
Not doomed to repeat: Enhanced mPFC tracking of errors 
promotes adaptive behavior during adolescence

Ethan M. McCormick1 and Eva H. Telzer*,1

1Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North 
Carolina, 27599

Abstract

Feedback information is one of the most powerful forces that promotes learning, providing 

guidance for changes to ongoing behavioral patterns. Previous examinations of feedback learning 

have largely relied on explicit feedback based on task performance. However, learning is not 

restricted to explicit feedback, and likely involves other forms of more-subtle feedback cues. One 

potential form of this kind of learning may involve internally-generated feedback in response to 

error commission. Whether this error-related response prompts neural and behavioral adaptation 

that overlap with, or are distinct from, those evoked by external feedback is largely unknown. In 

order to explore this gap, 55 adolescents completed a difficult behavioral inhibition task designed 

to elicit relatively high rates of error commission during an fMRI session. We examined neural 

adaptation following accumulating errors (i.e. internally-generated negative feedback events) at the 

group level, as well as the impact of individual differences in error tracking on overall task 

performance. Group effects show that mPFC activation tracks accumulating errors, however, 

reduced tracking of errors is associated with greater total false alarms. These findings suggest that 

increased mPFC integration of error-related feedback is beneficial for task performance, and in 

concert with previous findings, suggests a domain-general role for mPFC integration of negative 

feedback.
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Introduction

Learning involves the integration of previous behavior with new information in order to 

either perpetuate or change behavior. During learning, performance feedback provides an 

important form of information to guide future behavior, and this process of feedback 

learning is especially important in adolescence (Somerville et al., 2010; McCormick & 

Telzer, 2017a). Both positive and negative feedback sensitivity have generated substantial 

interest during the adolescent years, with evidence suggesting that teens are more sensitive 
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to positive forms of feedback (e.g. Galván, 2013; see Telzer, 2016) and potentially less 

sensitive to negative feedback (e.g. Ernst et al., 2005; McCormick & Telzer, 2017b). 

Furthermore, compared with children, adolescents show an increased ability to use feedback 

information to guide their learning and subsequent behavior (Peters et al., 2016; McCormick 

& Telzer, 2017a). This increase in feedback learning during adolescent development may 

help teens flexibly explore and adapt to new environments (e.g. Crone & Dahl, 2012) and 

promote the avoidance of unfavorable behavioral patterns.

While learning is an incredibly complex process that engages broad networks throughout the 

cortex (e.g. Peters et al., 2014, 2016), the medial prefrontal cortex (mPFC) is a key hub for 

goal representations and feedback integration into ongoing behavioral decisions in adults 

(van Noordt & Segalowitz, 2012) and adolescents (van Duijvenvorde et al., 2014; 

McCormick & Telzer, 2017b), and is involved in monitoring error commission during 

behavioral performance (Rubia et al., 2003). The mPFC is well-positioned as an integration 

hub for feedback information, sharing important structural and functional connections with 

the anterior cingulate cortex (Supekar et al., 2010), amygdala (Phelps et al., 2004; Gee et al., 

2013), and ventral striatum (Schwarz et al., 2007; van den Bos et al., 2012). Furthermore, 

mPFC reactivity, especially in the mid-dorsal portion of the mPFC (medial BA 8/9) located 

between the dorsomedial PFC and the ventromedial PFC, in response to positive (van 

Duijvenvorde et al., 2014) and negative (McCormick & Telzer, 2017b) feedback predicts 

behavioral performance in a risk-taking context, suggesting that the information integrated 

in the mPFC during decision-making is important for future behavior.

The majority of prior examinations of feedback learning during adolescence employ direct 

and explicit feedback from the task environment (e.g., van Duijvenvoorde et al., 2008; Peters 

et al., 2016; McCormick & Telzer, 2017b), where participants’ behavior is extrinsically 

rewarded or punished based on their success or failure. While a reasonably simple and direct 

way to examine feedback-related learning, this approach may represent an over-simplified 

model of how feedback guides learning and behavior in real life. Explicit feedback is most 

certainly one part of how learning occurs; however, another is internally-generated error 

signaling based on the mismatch between current behavior and learned rules or goals. 

