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A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating 
decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of 
leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for 
decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism 
for generating an asymmetry, driven by the expansion of the Universe and independent of the departure 
of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full 
Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of 
the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and 
where the baryon asymmetry of the Universe is determined solely by gravitational effects.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In a series of recent papers [1,2] we described a new phe-
nomenon whereby gravity drives the Universe towards a matter-
antimatter asymmetry. Our main realisation was that matter and 
antimatter propagate differently in the presence of gravity when 
CP symmetry is violated. Specifically, we proved [1,2] that in trans-
lation invariant environments, CPT symmetry necessarily forces 
matter and antimatter to propagate identically. Conversely, when 
this symmetry is broken by the background geometry, e.g., an ex-
panding Universe, and when there is a source of CP violation, mat-
ter/antimatter propagators become distinct. This causes a spectral 
splitting for matter/antimatter and an energy cost difference which 
drives the system towards an asymmetric state, facilitated by par-
ticle number-violating reactions.

As in our previous papers, we shall illustrate this effect within 
the context of leptogenesis [3], though as will become apparent, it 
applies equally well in any theory with a source of CP violation and 
B or L violation. In this case, the Lagrangian – minimally coupled 
to gravity – is given by

L = √−g
[
N/DN + N M N + hij �̄iφN j + h.c.

]
, (1)

where �i are the left-handed lepton doublets, φ is the charge-
conjugate Higgs doublet, and Ni are sterile neutrinos, written here 
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in the Majorana basis1 so that Nc = N . As described above, at two-
loops (Fig. 1) in a time-dependent gravitational background, lepton 
and antilepton self-energies are distinct ��(x, x′) �= ��̄(x, x′).

Minimal coupling ensures that at tree-level, the strong equiv-
alence principle holds and leptons are insensitive to curvature, 
but when loop effects are taken into account, two things happen. 
Firstly, the propagators become sensitive to CP violation contained 
in the Yukawa couplings, a symmetry which obviously must be 
broken for distinct propagation. Moreover, as described in [4,5]
the screening cloud surrounding the propagating leptons causes 
them to acquire an effective “size” and experience gravitational 
tidal forces, violating the strong equivalence principle and causing 
the leptons to couple directly to curvature.

When the sterile neutrinos are integrated out from the dia-
grams in Fig. 1, the resulting effective action contains the following 
CP- and strong equivalence principle-violating operator for each 
lepton generation:

Li = ∂μR �̄iγ
μ�i

∑
k j l

Im
[

h†
kihilh

†
kjh jl

]
3Mk Ml

I[kl], (2)

where R is the Ricci scalar and Ii j = I(Mi, M j) is a loop-factor 
depending on the sterile masses Mi and M j in the corresponding 

1 In previous papers [1,2], as in [3], we used N to label the basis of RH neutrinos, 
which are now more usually denoted (ν)R .

http://dx.doi.org/10.1016/j.physletb.2016.11.057
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Fig. 1. Loop diagrams which give distinct matter/antimatter propagators and which 
generate the operator (2).

diagram and which was computed in full detail in [2]. As described 
in refs. [2,6], this modifies the dispersion relations of leptons and 
antileptons to⎛
⎝pμ ± ∂μR

∑
k, j, l

Im
[

h†
kihilh

†
kjh jk

]
3Mk Ml

I[kl]

⎞
⎠

2

= 0. (3)

This energy splitting together with �L = 2 and �L = 1 processes 
drives the system towards a non-zero B − L asymmetry, inde-
pendently of the departure of sterile neutrinos from equilibrium. 
For cosmological spacetimes, isotropy and homogeneity mean that 
spatial derivatives of R vanish and eq. (3) leads to an equilibrium 
B − L to photon ratio of the form

Neq
B−L = π2 Ṙ

2ζ(3)T

∑
i, j

Im
[

K 2
i j

]
18Mi M j

I[i j], (4)

where Kij = (h†h)i j . In this sense, we have a mechanism satisfying 
all three Sakharov conditions [7], the first two of which (particle 
number and CP violation) are inherited from the usual see saw 
mechanism. The third – usually stated as a departure from equi-
librium – is provided by the time-dependence of the background 
itself, whose dynamical nature is probed by the lepton screening 
cloud.

