ�, gives a contribution of the form shown in 
Fig. 3.

For phenomenological reasons related to leptogenesis (which 
we will explain below), we are only interested in diagrams which 
involve the charge-violating neutrino propagators 〈N(x)Nc(x′)〉. For 
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Fig. 3. The effective h vertex, where q = p′ − p is the momentum transfer between 
the ingoing and outgoing lepton.

Fig. 4. Contributions to 〈�(p′) |O|�(p) 〉 from the heavy neutrino mass term 
1
2 hN̄ MNc . The cross in e.g., (1) denotes the S×

α sterile neutrino propagator, and at 
the h vertex, there are contributions Sβ Sβ and S×

β S×
β corresponding to each propa-

gator type.

this kind of heavy neutrino propagator, there are in fact no ad-
ditional contributions from h at the Yukawa vertex Lλ = − 1

2 (n −
4)hλiα�̄iφNα . The reason is that this term only contributes for dia-
grams whose UV divergences produce a pole 1/(n − 4) to cancel 
the (n − 4) pre-factor. Since S×

α (x, x′) = Mα/(p2 − M2
α) is more 

strongly UV convergent than Sα(p) = /p/(p2 − M2
α), the two loop 

diagrams involving the first kind of propagator contain very few 
UV divergences. In fact, the vertex correction diagram is UV finite, 
with degree of divergence D = −1, whilst the propagator correc-
tion diagram contains a single pole 1/(n − 4), arising from the 
propagator correction sub-diagram, which is removed by subtract-
ing an appropriate counterterm during renormalisation.

The only remaining terms in (15) which contribute are the 
heavy neutrino mass term, and the φ†φ Higgs interactions. A full 
discussion of these effective Lagrangian calculations will be pre-
sented elsewhere [21]. Here, we focus on the contributions to 
〈�(p′) |O|�(p) 〉 from the heavy neutrino couplings to h shown in 
Fig. 4. The contribution from these diagrams to the iq2/q term is:

〈�i(p′) |O|�i(p) 〉 = iq2/q h(q)
∑

α, β, j

Im
[
λ

†
βiλiαλ

†
β jλ jα

]
Mα Mβ

I[αβ] ,

(16)

where Iαβ = I(Mα, Mβ), and i labels the lepton generation. Note 
that Iαβ must have a non-vanishing antisymmetric part for (16) to 
be non-zero. The contributions to I from each diagram are rather 
involved and the complete set of results will be given in [21]. As an 
illustration, we quote here the result from diagram (1) to demon-
strate explicitly the appearance of a non-vanishing contribution to 
I[αβ] . We find

I(1)
[αβ] = F (r) + G (r) ln

[
μ

Mα + Mβ

]
(17)

where μ is the mass scale of dimensional regularisation, r = (Mα −
Mβ)/(Mα + Mβ) and

F (r) = 1

384(4π)4r4

[
12r

(
2r2 − 1

) − 3
(
r2 − 1

)2
ln2

(
1 − r

1 + r

)

− 2

(
2r

(
5r2 − 3

) − 3
(
r2 − 1

)2
ln

(
1 − r

1 + r

))
ln

(
1 − r

2

)

Fig. 5. The antisymmetric functions contributing to I[αβ] , with −1 ≤ r ≤ 1.

Fig. 6. For fixed Mβ < Mα , C and CP violation from Im
[
λ

†
β iλiαλ

†
β jλ jα

]
is initially 

enhanced as the mass difference �Mαβ = Mα − Mβ increases from zero. It then 
reaches a maximum before tending to zero, as radiative effects become mass-
suppressed when Mα → ∞.

− 2
(
2r4 − 5r3 − 7r2 + 3r + 3

)
ln

(
1 − r

1 + r

)]

G(r) = 1

192(4π)4r4

[
2r

(
5r2 − 3

) − 3
(
r2 − 1

)2
ln

(
1 − r

1 + r

)]
(18)

Antisymmetry under interchange of Mα and Mβ is now manifest 
from the anti-symmetry of F (r) and G(r) under r → −r shown in 
Fig. 5.

