2,784 research outputs found

    Using Simulated Micrometeoroid Impacts to Understand the Progressive Space Weathering of the Surface of Mercury

    Get PDF
    The surfaces of airless bodies such as Mercury are continually modified by space weathering, which is driven by micrometeoroid impacts and solar wind irradiation. Space weathering alters the chemical composition, microstructure, and spectral properties of surface regolith. In lunar and ordinarychondritic style space weathering, these processes affect the reflectance properties by darkening (lowering of reflectance), reddening (increasing reflectance with increasing wavelength), and attenuation of characteristic absorption features. These optical changes are driven by the production of nanophase Febearing particles (npFe). While our understanding of these alteration processes has largely been based on data from the Moon and near-Earth S-type asteroids, the space weathering environment at Mercury is much more extreme. The surface of Mercury experiences a more intense solar wind flux and higher velocity micrometeoroid impacts than its planetary counterparts at 1 AU. Additionally, the composition of Mercurys surface varies significantly from that of the Moon. Most notably, a very low albedo unit has been identified on Mercurys surface, known as the low reflectance material (LRM). This unit is enriched with up to 4 wt.% carbon, likely in the form of graphite, over the local mean. In addition, the surface concentration of Fe across Mercurys surface is low (<2 wt.%) compared to the Moon. Our understanding of how these low-Fe and carbon phases are altered as a result of space weathering processes is limited. Since Fe plays a critical role in the development of space weathering features on other airless surfaces (e.g., npFe), its limited availability on Mercury may strongly affect the space weathering features in surface materials. In order to understand how space weathering affects the chemical, microstructural, and optical properties of the surface of Mercury, we can simulate these processes in the laboratory [7]. Here we used pulsed laser irradiation to simulate the short duration, high temperature events associated with micrometeoroid impacts. We used forsteritic olivine, likely present on the Mercurian surface, with varying FeO contents, each mixed with graphite, in our experiments. We then performed reflectance spectroscopy and electron microscopy to investigate the spectral, chemical, and microstructural changes in these samples

    Potential Alteration of Analogue Regolith by X-Ray Computed Tomography

    Get PDF
    The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. Mars Returned Samples may provide definitive information about the presence of organic compounds that could shed light on the existence of past or present life on Mars. Post-mission analyses will depend on the development of a set of reliable sample handling and analysis procedures that cover the full range of materials which may or may not contain evidence of past or present martian life [1]

    Meteoritic Material Recovered from the 07 March 2018 Meteorite Fall into the Olympic Coast National Marine Sanctuary

    Get PDF
    On 07 March 2018 at 20:05 local time (08 March 03:05 UTC), a dramatic meteor occurred over Olympic Coast National Marine Sanctuary (OCNMS) off of the Washington state coast (OCNMS fall, henceforth). Data to include seismometry (from both on-shore and submarine seismometers), weather radar imagery (Figure 1), and a moored weather buoy, were used to accurately identify the fall site. The site was visited by the exploration vessel E/V Nautilus (Ocean Exploration Trust) on 01 July 2018 [1] and by the research vessel R/V Falkor (Schmidt Ocean Institute) from 03-06 June 2019. Remotely operated vehicles (ROVs) from both vessels were used to search for meteorites and sample seafloor sediments. These expeditions performed the first attempts to recover meteorites from a specific observed fall in the open ocean. Analysis of weather radar data indicates that this fall was unusually massive and featured meteorites of unusually high mechanical toughness, such that large meteorites were disproportionately produced compared to other meteorite falls (Figure 2)[2-4]. We report the recovery of many (>100) micrometeorite-sized melt spherules and other fragments, and one small (~1mm3 ) unmelted meteorite fragment identified to date. Approximately 80% of the fragments were recovered from a single sample, collected from a round pit in the seafloor sediment. Melt spherules are almost exclusively type I iron-rich spherules with little discernible oxidation. Analyses are currently underway to attempt to answer the primary science question by identifying the parent meteorite type. Also, differences in the number and nature of samples collected by Nautilus and Falkor reveal a distinct loss rate to oxidation over the 15 months following the fall that is useful to inform future recovery efforts

    A multidimensional examination of marital conflict and subjective health over 16 years

    Full text link
    Guided by stress process perspectives, this study conceptualizes marital conflict as a multidimensional stressor to assess how three aspects of conflict—frequency of disagreements, breadth of disagreements, and cumulative disagreements—impact subjective health. Longitudinal data of married couples spanning 16 years (n = 373 couples) were analyzed using multilevel modeling. For husbands, more frequent disagreements than usual within a given year were associated with poorer subjective health. For wives, the greater cumulative effects of disagreements over 16 years were harmful for subjective health. We discuss how gendered self‐representations and relationship power issues help explain the findings. This research demonstrated the importance of examining multiple aspects of marital conflict to reveal that their subjective health consequences function differently for wives and husbands.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151831/1/pere12292_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151831/2/pere12292.pd

    Sample Handling Considerations for a Europa Sample Return Mission: An Overview

    Get PDF
    The intent of this abstract is to provide a basic overview of mission requirements for a generic Europan plume sample return mission, based on NASA Curation experience in NASA sample return missions ranging from Apollo to OSIRIS-REx. This should be useful for mission conception and early stage planning. We will break the mission down into Outbound and Return legs and discuss them separately

    Aubrite and Impact Melt Enstatite Chondrite Meteorites as Potential Analogs to Mercury

    Get PDF
    The MESSENGER (MErcury Sur-face, Space ENvironment, GEochemistry and Ranging) orbiter measured the Mercurian surface abundances of key rock-forming elements to help us better understand the planet's surface and bulk geochemistry. A major discovery is that the Mercurian surface and interior are characterized by an extremely low oxygen fugacity (O2; Iron-Wstite (IW) -7.3 to IW-2.6. This is supported by low Fe and high S abundances on the surface. This low O2 causes a different elemental partioning from what is observed on Earth. Using surface composition, it was shown that the Mercurian surface mainly consists of normative plagioclase, pyroxene, olivine, and exotic sulfides, such as niningerite ((Mg,Mn, Fe)S) and oldhamite (CaS)

    Artemis Curation: Preparing for Sample Return from the Lunar South Pole

    Get PDF
    Space Policy Directive-1 mandates that the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations. In addition, the Vice President stated that It is the stated policy of this administration and the United States of America to return American astronauts to the Moon within the next five years, that is, by 2024. These efforts, under the umbrella of the recently formed Artemis Program, include such historic goals as the flight of the first woman to the Moon and the exploration of the lunar south-polar region. Among the top priorities of the Artemis Program is the return of a suite of geologic samples, providing new and significant opportunities for progressing lunar science and human exploration. In particular, successful sample return is necessary for understanding the history of volatiles in the Solar System and the evolution of the Earth-Moon system, fully constraining the hazards of the lunar polar environment for astronauts, and providing the necessary data for constraining the abundance and distribution of resources for in-situ resource utilization (ISRU). Here we summarize the ef-forts of the Astromaterials Acquisition and Curation Office (hereafter referred to as the Curation Office) to ensure the success of Artemis sample return (per NASA Policy Directive (NPD) 7100.10E)

    Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Get PDF
    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approx.576-867 C. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Metallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120deg triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3+, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study

    Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Get PDF
    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study
    corecore