57 research outputs found

    Failure to retreat: Blunted sensitivity to negative feedback supports risky behavior in adolescents

    Get PDF
    Decision-making processes rarely occur in isolation. Rather, representations are updated constantly based on feedback to past decisions and actions. However, previous research has focused on the reaction to feedback receipt itself, instead of examining how feedback information is integrated into future decisions. In the current study, we examined differential neural sensitivity during risk decisions following positive versus negative feedback in a risk-taking context, and how this differential sensitivity is linked to adolescent risk behavior. Fifty-eight adolescents (ages 13–17 years) completed the Balloon Analogue Risk Task (BART) during an fMRI session and reported on their levels of risk-taking behavior. Results show that reduced medial PFC (mPFC) response following negative versus positive feedback is associated with fewer reductions in task-based risky decisions following negative feedback, as well as increased self-reported risk-taking behavior. These results suggest that reduced neural integration of negative feedback into during future decisions supports risky behavior, perhaps by discounting negative relative to positive feedback information when making subsequent risky decisions

    Adaptive Adolescent Flexibility: Neurodevelopment of Decision-making and Learning in a Risky Context

    Get PDF
    Research on adolescence has largely focused on the particular biological and neural changes that place teens at risk for negative outcomes linked to increases in sensation-seeking and risky behavior. However, there is a growing interest in the adaptive function of adolescence, with work highlighting the dual nature of adolescence as a period of potential risk and opportunity. We examined how behavioral and neural sensitivity to risk and reward varies as a function of age using the Balloon Analog Risk Task. Seventy-seven children and adolescents (ages 8–17 years) completed the Balloon Analog Risk Task during an fMRI session. Results indicate that adolescents show greater learning throughout the task. Furthermore, older participants showed increased neural responses to reward in the OFC and ventral striatum, increased activation to risk in the mid-cingulate cortex, as well as increased functional OFC–medial PFC coupling in both risk and reward contexts. Age-related changes in regional activity and interregional connectivity explain the link between age and increases in flexible learning. These results support the idea that adolescents’ sensitivity to risk and reward supports adaptive learning and behavioral approaches for reward acquisition

    Adaptive adolescent flexibility: neurodevelopment of decision-making and learning in a risky context

    Get PDF
    Research on adolescence has largely focused on the particular biological and neural changes that place teens at risk for negative outcomes linked to increases in sensation-seeking and risky behavior. However, there is a growing interest in the adaptive function of adolescence, with work highlighting the dual nature of adolescence as a period of potential risk and opportunity. We examined how behavioral and neural sensitivity to risk and reward vary as a function of age using the Balloon Analog Risk Task (BART). Seventy-seven children and adolescents (ages 8-17 years) completed the BART during an fMRI session. Results indicate that adolescents show greater exploration and learning across the task. Furthermore, older participants showed increased neural responses to reward in the OFC and ventral striatum, increased activation to risk in the right SFG and MCC, as well as increased functional OFC-mPFC coupling in both risk and reward contexts. Age-related changes in regional activity and inter-regional connectivity explain the link between age-related increases in flexible exploration and learning. These results support the idea that adolescents' sensitivity to risk and reward supports adaptive behavioral approaches for reward acquisition

    Differential processing of risk and reward in delinquent and non-delinquent youth

    Get PDF
    The present study examined the behavioral and neural differences in risky decision-making between delinquent (n = 23) and non-delinquent (n = 27) youth ages 13-17 years (M = 16, SD = 0.97) in relation to reward processing. While undergoing functional neuroimaging, participants completed an experimental risk task wherein they received feedback about the riskiness of their behavior in the form of facial expressions that morphed from happy to angry. Behavioral results indicated that delinquent youth took fewer risks and earned fewer rewards on the task than non-delinquent youth. Results from whole-brain analyses indicated no group differences in sensitivity to punishments (i.e. angry faces), but instead showed that delinquent youth evinced greater neural tracking of reward outcomes (i.e. cash-ins) in regions including the ventral striatum and inferior frontal gyrus. While behavioral results show that delinquent youth were more risk-averse, the neural results indicated that delinquent youth were also more reward-driven, potentially suggesting a preference for immediate rewards. Results offer important insights into differential decision-making processes between delinquent and non-delinquent youth

    Not Doomed to Repeat: Enhanced Medial Prefrontal Cortex Tracking of Errors Promotes Adaptive Behavior during Adolescence