1.1. Radiation-dominated FRW cosmology

In the first part of this Letter, we consider leptogenesis in the 
conventional radiation-dominated FRW phase of the evolution of 
the Universe. Later, in section 5, we consider earlier times char-
acterised by gravitational sources with more general equations 
of state. For radiation dominance, the time variation of the Ricci 
scalar is

Ṙ = √
3σ 3/2(1 − 3w)(1 + w)

T 6

M3
p
, (5)

where σ = π2/30g∗ and g∗ � 106.75 counts the number of rela-
tivistic degrees of freedom in the plasma. Classically, the equation 
of state parameter w is equal to 1/3 for radiation, and so the 
expression (5) vanishes. However, trace-anomalies in the gauge 
sector give (1 − 3w) � 10−1 [8], allowing for Ṙ �= 0. Combining 
eqs. (4) and (5) we arrive at

Neq
B−L �

√
3π2σ 3/2(1 − 3w)(1 + w)

36ζ(3)

T 5

M3
p

∑
i, j

Im
[

K 2
i j

]
Mi M j

I[i j]. (6)

A full description of the general theory of this gravitational lep-
togenesis mechanism and the calculation of the equilibrium asym-
metry Neq

B−L was given in [2]. In that work, we also made a pre-
liminary estimate of the gravitationally induced baryon asymmetry 

ηB based on the assumption that the lepton number violating in-
teractions, which maintain the asymmetry at its equilibrium value, 
freeze out for temperatures T D for which zD = M1/T D ∼ 1. In or-
der to achieve the observed value for ηB , we were then led to 
consider very high sterile neutrino masses and decoupling tem-
peratures at the limits of existing physical bounds. However, as 
we demonstrate here, a complete dynamical analysis using the full 
�L = 2 reaction cross-section shows that decoupling in fact oc-
curs for significantly smaller values of zD . Inspection of (6) then 
makes it clear that the observed asymmetry is achieved for lower, 
conventional values of M1 ∼ 1010–1011 GeV with correspondingly 
lower decoupling temperatures.

Since our interest in ref. [2] was in the gravitational leptogene-
sis mechanism itself, we did not discuss the original mechanism 
whereby the out-of-equilibrium asymmetric decay rates 
(N →
�̄φ̄) �= 
(N → �φ) of sterile neutrinos in the region z ∼ 1 con-
tribute directly to the B − L asymmetry. Here, we consider the cou-
pled Boltzmann equations involving both mechanisms and discuss 
in some detail the parameter space of the high-energy Yukawa 
phases in which one or other mechanism dominates in determin-
ing the final cosmological baryon asymmetry.

2. The Boltzmann equation

We now study the Boltzmann equation to take into account the 
effect both of sterile neutrino decays and gravitational effects. We 
shall work in the hierarchical limit where M1 	 M2 	 M3, so that 
the dynamics is dominated by the lightest sterile neutrino N1, in 
which case the relevant Boltzmann equation is (see, e.g., [9])

dNN1

dz
= −D

(
NN1 − Neq

N1

)
, (7)

dNB−L

dz
= −Dε1

(
NN1 − Neq

N1

)
− W

(
NB−L − Neq

B−L

)
, (8)

where each of the number densities is normalised by the photon 
density and where z = M1/T . This is the standard set of coupled 
Boltzmann equations encountered in lepto/baryogenesis (see e.g., 
[9–11]) except that now, due to the gravitational interactions, we 
have Neq

B−L �= 0 in the RHS of (8) in the washout term. Conven-
tionally one has Neq

B−L = 0 and so any lepton asymmetry generated 
whilst the sterile neutrinos are in equilibrium is washed out. How-
ever, if one takes into account gravitational effects, a lepton asym-
metry can be maintained even when NN1 = Neq

N1
.

The CP asymmetry in the decays and inverse decays of sterile 
neutrinos is characterised by

ε1 = 
(N1 → �φ) − 
(N1 → �φ)


(N1 → �φ) + 
(N1 → �φ)
, (9)

given in terms of Mi and hij by [3,10]

εi = − 1

8π

∑
j �=i

Im[K 2
i j]

Kii

[
f

(
M2

j

M2
i

)
+ g

(
M2

j

M2
i

)]
, (10)

where

f (x) = √
x

(
1 − (1 + x) ln

(
1 + x

x

))
, g(x) =

√
x

1 − x
. (11)

For a large hierarchy, x 
 1,

f (x) ∼ − 1

2
√

x
, g(x) ∼ − 1√

x
. (12)

We shall return to the form of ε1 in subsequent sections.
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The various reaction rates can be parametrised in terms of the 
standard quantity K = m̃1/m∗ [9,12,13] given by

m̃1 = v2 K11

M1
, m∗ = 8π

(
π2 g∗

90

)1/2
v2

Mp
� 10−3 eV, (13)

where m̃1 characterises the strength of the Yukawa interactions 
and v = 174 GeV is the electroweak scale. The quantity D can then 
be written as

D = 
tree(N1 → �φ)

zH
= K z

K1(z)

K2(z)
, (14)

and corresponds to the N1 → �φ tree-level thermal decay width. 
W is the “washout term”, so-called because when gravitational 
effects are neglected, Neq

B−L = 0 and any lepton asymmetry es-
tablished before the decays of sterile neutrinos is destroyed. The 
washout term consists of two parts:

W = W I D + 2W�L=2. (15)

The first is given by the tree-level inverse decay rate [9]