Previous work has shown that adolescents show performance-related activation in regions 

involved in feedback processing, such as striatum during successful performance (e.g., 

Sattherthwaite et al., 2012) and anterior cingulate during error commission (e.g., Stevens et 

al., 2009). However, previous work has not assessed whether these internally-generated 

signals prompt internal evaluation of adolescents’ current strategy following error 

commission and lead to subsequent changes in behavior to better align with adolescents’ 

goals. In this context, self-generated performance-related feedback can represent an 

important mechanism for learning, even in the absence of external cues related to 

performance. Despite this, we know little about the neurobiological systems that support 

learning from this kind of self-generated feedback information, and whether they differ from 

those that support more-explicit forms of feedback learning.

To address this question, we took a novel approach by examining adolescents’ neural 

tracking of error commission during a difficult behavioral inhibition task. During an fMRI 

scan, adolescents completed an adaptive version of the Stop Signal Task (SST; Logan & 
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Cowan, 1984), which results in greater commission of behavioral inhibition failures (i.e. 

false alarms) by adjusting task difficulty based on participants’ prior performance. As such, 

we were able to look at the effect of accumulating errors on adolescents’ neural 

representation of task behavior. We implemented a unique analytical approach, by which we 

tested in vivo encoding of errors into subsequent task representations and the neural 

adaptation for behavioral outcomes. The SST has been successfully used in adolescents to 

examine the development of cognitive control and behavioral inhibition (e.g., Williams et 

al., 1999; Paus, 2005; Stevens et al., 2009; Mueller et al., 2010); however, it has not 

previously been used to examine feedback-related neural adaptation in adolescents. We 

tested trial-by-trial level associations between false alarm error commission at the behavioral 

level and neural adaptation during subsequent trials. In particular, we included a parametric 

regressor for each trial, which represented the total number of errors committed. Thus, with 

each additional error committed, the parametric regressor increased linearly. Neural effects, 

therefore, represent how the brain linearly tracks the accumulation of false alarms during 

task performance. Compared with traditional methods of modeling task behavior and neural 

activation, which averages across trials, this novel approach allowed us to examine within-

session, trial-by-trial neural change conditional upon accumulated error commissions. Based 

on the idea that errors operate as a form of self-generated negative feedback, we 

hypothesized that the mPFC would track the neural response to accumulating errors, and 

greater mPFC tracking of the accumulation of errors would predict improved task 

performance. In order to assess the specificity of effects to error-related neural adaptation, 

we performed similar analyses with a parametric modulator that tracked the accumulation of 

successful inhibition.

Methods

Participants

Fifty-six adolescents completed an fMRI scan. Participants were recruited from the 

community using a variety of approaches, including flyers, recruiting from a pool of 

subjects, and through local schools. We screened adolescents for use of psychoactive drugs 

(e.g., antidepressants, ADHD medication) and for MRI contraindications. One participant 

was excluded due to moving out of the field of view, leaving a final sample of fifty-five 

adolescents (Mage = 13.41 years, SD = 1.11, range = 12.03–15.94; 29 males; 38 European-

American, 8 African-American, 3 Asian-American, 1 Native-American, 1 Brazilian, and 5 

multiple ethnicity). All participants’ parents had graduated high school, with all but one 

attending at least some college, and 40% attended or graduated from graduate/professional 

school. Participants provided written assent, and parents provided written consent in 

accordance with the University of Illinois’ Institutional Review Board.

Stop Signal Task

During the scan session, participants completed a version of the Stop Signal Task (SST), a 

well-established behavioral inhibition paradigm (e.g., Logan & Cowan, 1984; Rubia et al., 

2003). Participants were presented with a sequence of arrows (e.g. “<” or “>”) enclosed 

within a white circle (Figure 1). Participants were instructed to make a button press (i.e. 

“go” response) with their right or left index finger corresponding to the direction the 
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presented arrow was facing. However, if the enclosing circle turned red, participants were 

instructed to withhold the button press (i.e. “stop”). On Go trials, arrows were presented for 

a fixed 750 ms within the white circle and then disappeared for a jittered period of time. On 

Stop trials, go-stimulus arrows were presented for a variable time (Stop Signal Delay (SSD); 

bounded at 50 and 350 ms;) within the white circle before the enclosing circle turned red 

(i.e. the stop signal). The red circle remained on the screen until 750 ms had passed from the 

initial presentation of the arrow to equate trial length between Go and Stop trials. At the 

beginning of the task, the SSD was set to 150 ms. After each successful stop trial, the SSD 

was lengthened by 50 ms, increasing the difficulty of inhibiting the prepotent “go” response 

on the next Stop trial. Alternatively, unsuccessful stops (i.e. false alarms) resulted in a 

shortening of the SSD by 50 ms. This approach allows the task to adapt to participants’ 

behavior, resulting in a relatively high incidence of false alarms compared with fixed-

difficulty tasks. Importantly, this adaptive design was intended to generate significant, but 

not excessive, numbers of FA errors such that adolescents have sufficient error rates without 

being overwhelmed by the difficulty of the task. Participants were instructed to try to 

perform the task to the best of their ability. However, participants received no instructions 

related to keeping track of the number of false alarms they committed, nor did the task give 

any indication when a false alarm or other error was committed.

