196 research outputs found

    Bureau of Private Postsecondary Education

    Get PDF

    Board of Pharmacy

    Get PDF

    Bureau for Private Postsecondary Education

    Get PDF

    Cryptic vector divergence masks vector-specific patterns of infection: an example from the marine cycle of Lyme borreliosis

    Get PDF
    Vector organisms are implicated in the transmission of close to a third of all infectious diseases. In many cases, multiple vectors (species or populations) can participate in transmission but may contribute differently to disease ecology and evolution. The presence of cryptic vector populations can be particularly problematic as differences in infection can be difficult to evaluate and may lead to erroneous evolutionary and epidemiological inferences. Here, we combine site-occupancy modeling and molecular assays to evaluate patterns of infection in the marine cycle of Lyme borreliosis, involving colonial seabirds, the tick Ixodes uriae, and bacteria of the Borrelia burgdorferi s.l. complex. In this cycle, the tick vector consists of multiple, cryptic (phenotypically undistinguishable but genetically distinct) host races that are frequently found in sympatry. Our results show that bacterial detection varies strongly among tick races leading to vector-specific biases if raw counts are used to calculate Borrelia prevalence. These differences are largely explained by differences in infection intensity among tick races. After accounting for detection probabilities, we found that overall prevalence in this system is higher than previously suspected and that certain vector–host combinations likely contribute more than others to the local dynamics and large-scale dispersal of Borrelia spirochetes. These results highlight the importance of evaluating vector population structure and accounting for detection probability when trying to understand the evolutionary ecology of vector-borne diseases

    Prophylactic methylprednisolone to reduce inflammation and improve outcomes from one lung ventilation in children: a randomized clinical trial.

    Get PDF
    BACKGROUND: One lung ventilation (OLV) results in inflammatory and mechanical injury, leading to intraoperative and postoperative complications in children. No interventions have been studied in children to minimize such injury. OBJECTIVE: We hypothesized that a single 2-mg·kg(-1) dose of methylprednisolone given 45-60 min prior to lung collapse would minimize injury from OLV and improve physiological stability. METHODS: Twenty-eight children scheduled to undergo OLV were randomly assigned to receive 2 mg·kg(-1) methylprednisolone (MP) or normal saline (placebo group) prior to OLV. Anesthetic management was standardized, and data were collected for physiological stability (bronchospasm, respiratory resistance, and compliance). Plasma was assayed for inflammatory markers related to lung injury at timed intervals related to administration of methylprednisolone. RESULTS: Three children in the placebo group experienced clinically significant intraoperative and postoperative respiratory complications. Respiratory resistance was lower (P = 0.04) in the methylprednisolone group. Pro-inflammatory cytokine IL-6 was lower (P = 0.01), and anti-inflammatory cytokine IL-10 was higher (P = 0.001) in the methylprednisolone group. Tryptase, measured before and after OLV, was lower (P = 0.03) in the methylprednisolone group while increased levels of tryptase were seen in placebo group after OLV (did not achieve significance). There were no side effects observed that could be attributed to methylprednisolone in this study. CONCLUSIONS: Methylprednisolone at 2 mg·kg(-1) given as a single dose prior to OLV provides physiological stability to children undergoing OLV. In addition, methylprednisolone results in lower pro-inflammatory markers and higher anti-inflammatory markers in the children\u27s plasma

    World Health Organization guidelines on parenting to prevent child maltreatment and promote positive development in children aged 0-17 Years – Report of the reviews for the INTEGRATE framework.

    Get PDF
    Child maltreatment is a global public health problem. It can have detrimental and long-lasting effects on the development and health of children and occurs most frequently at the hands of parents and caregivers. These guidelines provide evidence-based recommendations on parenting interventions for parents and caregivers of children aged 0-17 years that are designed to reduce child maltreatment and harsh parenting, enhance the parent-child relationship, and prevent poor parent mental health and child emotional and behavioural problems. The guidelines are relevant to low-, middle- and high-income countries in all world regions. The recommendations in these guidelines are intended for a wide audience, including policy makers, development agencies and implementing partners, government health and social workers, and nongovernmental organizations

    Glycosylated cyclophellitol-derived activity-based probes and inhibitors for cellulases

    Get PDF
    Cellulases and related β-1,4-glucanases are essential components of lignocellulose-degrading enzyme mixtures. The detection of β-1,4-glucanase activity typically relies on monitoring the breakdown of purified lignocellulose-derived substrates or synthetic chromogenic substrates, limiting the activities which can be detected and complicating the tracing of activity back to specific components within complex enzyme mixtures. As a tool for the rapid detection and identification of β-1,4-glucanases, a series of glycosylated cyclophellitol inhibitors mimicking β-1,4-glucan oligosaccharides have been synthesised. These compounds are highly efficient inhibitors of HiCel7B, a well-known GH7 endo -β-1,4-glucanase. An elaborated activity-based probe facilitated the direct detection and identification of β-1,4-glucanases within a complex fungal secretome without any detectable cross-reactivity with β- d -glucosidases. These probes and inhibitors add valuable new capacity to the growing toolbox of cyclophellitol-derived probes for the activity-based profiling of biomass-degrading enzymes
    corecore