W I D = 
 (�φ → N1)

zH
= 1

4
K z3 K1(z). (16)

The second part corresponds to �L = 2 binary scatterings �φ ↔
�φ in the s- and u-channel, and �� ↔ φφ and � � ↔ φ φ in the 
t-channel. The reaction rates for these processes are given by the 
quantity W = 
/zH , with

W = 1

64(2π)3

1

T 2

∞∫
0

dss1/2 K1

(√
s

T

)
1

s
|M(s)|2 , (17)

where

|M(s)| =
0∫

−s

du |M(s, u)|2 (18)

is the u-averaged amplitude for the process in question. The am-
plitudes for s, u and t processes are denoted by the subscripts +
and t respectively and take the form

|M�L=2(s)|2+, t = 2s2

{
K 2

11

M2
1

F+, t(s) − 6
∑
i �=1

Re
(

K 2
1i

)
M1Mi

G+, t(s)

+3
∑
j �=1

Re
(

K 2
i j

)
Mi M j

}
. (19)

Introducing the variables

c = K11

8π
, x = s

M2
1

, (20)

the functions F and G are given by [9,12]

F+ = 1

(1 − x)2 + c2
− π

c
δ(1 − x)

+ 2

x
− 2

x2

(
1 + x2 − 1

(x − 1)2 + c2

)
+ 2(x − 1)

x
(
(1 − x)2 + c2

) ,

G+ = 1

x
+ 1

2

x − 1

(1 − x)2 + c2
− x + 1

x2
ln(x + 1), (21)

and

Ft = 2

x + 1
+ 2

x(x + 2)
ln(x + 1),

Gt = −1

x
ln(x + 1). (22)

The delta function subtraction in the first line for F+ represents 
the real intermediate state subtraction from the s-channel. This is 
to avoid the well-known double counting problem [9,11,12] where 
one over-counts the number of N1 ↔ �φ processes by including 
them in the s-channel N1 exchange. Only with this subtraction 
does the Boltzmann equation take the correct form, whereby no 
asymmetry can be generated when NN1 = Neq

N1
. Of course, the 

whole point of our new mechanism is that Neq
B−L �= 0 and so it 

is possible to generate an asymmetry when the sterile neutrinos 
are in equilibrium, but in the limit where Neq

B−L → 0 we should 
still recover the traditional form of the Boltzmann equation.

Our next task is to parametrise the amplitude (19) in terms of 
neutrino parameters. Firstly we note that

∑
i, j=1,2,3

Re
(

K 2
i j

)
Mi M j

= m2

v4
, (23)

where m2 = m2
1 +m2

2 +m2
3 is the sum of the neutrino mass-squares. 

After a little algebra we can also write

∑
i �=1

Re
(

K 2
1i

)
M1M j

= m̃1

v4

(∑
i

ximi − m̃1

)
(24)

where xi are O (1) parameters discussed in sec. 3. We make the 
standard choice in the literature [9] and set Re(h̃2

31) = Re(h̃2
21) = 0, 

or equivalently, x2 = x3 = 0. Equation (36) then implies x1 =
m1/m̃1 and the RHS of (24) simplifies to 

(
m2

1 − m̃2
1

)
/v4. Admit-

tedly, this choice is somewhat arbitrary and its main aim is really 
to reduce the number of free variables, allowing for a simpler 
parametrisation of the theory. We shall work in this regime for 
the remainder of this Letter. Putting this together, the amplitudes 
become

|M�L=2|2+, t = 2s2

v4

[
m̃2

1 F+, t(s) + 6(G+, t(s) + 1)
(

m2
1 − m̃2

1

)

+ 3(m2 − m̃2
1)

]
, (25)

allowing us to write eq. (17), after a little manipulation, as

W+, t = z3

32π2

m∗M1

v2

∞∫
0

dx x3/2 K1
(
z
√

x
)[

K 2 F+, t(x)

+ 6(G+, t(x) + 1)

(
K 2 − m2

1

m2∗

)
+ 3

(
m2

m2∗
− K 2

)]
. (26)

For fixed SM neutrino masses, the amplitude becomes a function 
of essentially two variables2 M1 and K , which ultimately depend 
on the details of the high-energy theory. A short calculation also 
shows that the delta function term in F+ gives a contribution 
−W I D to W�L=2.

2 Note that c can be written as c = m∗M1 K/(8π v2).
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Fig. 2. Evolution of W = 2W�L=2 + W I D for K = 100 and M1 = 1010 GeV. The 
dashed lines show agreement with the asymptotic behaviour for small and large z
given by eqs. (28), (29) and (30).