The SST was presented as one block of 186 trials, composed of 124 (2/3) Go trials and 62 

(1/3) Stop trials. Trials were pseudorandomly ordered such that no more than three Go trials 

separated Stop trials, and that no more than two Stop trials occurred in immediate 

succession. Because of this ordering scheme and the disproportionate amount of Go trials, 

relative to Stop trials, participants develop a prepotent (or habitual) response to perform a 

button press that they then have to inhibit during Stop trials. Trials were separated by a 

jittered period that was drawn from a truncated gamma distribution centered around 1s. 

There was no difference in jitter length between Go and Stop trials, nor was there any 

difference in the frequency of arrow types (e.g. “>” or “<”) between trial types.

Behavioral Modeling—Number of false alarms (i.e. unsuccessful Stop trials) was the 

primary metric of task success. Because of the modeling approach we took (described in 

fMRI data analysis), false alarms were defined as a response during any part of a Stop trial 

(i.e., before or after the stop signal displayed). While our primary interest was in neural 

tracking to accumulated FA errors, we also calculated the latency of the stop process as a 

metric of behavioral inhibition success. Because the stop latency is an unobserved process 

(Verbruggen & Logan, 2008), it must be estimated using other behavioral indices. First, we 

calculated the percentage of Stop trials on which each participant committed a false alarm. 

Next, we determined a percentile RT value from the distribution of each participants’ 

reaction times on Go trials. After ordering Go RT values by latency in ascending order, we 

determined which RT value corresponded to the percentile value equal to the percentage of 

false alarms committed by that participant (Thakkar et al, 2014; e.g., a participant who 

committed a false alarm 10% of the time would have a percentile RT value corresponding to 

the 10th percentile of their RT values). We also calculated the average delay between the 

presentation of the go (i.e., the white circle) and the stop stimuli (i.e., the red circle) within a 

Stop trial (i.e., stop signal delay; SSD). The SSD was then subtracted from the percentile RT 
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value to calculate the Stop Signal Reaction Time (SSRT), which therefore represents the 

theoretical latency of the Stop response, or how quickly participants can inhibit the prepotent 

Go response. As such, greater values of SSRT are related to poorer inhibitory control. 

Because SSRT is calculated using data from across the entire run, it cannot be used to assess 

trial-by-trail changes within-task.

fMRI Data Acquisition

Imaging data were collected using a 3 Tesla Siemens Magnetom Trio MRI scanner. The SST 

scan consisted of T2*-weighted echoplanar images (EPI; 180 volumes; slice thickness=3 

mm; 38 slices; TR=2 s; TE=25 ms; matrix=92×92; FOV=230 mm; voxel size=2.5×2.5×3 

mm3). Structural scans were also acquired, including a T1* magnetization-prepared rapid-

acquisition gradient echo (MPRAGE; 192 slices; TR=1.9 s; TE=2.32 ms; FOV= 230 mm; 

matrix=256×256; sagittal acquisition plane; slice thickness=0.9 mm) and a T2*-weighted, 

matched-bandwidth (MBW), high resolution anatomical scan (38 slices; TR=4 s; TE=64 ms; 

FOV=230 mm; matrix=192×192; slice thickness=3 mm). MBW and EPI images were 

acquired at an oblique axial orientation to maximize brain coverage and reduce drop-out in 

orbital and temporal regions.

fMRI data preprocessing and analysis—Preprocessing steps were completed using 

FSL FMRIBs Software Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/). Preprocessing 

steps included: correction for slice-to-slice head motion using the MCFLIRT; spatial 

smoothing using a 6mm Gaussian kernel, full-width-at-half maximum; high-pass temporal 

filtering with a 128s cutoff to remove low frequency drift across the time-series; and skull 

stripping of all images with BET. Functional images were co-registered sequentially to the 

MBW and the MPRAGE using FLIRT in order to warp them into the standard stereotactic 

space defined by the Montreal Neurological Institute (MNI) and the International 

Consortium for Brain Mapping. Individual-level independent component analysis (ICA) 

using MELODIC combined with an automated component classifier (Tohka et al., 2008; 

Neyman-Pearson threshold = 0.3) was applied to remove artifact signal (e.g. motion, 

physiological noise).

