96 research outputs found

    Long-Term Protective Effects of Methamphetamine Preconditioning Against Single-Day Methamphetamine Toxic Challenges

    Get PDF
    Methamphetamine (METH) use is associated with neurotoxic effects which include decreased levels of dopamine (DA), serotonin (5-HT) and their metabolites in the brain. We have shown that escalating METH dosing can protect against METH induced neurotoxicity in rats sacrificed within 24 hours after a toxic METH challenge. The purpose of the current study was to investigate if the protective effects of METH persisted for a long period of time. We also tested if a second challenge with a toxic dose of METH would cause further damage to monoaminergic terminals. Saline-pretreated rats showed significant METH-induced decreases in striatal DA and 5-HT levels in rats sacrificed 2 weeks after the challenge. Rats that received two METH challenges showed no further decreases in striatal DA or 5-HT levels in comparison to the single METH challenge. In contrast, METH-pretreated rats showed significant protection against METH-induced striatal DA and 5-HT depletion. In addition, the METH challenge causes substantial decreases in cortical 5-HT levels which were not further potentiated by a second drug challenge. METH preconditioning provided almost complete protection against METH –induced 5-HT depletion. These results are consistent with the idea that METH pretreatment renders the brain refractory to METH-induced degeneration of brain monoaminergic systems

    The effect of rare regions on a disordered itinerant quantum antiferromagnet with cubic anisotropy

    Get PDF
    We study the quantum phase transition of an itinerant antiferromagnet with cubic anisotropy in the presence of quenched disorder, paying particular attention to the locally ordered spatial regions that form in the Griffiths region. We derive an effective action where these rare regions are described in terms of static annealed disorder. A one loop renormalization group analysis of the effective action shows that for order parameter dimensions p<4p<4 the rare regions destroy the conventional critical behavior. For order parameter dimensions p>4p>4 the critical behavior is not influenced by the rare regions, it is described by the conventional dirty cubic fixed point. We also discuss the influence of the rare regions on the fluctuation-driven first-order transition in this system.Comment: 6 pages RevTe

    Dynamic Scaling in Diluted Systems Phase Transitions: Deactivation trough Thermal Dilution

    Full text link
    Activated scaling is confirmed to hold in transverse field induced phase transitions of randomly diluted Ising systems. Quantum Monte Carlo calculations have been made not just at the percolation threshold but well bellow and above it including the Griffiths-McCoy phase. A novel deactivation phenomena in the Griffiths-McCoy phase is observed using a thermal (in contrast to random) dilution of the system.Comment: 4 pages, 4 figures, RevTe

    Finite-size scaling properties of random transverse-field Ising chains : Comparison between canonical and microcanonical ensembles for the disorder

    Full text link
    The Random Transverse Field Ising Chain is the simplest disordered model presenting a quantum phase transition at T=0. We compare analytically its finite-size scaling properties in two different ensembles for the disorder (i) the canonical ensemble, where the disorder variables are independent (ii) the microcanonical ensemble, where there exists a global constraint on the disorder variables. The observables under study are the surface magnetization, the correlation of the two surface magnetizations, the gap and the end-to-end spin-spin correlation C(L)C(L) for a chain of length LL. At criticality, each observable decays typically as ewLe^{- w \sqrt{L}} in both ensembles, but the probability distributions of the rescaled variable ww are different in the two ensembles, in particular in their asymptotic behaviors. As a consequence, the dependence in LL of averaged observables differ in the two ensembles. For instance, the correlation C(L)C(L) decays algebraically as 1/L in the canonical ensemble, but sub-exponentially as ecL1/3e^{-c L^{1/3}} in the microcanonical ensemble. Off criticality, probability distributions of rescaled variables are governed by the critical exponent ν=2\nu=2 in both ensembles, but the following observables are governed by the exponent ν~=1\tilde \nu=1 in the microcanonical ensemble, instead of the exponent ν=2\nu=2 in the canonical ensemble (a) in the disordered phase : the averaged surface magnetization, the averaged correlation of the two surface magnetizations and the averaged end-to-end spin-spin correlation (b) in the ordered phase : the averaged gap. In conclusion, the measure of the rare events that dominate various averaged observables can be very sensitive to the microcanonical constraint.Comment: 24 page