Making the substitution y = x/z2 in the integral, we arrive at

W+, t = 1

32π2

m∗M1

v2

1

z2

∞∫
0

dy y3/2 K1
(√

y
)[

K 2 F+, t

( y

z2

)

+ 6
(

G+, t

( y

z2

)
+ 1

)(
K 2 − m2

1

m2∗

)

+ 3

(
m2

m2∗
− K 2

)]
. (27)

Since F+,t(x), G+,t(x) → 0 as x → ∞, we see that in the high tem-
perature limit z → 0, W+, t takes the form

W+, t(z 	 1) � 3

π2

m∗M1

v2

1

z2

[
m2

m2∗
+ K 2 − 2m2

1

m2∗

]
, (28)

where we used the result 
∫

dyy3/2 K1(y) = 32. Similarly, at low 
temperatures Ft(0) = 3, Gt(0) = −1 leading to

Wt(z 
 1) � 3

π2

m∗M1

v2

1

z2

m2

m2∗
. (29)

Since F+(0) = (3 + c2)/(1 + c2) and G+(0) = −(2 + c2)/(2(1 + c2)), 
we also have

W+(z 
 1) � 3

π2

m∗M1

v2

1

z2

[
1

v4

m2

m2∗
+ 1

3m2∗v4

c2

1 + c2
K 2

]
. (30)

Given that3 c 	 1, the second term is sub-dominant, so that to 
leading order the asymptotic form of eq. (30) is the same as (29). 
The contributions to W in eq. (15) are shown in Fig. 2, where we 
took m = �m2

31 + �m2
21 + 3m2

1 � �m2
sol + �m2

atm, setting m1 � 0.

3. Parametrising the CP violation

The fundamental source of CP violation is of course the 
Yukawa phases contained in hij , or more specifically, the quan-

tities Im
(

K 2
i j

)
which control the strength of CP violation both in 

the lepton propagator and Neq
B−L and also in the decays of sterile 

neutrinos via ε1. One might ask to what extent the CP violation in 
these two sectors is linked, and also how much each is constrained 

3 The narrow width approximation means that c = (h†h)11/8π = 
N1 /M1 	 1. 
This ensures consistency in treating the sterile neutrinos as quasi-stable particle 
states in the Boltzmann equation.

by low-energy neutrino physics. For hierarchical sterile neutrinos, 
M1 	 M2 	 M3 we find that

ε1 � − 1

8π

∑
j �=1

Im[K 2
1 j]

K11

(
M1

M j

)
, (31)

which after a little algebra can be re-written in terms of light neu-
trino parameters as [13]

ε1 � 3

16π

M1

v2

∑
i �=1

�m2
i1

mi

Im
(

h̃2
i1

)
(

h̃i1

)
11

. (32)

We can parametrise the CP violation in this quantity by using the 
parameters zi defined as

h̃2
i1

(h̃†h̃)11
= zi = xi + iyi , (33)

where 
∑

i |zi | = 1 and h̃ is the mass-eigenstate Yukawa coupling 
given by h̃ = Uh where U is the PNMS matrix. This satisfies (using 
the formalism of [9] and [14])

h̃i j = 1√
mi M j

�i j, (34)

where the see saw formula h̃2
i j v2/M j = mi implies that � is or-

thogonal and therefore satisfies 
(
�T �

)
11 = 1. This implies that

y1

m1
+ y2

m2
+ y3

m3
= 0, (35)

and

m̃1

m1
x1 + m̃1

m2
x2 + m̃1

m3
x3 = 0. (36)

Hence the strength of CP violation in N1 decays can be neatly 
parametrised as

ε1 = 3

16π

M1

v2

(
�m2

21

m2
y2 + �m2

31

m3
y3

)
. (37)

One might now ask whether the size of ε1, or more specifically 
the quantities yi , uniquely constrain the CP violation appearing in

Neq
B−L = π2 Ṙ

2ζ(3)T

∑
i j

Im
[

K 2
i j

]
18Mi M j

I[i j]. (38)

The answer to this question is no, as we now explain. Firstly, one 
should note that “CP violation” only really makes sense in the con-
text of a particular process, since a given scattering amplitude or 
decay channel is determined not only by the Yukawa phases in hij , 
but also by the combinations of masses Mi involved in the relevant 
diagrams. In this sense, there will be certain regions of parameter 
space for which CP violation in one process is strong and simul-
taneously weak in another. For instance, ε1 depends only on the 
Yukawa couplings via the quantity 

∑
j Im(K 2

i j)/M j , but this is in-
variant under the transformation

Im
[

K 2
i j

]
→ Im

[
K 2

i j

]
+ M∗

εi jk

Mk
, (39)

where M∗ is an arbitrary energy scale. This leaves ε1 fixed, but 
changes Im

[
K 2

i j

]
and therefore the size of CP violation in (38), 

in which I[i j] depends on a completely different combination of 
masses from those appearing in ε1.
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The sterile mass-dependent factor I[i j] was found in ref. [2] by 
explicit evaluation of the curvature dependence of the two-loop 
Feynman diagrams in figure 1 to be