    Get PDF
    Feedback information is one of the most powerful forces that promotes learning, providing guidance for changes to ongoing behavioral patterns. Previous examinations of feedback learning have largely relied on explicit feedback based on task performance. However, learning is not restricted to explicit feedback, and likely involves other forms of more-subtle feedback cues. One potential form of this kind of learning may involve internally-generated feedback in response to error commission. Whether this error-related response prompts neural and behavioral adaptation that overlap with, or are distinct from, those evoked by external feedback is largely unknown. In order to explore this gap, 55 adolescents completed a difficult behavioral inhibition task designed to elicit relatively high rates of error commission during an fMRI session. We examined neural adaptation following accumulating errors (i.e. internally-generated negative feedback events) at the group level, as well as the impact of individual differences in error tracking on overall task performance. Group effects show that mPFC activation tracks accumulating errors, however, reduced tracking of errors is associated with greater total false alarms. These findings suggest that increased mPFC integration of error-related feedback is beneficial for task performance, and in concert with previous findings, suggests a domain-general role for mPFC integration of negative feedback

    Apples to apples? Neural correlates of emotion regulation differences between high- and low-risk adolescents

    Get PDF
    Adolescence has been noted as a period of increased risk taking. The literature on normative neurodevelopment implicates aberrant activation of affective and regulatory regions as key to inhibitory failures. However, many of these studies have not included adolescents engaging in high rates of risky behavior, making generalizations to the most at-risk populations potentially problematic. We conducted a comparative study of nondelinquent community (n = 24, mean age = 15.8 years, 12 female) and delinquent adolescents (n = 24, mean age = 16.2 years, 12 female) who completed a cognitive control task during functional magnetic resonance imaging, where behavioral inhibition was assessed in the presence of appetitive and aversive socioaffective cues. Community adolescents showed poorer behavioral regulation to appetitive relative to aversive cues, whereas the delinquent sample showed the opposite pattern. Recruitment of the inferior frontal gyrus, medial prefrontal cortex, and tempoparietal junction differentiated community and high-risk adolescents, as delinquent adolescents showed significantly greater recruitment when inhibiting their responses in the presence of aversive cues, while the community sample showed greater recruitment when inhibiting their responses in the presence of appetitive cues. Accounting for behavioral history may be key in understanding when adolescents will have regulatory difficulties, highlighting a need for comparative research into normative and nonnormative risk-taking trajectories

    Agile methods in biomedical software development: a multi-site experience report

    Get PDF
    BACKGROUND: Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. RESULTS: We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. CONCLUSION: We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods

    Longitudinal network re-organization across learning and development

    Get PDF
    While it is well understood that the brain experiences changes across short-term experience/learning and long-term development, it is unclear how these two mechanisms interact to produce developmental outcomes. Here we test an interactive model of learning and development where certain learning-related changes are constrained by developmental changes in the brain against an alternative development-as-practice model where outcomes are determined primarily by the accumulation of experience regardless of age. Participants (8–29 years) participated in a three-wave, accelerated longitudinal study during which they completed a feedback learning task during an fMRI scan. Adopting a novel longitudinal modeling approach, we probed the unique and moderated effects of learning, experience, and development simultaneously on behavioral performance and network modularity during the task. We found nonlinear patterns of development for both behavior and brain, and that greater experience supported increased learning and network modularity relative to naïve subjects. We also found changing brain-behavior relationships across adolescent development, where heightened network modularity predicted improved learning, but only following the transition from adolescence to young adulthood. These results present compelling support for an interactive view of experience and development, where changes in the brain impact behavior in context-specific fashion based on developmental goals

    Poorer White Matter Microstructure Predicts Slower and More Variable Reaction Time Performance: Evidence for a Neural Noise Hypothesis in a Large Lifespan Cohort

    Get PDF
    Most prior research has focused on characterizing averages in cognition, brain characteristics, or behavior, and attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by ignoring the variability of behavior around an individual's mean. In particular, enhanced white matter (WM) structural microstructure has been hypothesized to support consistent behavioral performance by decreasing Gaussian noise in signal transfer. Conversely, lower indices of WM microstructure are associated with greater within-subject variance in the ability to deploy performance-related resources, especially in clinical populations. We tested a mechanistic account of the “neural noise” hypothesis in a large adult lifespan cohort (Cambridge Centre for Ageing and Neuroscience) with over 2500 adults (ages 18-102; 1508 female; 1173 male; 2681 behavioral sessions; 708 MRI scans) using WM fractional anisotropy to predict mean levels and variability in reaction time performance on a simple behavioral task using a dynamic structural equation model. By modeling robust and reliable individual differences in within-person variability, we found support for a neural noise hypothesis (Kail, 1997), with lower fractional anisotropy predicted individual differences in separable components of behavioral performance estimated using dynamic structural equation model, including slower mean responses and increased variability. These effects remained when including age, suggesting consistent effects of WM microstructure across the adult lifespan unique from concurrent effects of aging. Crucially, we show that variability can be reliably separated from mean performance using advanced modeling tools, enabling tests of distinct hypotheses for each component of performance
    • …
    corecore