We have, therefore, shown by explicit calculation that the oper-
ator ∂μR�̄iγ

μ�i is indeed generated, for each lepton flavour with 
the effective interaction being given by comparing (16) with Fig. 3:

Li = ∂μR
(
�̄iγ

μ�i
) ∑

α, β, j

Im
[
λ

†
βiλiαλ

†
β jλ jα

]
3Mα Mβ

I[αβ] . (19)

This demonstrates that a combination of background curvature, 
complex couplings (i.e. C and CP violation) and loop effects can 
generate a leptogenesis-inducing operator. The dependence of (19)
on the non-degeneracy of sterile neutrino masses is discussed in 
Fig. 6.

4. Consequences for leptogenesis

We now describe how this radiatively induced operator leads 
to a mechanism of leptogenesis and why the other class of dia-
grams, with charge-conserving heavy neutrino propagators, do not. 
In isotropic spacetimes, the interaction (19) has the form of a 
chemical potential μi between matter and antimatter for each lep-
ton generation given by

μi = Ṙ
∑

α, β, j

Im
[
λ

†
βiλiαλ

†
β jλ jα

]
3Mα Mβ

I[αβ] . (20)

If T is the temperature of the early universe, this creates a lepton 
asymmetry of the form

n(�i) − n(�c
i ) = Ṙ T 2

∑
α, β, j

Im
[
λ

†
βiλiαλ

†
β jλ jα

]
3Mα Mβ

I[αβ] . (21)

Summing over all lepton generations, the total lepton asymmetry 
(L = ∑

i �i) is given by
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n(L) − n(Lc) = Ṙ T 2
∑
α, β

Im
[(

λ†λ
)2
αβ

]
3Mα Mβ

I[αβ] . (22)

The formula (22) is the centrepiece of this Letter. It captures how 
three effects conspire to generate matter–antimatter asymmetry: 
the breaking of (time) translational symmetry by gravity in Ṙ , C 
and CP violation from Im

[(
λ†λ

)2
αβ

]
and quantum loop effects in 

Iαβ . In particular, this mechanism remains active at energies and 
temperatures below the heavy scale and so is able to generate an 
asymmetry after the heavy neutrino decays, where the asymmetry 
is maintained in equilibrium by the �L = 2 reactions φ�c ↔ φ∗�.

Now that we have revealed the bigger picture, we are able 
to explain why the 2 loop contributions involving the charge-
conserving propagators 〈N(x)N(x′)〉 are of less interest for lepto-
genesis. If we had instead calculated contributions from diagrams 
with this type of propagator, we would have found a different 
Yukawa matrix structure in the amplitude, leading to a genera-
tional lepton asymmetry

n(�i) − n(�c
i ) = Ṙ T 2

∑
α, β, j

Im
[
λ

†
βiλiαλ

†
α jλ jβ

]
J [α β] . (23)

While this gives an asymmetry for each flavour, summing over all 
generations gives n(L) − n(Lc) ∝ ∑

α, β Im
[
(λ†λ)βα(λ†λ)αβ

]
J [α β] . 

However, Im
[
(λ†λ)βα(λ†λ)αβ

] = Im
∣∣∣(λ†λ

)
βα

∣∣∣2 = 0, and so the to-

tal lepton asymmetry from these diagrams is zero.

5. Discussion

In this Letter, we have presented a new mechanism – radiati-
vely-induced gravitational leptogenesis – for generating matter–
antimatter asymmetry. We have shown how leptons and antilep-
tons can propagate differently in curved spacetime due to gravita-
tional interactions with their self-energy cloud of virtual high-mass 
particles. This effect is forbidden in flat space by CPT and trans-
lation invariance, and at tree-level in curved spacetime, by the 
strong equivalence principle. At loop level, however, the strong 
equivalence principle no longer holds and, depending on the com-
position of the cloud, C and CP violating operators can be gener-
ated in the low-energy effective Lagrangian. A simple interpreta-
tion in terms of a chemical potential for leptons shows immedi-
ately that this generates an asymmetry in the equilibrium distri-
butions of matter and antimatter.