I[i j] ∼ 1

(4π)4

(
M2

j

M2
i

)p

ln

(
M2

j

M2
i

)
, (40)

in the large hierarchy limit M j 
 Mi . The equilibrium asymmetry 
is therefore

Neq
B−L � π2 Ṙ

2ζ(3)T

∑
j>i

Im
[

K 2
i j

]
18Mi M j

(
M2

j

M2
i

)p

ln

(
M2

j

M2
i

)
1

(4π)4
. (41)

The dependence on the sterile mass hierarchy is parametrised 
here by the index p. In ref. [2], strong but not conclusive evidence 
was found for a hierarchy enhancement with p = 1. Analysing 
the Feynman diagrams in the weak gravitational field limit by at-
taching gravitons to the sterile neutrino propagators yields four 
diagrams, three of which may be explicitly evaluated and give 
p = 0.4 The fourth is significantly more complex and a complete 
evaluation has yet to be carried through. However, it was shown 
in [2] that p = 1 contributions (but no higher) arise through-
out and barring a final cancellation will provide the dominant 
behaviour. In the following section, where we consider a conven-
tional radiation-dominated FRW cosmology, we therefore assume a 
hierarchy enhancement with p = 1. In section 5 we compute the 
gravitationally-induced lepton asymmetry in an alternative cosmo-
logical background with the more conservative choice p = 0 to 
show that the observed asymmetry may still be obtained even 
without a power-law hierarchy enhancement.

Returning to (41), we therefore see that constraining the size of 
ε1 still leaves the three quantities Im

[
K 2

13

]
, Im

[
K 2

23

]
and Im

[
K 2

12

]
undetermined, so that the size of Neq

B−L is not fully constrained in 
terms of yi of eq. (33). In this sense, the gravitational effect is sen-
sitive to different details of the high-energy see-saw physics com-
pared to the usual delayed decay picture and is less constrained by 
SM neutrinos. Of course, in future work it could be interesting to 
see what other low-energy observables could be used to constrain 
the combination of masses appearing in eq. (41).

4. Evolution of the lepton asymmetry

We now describe the solution of the Boltzmann equations (7)
and (8), highlighting the different leptogenesis scenarios that oc-
cur depending on the relative strength CP-violation from gravity 
and decays, which can be dialed independently by virtue of the 
transformation (39). For our present purposes, we assume that the 
Im[K 2

i j] are of roughly the same order of magnitude and that they 
realise a fixed value of ε1. Therefore, assuming M1 	 M2 	 M3, 
the sum in eq. (41) is dominated by the N1, N3 contribution, giv-
ing

Neq
B−L � π2 Ṙ

36ζ(3)T (4π)4

Im
[

K 2
13

]
M1M3

(
M2

3

M2
1

)p

ln

(
M2

3

M2
1

)
. (42)

We now examine what happens when both decays and gravi-
tational effects are present (Figs. 3 and 4), by considering different 
values of ε1, whilst keeping CP-violation in the gravitational sec-
tor fixed. Of course, it should be noted that our ability to dial the 

4 Note that in ref. [2], “diagram 3” was incorrectly stated to have p = 1. How-
ever, this leading behaviour in fact cancels leaving a final contribution with p = 0, 
the same dependence as diagrams 1 and 2. We thank T. Shindou and S. Shirai for 
bringing this to our attention.

Fig. 3. Plot of the evolution of |NB−L | with z for K = 1, M1 = 1010 GeV with 
ε1 = 10−6 and Im(K 2

13)/(4π)2 = 10−6, M3 = 1016, assuming a hierarchy enhance-
ment with p = 1. In the full solution (pink), we see that at early times, there is 
a gravitationally induced asymmetry, but the ε1 D(N1 − Neq

1 ) term dominates in 
the Boltzmann equation as we approach z = 1 and the asymmetry is determined 
solely by CP violating decays, with no memory of the gravitational effects at early 
times. The purple dotted curve, which includes only gravitational effects and ne-
glects decays by setting ε1 = 0, shows that decays have no effect until z ∼ 1. (For 
interpretation of the references to colour in this figure, the reader is referred to the 
web version of this article.)

Fig. 4. The other parameters are the same as Fig. 3, but we now take ε1 = 10−8. For 
this value of ε1, the full solution is solely dominated by gravitational effects (pink 
curve), i.e. the decays have no effect on the relic asymmetry. This can be clearly 
seen by comparison with the dotted purple curve, which neglects decays entirely 
by setting ε1 = 0, and shows that the full solution is essentially independent of 
decays. From the black dashed curve, we see that taking into account decays alone 
does not give an accurate representation of the true solution. (For interpretation of 
the references to colour in this figure, the reader is referred to the web version of 
this article.)

two effects independently is due to the sterile mass-dependence 
unique to the curved-space two-loop diagrams in Fig. 1. Ultimately 
the contribution to dispersion relations can be traced to the real
part of these curved-space self-energies. In contrast, the combi-
nation of masses appearing in ε1, is a result of the imaginary
parts of flat-space self-energies, which come from the relevant cuts 
through two-loop diagrams and relate to decay rates. The analy-
sis of [2] was crucial to understand the parametric details of the 
gravitational mechanism and the important asymptotic behaviour 
I[i j] ∼

(
M2

j /M2
i

)p
ln(M2

j /M2
i ), which contrasts with that of ε1. It is 

this richness of parameter space which leads to the distinct lepto-
genesis scenarios described below.

