565 research outputs found
Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments
Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development of genotypes with optimized VPD-limited transpiration traits and deployment of these crops in water limited growing environments. The energy sorghum model and VPD-limited transpiration trait implementation are made available to simulate performance in other target environments
The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization.
Sorghum bicolor is a drought tolerant C4 grass used for the production of grain, forage, sugar, and lignocellulosic biomass and a genetic model for C4 grasses due to its relatively small genome (approximately 800 Mbp), diploid genetics, diverse germplasm, and colinearity with other C4 grass genomes. In this study, deep sequencing, genetic linkage analysis, and transcriptome data were used to produce and annotate a high-quality reference genome sequence. Reference genome sequence order was improved, 29.6 Mbp of additional sequence was incorporated, the number of genes annotated increased 24% to 34 211, average gene length and N50 increased, and error frequency was reduced 10-fold to 1 per 100 kbp. Subtelomeric repeats with characteristics of Tandem Repeats in Miniature (TRIM) elements were identified at the termini of most chromosomes. Nucleosome occupancy predictions identified nucleosomes positioned immediately downstream of transcription start sites and at different densities across chromosomes. Alignment of more than 50 resequenced genomes from diverse sorghum genotypes to the reference genome identified approximately 7.4 M single nucleotide polymorphisms (SNPs) and 1.9 M indels. Large-scale variant features in euchromatin were identified with periodicities of approximately 25 kbp. A transcriptome atlas of gene expression was constructed from 47 RNA-seq profiles of growing and developed tissues of the major plant organs (roots, leaves, stems, panicles, and seed) collected during the juvenile, vegetative and reproductive phases. Analysis of the transcriptome data indicated that tissue type and protein kinase expression had large influences on transcriptional profile clustering. The updated assembly, annotation, and transcriptome data represent a resource for C4 grass research and crop improvement
Onset of hexagons in surface-tension-driven Benard convection
High resolution laboratory experiments with large aspect ratio are being conducted for thin fluid layers heated from below and bounded from above by a free surface. The fluid depths are chosen sufficiently small (less than 0.06 cm) so that surface tension is the dominant driving mechanisms; the Rayleigh number is less than 5 for the results reported here. Shadowgraph visualization reveals that the primary instability leading to hexagons is slightly hysteretic (approximately 1 percent). Preliminary measurements of the convection amplitude using infrared imaging are also presented
Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure
<p>Abstract</p> <p>Background</p> <p>Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure.</p> <p>Results</p> <p>We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays) representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment.</p> <p>Conclusion</p> <p>The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration) in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.</p
Generalised Gagliardo–Nirenberg inequalities using weak Lebesgue spaces and BMO
Using elementary arguments based on the Fourier transform we prove that for
, if then and there
exists a constant such that
where . In
particular, in we obtain the generalised Ladyzhenskaya inequality
. We also
show that for the norm in can be replaced by the
norm in BMO. As well as giving relatively simple proofs of these inequalities,
this paper provides a brief primer of some basic concepts in harmonic analysis,
including weak spaces, the Fourier transform, the Lebesgue Differentiation
Theorem, and Calderon-Zygmund decompositions
Treatment of Late Stage Disease in a Model of Arenaviral Hemorrhagic Fever: T-705 Efficacy and Reduced Toxicity Suggests an Alternative to Ribavirin
A growing number of arenaviruses are known to cause viral hemorrhagic fever (HF), a severe and life-threatening syndrome characterized by fever, malaise, and increased vascular permeability. Ribavirin, the only licensed antiviral indicated for the treatment of certain arenaviral HFs, has had mixed success and significant toxicity. Since severe arenaviral infections initially do not present with distinguishing symptoms and are difficult to clinically diagnose at early stages, it is of utmost importance to identify antiviral therapies effective at later stages of infection. We have previously reported that T-705, a substituted pyrazine derivative currently under development as an anti-influenza drug, is highly active in hamsters infected with Pichinde virus when the drug is administered orally early during the course of infection. Here we demonstrate that T-705 offers significant protection against this lethal arenaviral infection in hamsters when treatment is begun after the animals are ill and the day before the animals begin to succumb to disease. Importantly, this coincides with the time when peak viral loads are present in most organs and considerable tissue damage is evident. We also show that T-705 is as effective as, and less toxic than, ribavirin, as infected T-705-treated hamsters on average maintain their weight better and recover more rapidly than animals treated with ribavirin. Further, there was no added benefit to combination therapy with T-705 and ribavirin. Finally, pharmacokinetic data indicate that plasma T-705 levels following oral administration are markedly reduced during the latter stages of disease, and may contribute to the reduced efficacy seen when treatment is withheld until day 7 of infection. Our findings support further pre-clinical development of T-705 for the treatment of severe arenaviral infections
Seeking and sharing: why the pulmonaryn fibrosis community engages the web 2.0 environment
Background
Pulmonary fibrosis (PF) is a rare, progressive disease that affects patients and their loved ones on many levels. We sought to better understand the needs and interests of PF patients and their loved ones (collectively “reader-participants”) by systematically analyzing their engagement with the World Wide Web (the current version referred to as Web 2.0).
Methods
Data were collected from three PF-focused, interactive websites hosted by physician-investigators with expertise in PF. All data generated by reader-participants for approximately 10 months were downloaded and then analyzed using qualitative content analysis methods.
Results
PF experts posted 38 blog entries and reader-participants posted 40 forum entries. Blogs received 363 responses, and forum entries received 108 responses from reader-participants. Reader-participants primarily used the three websites to seek information from or offer a contribution to the PF community. Information was sought about PF symptoms, diagnosis, prognosis, treatments, research, pathophysiology, and disease origin; reader-participants also made requests for new posts and pleas for research and sought clarification on existing content. Contributions included personal narratives about experiences with PF, descriptions of activities or behaviors found to be helpful with PF symptoms, resources or information about PF, and supportive comments to other PF sufferers.
Conclusions
PF patients and their loved ones engage the Web 2.0 environment at these PF-focused sites to satisfy their needs to better understand PF and its impacts and to support others facing similar challenges. Clinicians may find it beneficial to encourage PF patients’ involvement in internet forums that foster dynamic, bi-directional information sharing
Status of research and development of vaccines for Streptococcus pyogenes.
Streptococcus pyogenes is an important global pathogen, causing considerable morbidity and mortality, especially in low and middle income countries where rheumatic heart disease and invasive infections are common. There is a number of promising vaccine candidates, most notably those based on the M protein, the key virulence factor for the bacterium. Vaccines against Streptococcus pyogenes are considered as impeded vaccines because of a number of crucial barriers to development. Considerable effort is needed by key players to bring current vaccine candidates through phase III clinical trials and there is a clear need to develop a roadmap for future development of current and new candidates
MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression
Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses
Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons
An activity-dependent long-lasting asynchronous release of GABA from identified fast-spiking inhibitory neurons in the neocortex can impair the reliability and temporal precision of activity in a cortical network
- …