As already noted, this mechanism is very general, and its imple-
mentation in the specific Fukugita–Yanagida model described here 
is just one example. In particular, it arises naturally in most exist-
ing models of leptogenesis, which typically involve a high-energy 

BSM sector with C and CP violation, where it generates a matter–
antimatter asymmetry at low energies and temperatures after the 
decay and decoupling of the heavy particles.

The next step is therefore to implement this mechanism within 
specific phenomenologies, e.g. GUT, SUSY and other leptogenesis 
models, giving a more thorough analysis of kinetic aspects of these 
theories. This would involve a discussion of Boltzmann equations, 
decoupling temperatures, reaction rates and the strength of cur-
vature at various times in the Universe’s history, e.g. inflation, ra-
diation, matter domination. Such analyses will allow us to see in 
what situations this mechanism can quantitatively account for the 
observed matter–antimatter asymmetry in the Universe.

Acknowledgements

JIM would like to thank Tim Hollowood for useful conversa-
tions which prompted the detailed analysis of propagation in sec-
tion 2. GMS is grateful to the Theory Division, CERN for hospitality. 
This research is funded in part by STFC grants ST/K502376/1 and 
ST/L000369/1.

References

[1] A. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5 (1967) 32.
[2] M. Fukugita, T. Yanagida, Phys. Lett. B 174 (1986) 45.
[3] E.W. Kolb, N.S. Turner (Eds.), The Early Universe, Frontiers in Physics, Addison 

Wesley, 1994.
[4] A.G. Cohen, D.B. Kaplan, Phys. Lett. B 199 (1987) 251.
[5] H. Davoudiasl, R. Kitano, G.D. Kribs, H. Murayama, P.J. Steinhardt, Phys. Rev. 

Lett. 93 (2004) 201301, arXiv:hep-ph/0403019.
[6] S.H.S. Alexander, M.E. Peskin, M.M. Sheikh-Jabbari, Phys. Rev. Lett. 96 (2006) 

081301, arXiv:hep-th/0403069.
[7] G. Lambiase, S. Mohanty, J. Cosmol. Astropart. Phys. 0712 (2007) 008, arXiv:

astro-ph/0611905.
[8] G. Lambiase, S. Mohanty, Phys. Rev. D 84 (2011) 023509, arXiv:1107.1213 [hep-

ph].
[9] G. Lambiase, S. Mohanty, A.R. Prasanna, Int. J. Mod. Phys. D 22 (2013) 1330030, 

arXiv:1310.8459 [hep-ph].
[10] J. Ellis, N.E. Mavromatos, S. Sarkar, Phys. Lett. B 725 (2013) 407, arXiv:

1304.5433 [gr-qc].
[11] J.I. McDonald, G.M. Shore, J. High Energy Phys. 1502 (2015) 076, arXiv:

1411.3669 [hep-th].
[12] M. de Cesare, N.E. Mavromatos, S. Sarkar, arXiv:1412.7077 [hep-th], 2014.
[13] L. Pizza, arXiv:1506.08321 [gr-qc].
[14] I.T. Drummond, S.J. Hathrell, Phys. Rev. D 22 (1980) 343.
[15] G.M. Shore, Nucl. Phys. B 717 (2005) 86, arXiv:hep-th/0409125.
[16] Y. Ohkuwa, Prog. Theor. Phys. 65 (1981) 1058.
[17] T.J. Hollowood, G.M. Shore, J. High Energy Phys. 0812 (2008) 091, arXiv:

0806.1019 [hep-th].
[18] T.J. Hollowood, G.M. Shore, J. High Energy Phys. 1202 (2012) 120, arXiv:

1111.3174 [hep-th].
[19] F.A. Berends, R. Gastmans, Ann. Phys. (N.Y.) 98 (1976) 225.
[20] J.F. Donoghue, B.R. Holstein, B. Garbrecht, T. Konstandin, Phys. Lett. B 529 

(2002) 132–142.
[21] J.I. McDonald, G.M. Shore, in press.