In all cases, even if we start from a vanishing initial net lepton 
number at high temperatures, the system very rapidly attains its 
gravitationally-induced equilibrium asymmetry Neq

B−L(z) �= 0. The 
asymmetry then tracks this equilibrium value as the Universe 
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cools. As the corresponding rate for the lepton number-violating 
interactions falls (see Figs. 2 and 6), the system can no longer 
follow the extremely rapid 1/z5 decrease in Neq

B−L (see eq. (6)) 
and the asymmetry freezes out. The region of z at which this 
decoupling takes place depends on the sterile neutrino mass M1
and K , which control the washout coefficient W . In the scenarios 
illustrated here, decoupling takes place for small values of z, sig-
nificantly below the scale z ∼ 1 − 10 at which the effects of the N1
resonance in W and the N1 decays are felt. In the first scenario 
(Fig. 3), we consider maximal ε1 � 10−6 (setting y2 � 0, y3 � 1
in (37)) as in the standard delayed-decay picture. Then with the 
parameters shown, including the hierarchy enhancement p = 1, 
since the asymmetry generated by the out-of-equilibrium N1 de-
cays is larger than the gravitational effect and occurs later (for 
z � 1), the gravitationally-induced asymmetry is taken over by de-
cays, and the system evolves according to the conventional decay 
scenario with no memory of the early-time gravitational effects.

A scenario where ε1 is smaller is shown in Fig. 4. In this 
case, although the sterile neutrino decays do generate an asymme-
try as usual, this effect is smaller than the gravitationally-induced 
asymmetry after freeze-out. Remarkably, therefore, in this scenario 
the final asymmetry is completely determined by the gravitational 
mechanism, with the decays playing no significant role. This alters 
our understanding of the parameter space of leptogenesis, showing 
that regions which were previously believed to give an asymme-
try in terms of decays are actually dominated by the gravitational 
mechanism.

4.1. Gravity only: The extremal case ε1 = 0

Since our main interest here is in illustrating the mechanism 
of gravitational leptogenesis, we now study in detail the extremal 
case where the CP-violating decay parameter |ε1| � 0 is minimal. 
In this case, only the washout scatterings contribute and the Boltz-
mann equation for NB−L simplifies radically:

dNB−L

dz
= −W

(
NB−L − Neq

B−L

)
. (43)

Note here that in the region of interest, z 	 1, a good approxima-
tion to the washout term for neutrino parameters m1 	 m̄ is given 
from (28) by

W = α

z2
, α = 6

π2

M1m∗
v2

(
m̄2

m2∗
+ K 2

)
. (44)

As we now see, this scenario is readily realised by choosing 
opposite signs for the Yukawa phases in (31), (37). This places a 
constraint on the high energy physics of the form

ε1 � 0 =⇒ M3Im
[

K 2
12

]
+ M2Im

[
K 2

13

]
� 0, (45)

or equivalently, from eq. (37),

�m2
21

m2
y2 + �m2

31

m3
y3 � 0. (46)

Even with this restriction, there still remains much freedom in the 
choice of CP violation in the quantities Im[K 2

i j] contained in (6) – 
for instance, eq. (45) places no constraints on the phases of K 2

23. 
For simplicity, we set Im[K 2

23] = 0, then from eqs. (40) and (45) we 
find

∑
i j

Im
[

K 2
i j

]
Mi M j

I[i, j]

Fig. 5. Solutions to the Boltzmann equation (43), for K = 1 for fixed M1 = 1010 GeV
and Im(K 2

13)/(4π)2 = 10−6, M3 = 1016 GeV, taking p = 1. The blue line shows the 
numerical solution, the red the analytic solution, valid at early times whilst the 
black dashed line gives the equilibrium curve. The vertical dashed line shows the 
value zd where 
/H � 1. (For interpretation of the references to colour in this fig-
ure, the reader is referred to the web version of this article.)

