21 research outputs found

    Phosphorus Biogeochemistry Across a Precipitation Gradient in Grasslands of Central North America

    Get PDF
    Soil P transformations and distribution studies under water limited conditions that characterize many grasslands may provide further insight into the importance of abiotic and biotic P controls within grassdominated ecosystems. We assessed transformations between P pools across four sites spanning the shortgrass steppe, mixed grass prairie, and tallgrass prairie along a 400-mm precipitation gradient across the central Great Plains. Pedon total elemental and constituent mass balance analyses reflected a pattern of increased chemical weathering from the more arid shortgrass steppe to the more mesic tallgrass prairie. Soil surface A horizon P accumulation was likely related to increased biocycling and biological mining. Soluble P, a small fraction of total P in surface A horizons, was greatest at the mixed grass sites. The distribution of secondary soil P fractions across the gradient suggested decreasing Ca-bound P and increasing amounts of occluded P with increasing precipitation. Surface A horizons contained evidence of Ca-bound P in the absence of CaCO3, while in subsurface horizons the Ca-bound P was associated with increasing CaCO3 content. Calcium-bound P, which dominates in water-limited systems, forms under different sets of soil chemical conditions in different climatic regimes, demonstrating the importance of carbonate regulation of P in semi-arid ecosystems

    Soil net nitrogen mineralisation across global grasslands

    Get PDF
    Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential Nmin only weakly correlates with realised Nmin, but contributes to explain realised net Nmin when combined with soil and climatic variables. We provide novel insights of global realised soil net Nmin and show that potential soil net Nmin data available in the literature could be parameterised with soil and climate data to better predict realised NNational Science Foundation Research Coordination Network; Long-Term Ecological Research; Institute on the Environment at the University of Minnesota.http://www.nature.com/ncommspm2020Mammal Research InstituteZoology and Entomolog

    Soil Health as a Transformational Change Agent for US Grazing Lands Management

    No full text
    There is rapidly growing national interest in grazing lands’ soil health, which has been motivated by the current soil health renaissance in cropland agriculture. In contrast to intensively managed croplands, soil health for grazing lands, especially rangelands, is tempered by limited scientific evidence clearly illustrating positive feedbacks between soil health and grazing land resilience, or sustainability. Opportunities exist for improving soil health on grazing lands with intensively managed plant communities (e.g., pasture systems) and formerly cultivated or degraded lands. Therefore, the goal of this paper is to provide direction and recommendations for incorporating soil health into grazing management considerations on grazing lands. We argue that the current soil health renaissance should not focus on improvement of soil health on grazing lands where potential is limited but rather forward science-based management for improving grazing lands’ resilience to environmental change via 1) refocusing grazing management on fundamental ecological processes (water and nutrient cycling and energy flow) rather than maximum short-term profit or livestock production; 2) emphasizing goal-based management with adaptive decision making informed by specific objectives incorporating maintenance of soil health at a minimum and directly relevant monitoring attributes; 3) advancing holistic and integrated approaches for soil health that highlight social-ecological-economic interdependencies of these systems, with particular emphasis on human dimensions; 4) building cross-institutional partnerships on grazing lands’ soil health to enhance technical capacities of students, land managers, and natural resource professionals; and 5) creating a cross-region, living laboratory network of case studies involving producers using soil health as part of their grazing land management. Collectively, these efforts could foster transformational changes by strengthening the link between natural resources stewardship and sustainable grazing lands management through management-science partnerships in a social-ecological systems framework.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial β-diversity

    No full text
    Biodiversity—both above- and belowground—influences multiple functions in terrestrial ecosystems. Yet, it is unclear whether differences in above- and belowground species composition (β-diversity) are associated with differences in multiple ecosystem functions (e.g., spatial turnover in ecosystem function). Here, we partitioned the contributions of above- and belowground β-diversity and abiotic factors (geographic distance, differences in environments) on the spatial turnover of multiple grassland ecosystem functions. We compiled a dataset of plant and soil microbial communities and six indicators of grassland ecosystem functions (i.e., plant aboveground live biomass, plant nitrogen [N], plant phosphorus [P], root biomass, soil total N, and soil extractable P) from 18 grassland sites on four continents contributing to the Nutrient Network experiment. We used Mantel tests and structural equation models to disentangle the relationship between above- and belowground β-diversity and spatial turnover in grassland ecosystem functions. We found that the effects of abiotic factors on the spatial turnover of ecosystem functions were largely indirect through their influences on above- and belowground β-diversity, and that spatial turnover of ecosystem function was more strongly associated with plant β-diversity than with soil microbial β-diversity. These results indicate that changes in above- and belowground species composition are one mechanism that interacts with environmental change to determine variability in multiple ecosystem functions across spatial scales. As grasslands face global threats from shrub encroachment, conversion to agriculture, or are lost to development, the functions and services they provide will more strongly converge with increased aboveground community homogenization than with soil microbial community homogenization

    Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents

    Get PDF
    Background and aims The amount of nitrogen (N) derived from symbiotic N2 fixation by legumes in grasslands might be affected by anthropogenic N and phosphorus (P) inputs, but the underlying mechanisms are not known. Methods We evaluated symbiotic N2 fixation in 17 natural and semi-natural grasslands on four continents that are subjected to the same full-factorial N and P addition experiment, using the 15N natural abundance method. Results N as well as combined N and P (NP) addition reduced aboveground legume biomass by 65% and 45%, respectively, compared to the control, whereas P addition had no significant impact. Addition of N and/or P had no significant effect on the symbiotic N2 fixation per unit legume biomass. In consequence, the amount of N fixed annually per grassland area was less than half in the N addition treatments compared to control and P addition, irrespective of whether the dominant legumes were annuals or perennials. Conclusion Our results reveal that N addition mainly impacts symbiotic N2 fixation via reduced biomass of legumes rather than changes in N2 fixation per unit legume biomass. The results show that soil N enrichment by anthropogenic activities significantly reduces N2 fixation in grasslands, and these effects cannot be reversed by additional P amendment

    Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide

    No full text
    Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in lownutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogenfixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species
    corecore