    Correlated disordered interactions on Potts models

    Full text link
    Using a weak-disorder scheme and real-space renormalization-group techniques, we obtain analytical results for the critical behavior of various q-state Potts models with correlated disordered exchange interactions along d1 of d spatial dimensions on hierarchical (Migdal-Kadanoff) lattices. Our results indicate qualitative differences between the cases d-d1=1 (for which we find nonphysical random fixed points, suggesting the existence of nonperturbative fixed distributions) and d-d1>1 (for which we do find acceptable perturbartive random fixed points), in agreement with previous numerical calculations by Andelman and Aharony. We also rederive a criterion for relevance of correlated disorder, which generalizes the usual Harris criterion.Comment: 8 pages, 4 figures, to be published in Physical Review

    Cerebral Localized Marginal Zone Lymphoma Presenting as Hypothalamic-Pituitary Region Disorder

    Get PDF
    Introduction: Marginal zone B-cell lymphoma is a rare disease which can be considerably difficult to recognize and diagnose when signs of systemic involvement are absent. Case Presentation: We report the case of a 57-year-old woman with initial olfactory disturbance, followed by psychosis, diabetes insipidus and hypothalamic eating disorder as an uncommon clinical presentation of marginal zone B-cell lymphoma. Conclusion: Marginal zone B-cell lymphoma should be considered as a potential differential diagnosis in patients with hypothalamic disturbances

    On the critical behavior of disordered quantum magnets: The relevance of rare regions

    Get PDF
    The effects of quenched disorder on the critical properties of itinerant quantum antiferromagnets and ferromagnets are considered. Particular attention is paid to locally ordered spatial regions that are formed in the presence of quenched disorder even when the bulk system is still in the paramagnetic phase. These rare regions or local moments are reflected in the existence of spatially inhomogeneous saddle points of the Landau-Ginzburg-Wilson functional. We derive an effective theory that takes into account small fluctuations around all of these saddle points. The resulting free energy functional contains a new term in addition to those obtained within the conventional perturbative approach, and it comprises what would be considered non-perturbative effects within the latter. A renormalization group analysis shows that in the case of antiferromagnets, the previously found critical fixed point is unstable with respect to this new term, and that no stable critical fixed point exists at one-loop order. This is contrasted with the case of itinerant ferromagnets, where we find that the previously found critical behavior is unaffected by the rare regions due to an effective long-ranged interaction between the order parameter fluctuations.Comment: 16 pp., REVTeX, epsf, 2 figs, final version as publishe

    Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations

    Get PDF
    We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenomena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large region devoid of impurities. Such a rare region can develop true long-range order while the bulk system is still in the disordered phase. We compute the thermodynamic magnetization and its finite-size effects, the local magnetization, and the probability distribution of the ordering temperatures for different samples. Our Monte-Carlo results are in good agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe

    Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz

    Full text link
    We construct the quantum versions of the monodromy matrices of KdV theory. The traces of these quantum monodromy matrices, which will be called as ``T{\bf T}-operators'', act in highest weight Virasoro modules. The T{\bf T}-operators depend on the spectral parameter λ\lambda and their expansion around λ=\lambda = \infty generates an infinite set of commuting Hamiltonians of the quantum KdV system. The T{\bf T}-operators can be viewed as the continuous field theory versions of the commuting transfer-matrices of integrable lattice theory. In particular, we show that for the values c=13(2n+1)22n+3,n=1,2,3,...c=1-3{{(2n+1)^2}\over {2n+3}} , n=1,2,3,... of the Virasoro central charge the eigenvalues of the T{\bf T}-operators satisfy a closed system of functional equations sufficient for determining the spectrum. For the ground-state eigenvalue these functional equations are equivalent to those of massless Thermodynamic Bethe Ansatz for the minimal conformal field theory M2,2n+3{\cal M}_{2,2n+3}; in general they provide a way to generalize the technique of Thermodynamic Bethe Ansatz to the excited states. We discuss a generalization of our approach to the cases of massive field theories obtained by perturbing these Conformal Field Theories with the operator Φ1,3\Phi_{1,3}. The relation of these T{\bf T}-operators to the boundary states is also briefly described.Comment: 24 page

    Percolation in random environment

    Full text link
    We consider bond percolation on the square lattice with perfectly correlated random probabilities. According to scaling considerations, mapping to a random walk problem and the results of Monte Carlo simulations the critical behavior of the system with varying degree of disorder is governed by new, random fixed points with anisotropic scaling properties. For weaker disorder both the magnetization and the anisotropy exponents are non-universal, whereas for strong enough disorder the system scales into an {\it infinite randomness fixed point} in which the critical exponents are exactly known.Comment: 8 pages, 7 figure
    corecore