� 1

M1M3

Im
[

K 2
13

]
(4π)4

(
M2

3

M2
1

)p

×
{

ln

(
M2

3

M2
1

)
−

(
M2

2

M2
3

)p

ln

(
M2

2

M2
1

)}
. (47)

So that if M1 	 M2 	 M3 we have

∑
i, j

Im
[

K 2
i j

]
Mi M j

I[i, j] � Im
[

K 2
13

]
(4π)4

1

M1M3

(
M2

3

M2
1

)p

ln

(
M2

3

M2
1

)
. (48)

Notice that the size of the CP asymmetry is enhanced by the hi-
erarchy between M3 and M1. In what follows, we treat Im[K 2

13]
as a free parameter (subject to the constraint (45)) controlling the 
strength of CP violation. Putting this together and taking p = 1, we 
find

Neq
B−L �

√
3π2σ 3/2(1 − 3w)(1 + w)

36ζ(3)

× 1

z5

(
M1

Mp

)3 M3

M1
ln

(
M2

3

M2
1

)
Im[K 2

13]
(4π)4

≡ β

z5
. (49)

The corresponding solution of the Boltzmann equation (43) in 
this scenario is shown in Fig. 5. In this case, following the freeze-
out of the asymmetry from its equilibrium value,5 the only fur-
ther new feature is the late-time reduction of NB−L in the region 
z ∼ 1 − 10 which is due to the contribution to W near the N1 res-
onance. This raises the value of W and pulls the asymmetry back, 
albeit only slightly with the parameter choice in Fig. 5, in the di-
rection of the equilibrium value. This is also apparent from Fig. 6, 

5 A little more insight into these numerical solutions follows from solving the 
Boltzmann equation (43) in the z 	 1 region analytically. From (44) and (49), we 
have

N ′
B−L(z) = α

z2

(
NB−L(z) − β

z5

)
, z 	 1,

which admits an analytic solution with asymptotic value

N f
B−L � 120

β

α5
.

This solution is plotted alongside the full numerical solution in Fig. 5 and is a useful 
guide in scanning the parameter space of M1 and K .
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Fig. 6. The ratio 
W /H with K = 1 and M1 = 1010 GeV.

Fig. 7. Some of the solutions corresponding to Fig. 8 with Im[K 2
13]/(4π)2 = 10−4.

where it is clear that 
W /H once again becomes of order 1 in 
this region. The size of this late-time reduction in NB−L depends 
on the choice of parameters M1 and K , in particular increasing 
sharply with K as illustrated in Fig. 7.

The key observation, however, is that even in this model with 
the CP-violating parameters chosen such that the sterile neutrino 
decays produce a negligible asymmetry, the gravitational leptogen-
esis mechanism on its own can produce the observed cosmological 
baryon asymmetry for an otherwise conventional choice of see-saw 
neutrino parameters. For example, in Fig. 5 the sterile neutrino 
masses were chosen to be M1 = 1010 GeV, M3 = 1016 GeV and 
K = 1, with Im(K 2

13)/(4π)2 = 10−6. The corresponding value for 
the final relic baryon asymmetry is given by

ηB = 1

f
CsphN f

B−L, (50)

where f = 2387/86 is a photon production factor and Csph =
28/70 is the sphaleron efficiency factor [9,10]. Clearly, the ob-
served asymmetry, ηB � 10−10 can be obtained for a significant 
range of the parameters M1, M3, Im(K 2

13) and K . In Fig. 8, we illus-
trate the dependence of ηB on Im(K 2

13)/(4π)2 and K for fixed M1, 
M3.

5. Alternative cosmological backgrounds

Finally, we relax the choice of a conventional radiation-domi-
nated FRW background and, following [8], consider a more gen-
eral scenario in which we allow the gravitational background to 
be sourced by matter characterised by an equation of state with 
arbitrary parameter w . Specifically, we consider an isotropic, ho-
mogeneous geometry whose matter source has an energy density 
ρ ∼ a−3(w+1) , where a is the scale factor of the Universe. Potential 

Fig. 8. Numerical results for the final baryon-to-photon ratio as a function of K for 
M1 = 1010 GeV and M3 = 1016 GeV, assuming a hierarchy enhancement with p = 1. 
The amount of CP violation is varied by taking Im(K 2

13)/(4π)2 = 1 − 10−10 (series 
of dashed lines), which simply shifts the overall scaling of NB−L , as can be seen 
from eqs. (43) and (49).

sources, for example scalar fields, giving rise to different values of 
w are discussed further in ref. [8]. The plasma in which leptoge-
nesis takes place corresponds in this scenario to a sub-dominant
radiation component for which ρR ∼ a−4 with temperature T sat-
isfying ρR = σ T 4. The onset of radiation dominance occurs at a 
critical temperature T∗ where ρ � ρR , and leptogenesis takes place 
in the pre-radiation dominance phase of the evolution above T∗ .

We can then parametrise both matter and radiation energy 
densities in terms of the plasma temperature T and critical tem-
perature T∗ as follows:

ρ = σ T 4∗
(

T

T∗

)3(1+w)

, ρR = σ T 4 . (51)

The curvature for T > T∗ is sourced by ρ , so that here

Ṙ = √
3(1 − 3w)(1 + w)

ρ3/2

M3
p

, (52)

which may be written as

Ṙ = √
3(1 − 3w)(1 + w)σ 3/2 M6

1

γ 6M3
p

(γ

z

)9(1+w)/2
, (53)

where we have introduced the parameter γ = M1/T∗ . This gives 
rise to an equilibrium lepton-to-photon ratio

Neq
B−L �

√
3π2σ 3/2(1 − 3w)(1 + w)

36ζ(3)

× M5
1

γ 5M3
p

(γ

z

)9(1+w)/2−1 ∑
i, j

Im
[

K 2
i j

]
Mi M j

I[i j] , (54)

which may be compared with (6).
The analysis of the Boltzmann equations now goes through es-

sentially as before, showing all the same qualitative features. The 
main quantitative difference arises from the temperature depen-
dence of the equilibrium asymmetry, which from (54) falls off 
as z−9(1+w)/2+1, depending on the parameter w characterising 
the source of the gravitational background. Moreover, unlike the 
radiation-dominated scenario, where for a standard sterile neutrino 
sector we required the hierarchy enhancement p = 1 in order to 
reproduce the observed baryon asymmetry, in this model the free-
dom to choose the parameters w and γ means that it is possible 
to obtain ηB � 10−10 even without this enhancement. To illustrate 
this, we take p = 0 in the plots shown in this section.
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Fig. 9. Plot of the evolution of |NB−L | with z for K = 1, M1 = 5 × 1011 GeV with 
ε1 = 10−6 and Im(K 2

13)/(4π)2 = 10−4, M3 = 1016 in the generalised cosmological 
model. The cosmological parameters chosen were γ = M1/T R = 40 and w = 0.5
and the hierarchy parameter was taken here as p = 0. The essential features are the 
same as illustrated in Fig. 3 for the radiation-dominated spacetime.

Fig. 10. Solutions to the Boltzmann equation (43) for the generalised cosmological 
model, with K = 3, M1 = 5 ×1011 GeV, Im(K 2

13)/(4π)2 = 10−4, M3 = 1016 GeV and 
taking p = 0. Results are shown for γ = 40 and three illustrative values of w . The 
corresponding equilibrium curves are drawn as dashed lines.

The evolution of the asymmetry |NB−L | is shown in Figs. 9
and 10. In Fig. 9, the analogue of Fig. 3, we illustrate the competi-
tion between the gravitational and decay mechanisms for leptoge-
nesis with the CP violating parameter ε1 = 10−6 for a cosmological 
model with w = 0.5 and γ = 40, where decoupling from Neq

B−L

takes place for temperatures with z � 10−3. Clearly for smaller val-
ues of the CP violating parameter, the situation again resembles 
Fig. 4 with the decays being irrelevant and the final asymmetry 
dominated by the gravitational mechanism. Fig. 10 shows the de-
pendence of the decoupling temperature and the final asymmetry 
on the equation of state parameter w . Unsurprisingly, |NB−L | is 
seen to be extremely sensitive to w , reflecting the power depen-
dence in Neq

B−L ∼ z−9(1+w)/2+1.
Overall then, we see that in this cosmological scenario in 

which leptogenesis occurs before the onset of radiation dominance, 
where the background spacetime is sourced by matter with an 
as yet undetermined value of w , the observed baryon asymme-

try may still be obtained for a significant range of neutrino and 
cosmological parameters even in the absence of a hierarchy en-
hancement of the Feynman diagram factor I[i j] characterising the 
gravitationally-induced lepton number asymmetry.

6. Conclusions

In this Letter, we have presented a detailed study of the dynam-
ics of lepton number generation in the early Universe, taking into 
account both the conventional out-of-equilibrium decays of the 
sterile neutrinos in the see-saw model and our new mechanism of 
gravitational leptogenesis [1,2]. This has demonstrated clearly for 
the first time that this gravitational mechanism is indeed capable 
of generating the observed baryon asymmetry ηB � 10−10.

This study, which sheds new light on traditional perspectives 
in leptogenesis, involved a full numerical analysis of the coupled 
Boltzmann equations, modified to include the non-vanishing equi-
librium asymmetry generated at two-loop order by the gravita-
tional interactions. The parameter space of high-energy Yukawa 
phases was explored fully, showing that the CP violation in the 
gravitational and sterile neutrino decay sectors can be dialled in-
dependently. Whether the final asymmetry is determined by the 
gravitational or decay effects is then controlled by the size of the 
CP-violating decay parameter ε1. In particular, even in the limit of 
minimal ε1 � 0, we showed that the observed value of ηB may 
be obtained for otherwise standard choices of neutrino param-
eters in the see-saw model. This establishes radiatively-induced 
gravitational leptogenesis as a viable mechanism for explaining the 
matter-antimatter asymmetry of the Universe.
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