The Stop Signal Task was modeled using an event-related design within the Statistical 

Parametric Mapping software package (SPM8; Wellcome Department of Cognitive 

Neurology, Institute of Neurology, London, UK). Each event was modeled using a fixed 

duration of 750 ms. Fixed-effects models were created by including a general linear model 

for conditions of interest: successful go trials, successful stop trials, unsuccessful go trials 

(i.e. misses), and unsuccessful stop trials (i.e. false alarms). Volumes containing motion in 

excess of 2 mm slice-to-slice were modeled in a separate regressor of no interest. All 

adolescents in the final sample had less than 2 mm of slice-to-slice head motion for over 

95% of total volumes. Jittered inter-trial periods were not explicitly modeled and therefore 

served as an implicit baseline for the task conditions of interest.

In order to examine neural tracking of error commission on a trial-by-trial level, a parametric 

modulator (PM) was included for go, stop, and false alarm trials, and represented the 

accumulated number of false alarms committed by the participant before that point in the 
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task. PM values began at 0 for initial trials and increased linearly by 1 for each false alarm 

committed. As such, trials before the commission of the first false alarm error in the task 

were weighted as zero; then after the first false alarm trial, subsequent trials of each type 

were weighted as 1 until the next false alarm trial. This continued throughout the task, with 

each false alarm trial resulting in the linear addition of parametric weight for subsequent 

trials. While participants could make a number of errors during the SST, including false 

alarms, misses (i.e., failing to press on a go trial) or direction mismatches (e.g., pressing left 

on a right-facing error), we only modeled the accumulation of false alarms for our PM. We 

took this approach both because other types of errors were relatively rare, and because we 

did not want to model different combinations of error types across individuals in the PM 

condition. We also did not theoretically expect other types of errors to elicit the kind of 

salient feedback information that would prompt behavioral and neural adaptation. As such, 

when referring to errors subsequently, we specifically refer to those errors that involve 

failures of inhibitions on Stop trials (i.e., false alarms).

Examining conditions of interest as conditional on the PM allowed us to asses which neural 

regions show adaptation in response to accumulating errors. As a result, a positive value in 

the PM condition would indicate that for each error committed, a given region showed linear 

increases in activation, whereas a negative value would indicate linear decreases in 

activation following each error. A PM was not included for miss trials due to the relatively 

low frequency of this event type. Contrasts were computed at the individual level for all 

conditions of interest.

At the group level, we conducted two sets of analyses. First, we tested how the brain tracks 

accumulating errors during Go trials. We focused on Go trials because they constitute the 

time between inhibition (i.e. Stop) trials when adolescents are able to incorporate error 

information and potentially update behavioral strategies in order to succeed on the next 

inhibition trial. Second, to examine how neural tracking of errors is associated with overall 

performance on the task, we conducted whole-brain regression analyses in which we 

regressed the total number of errors on the parametric modulation of the Go contrast. This 

approach allowed us to examine regions where tracking differed between those who 

committed high versus low levels of false alarms. Because each participants’ number of false 

alarm errors is inextricably linked with the number of trials used to specify both the Stop and 

FA conditions, we restricted our analyses to the trials in the Go condition, which are 

independent of inhibitory success. Combining these approaches not only allows us to 

examine general processes of neural adaptation to error-related feedback, but also how 

tracking might differ between individuals who were more or less successful in their task 

performance. This analysis plan provides a powerful way to examine group and individual-

level processes that contribute to neural adaptation and learning in the context of error 

commission during a cognitive control task.

Random effects, group-level analyses were run for all contrasts using GLMFlex (http://

mrtools.mgh.harvard.edu/index.php/GLM_Flex). GLMFlex offers several advantages, 

including removing outliers and sudden activation changes in brain, corrects for variance-

covariance inequality, partitions error terms, and analyzes all voxels containing data. Group-

level analyses were performed by entering the number of false alarms committed by 
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participants as a continuous covariate in a whole-brain regression. Monte Carlo simulation 

was used to compute a cluster threshold to correct for multiple comparisons using the 

updated (April, 2016) 3dFWHMx and 3dClustSim programs from the AFNI software 

package (Ward, 2000) and the group-level brain mask for analyses of interest. Simulations 

resulted in a voxel-wise threshold of p<.005 and a minimum cluster size of 173 voxels for 

the whole brain, corresponding to p<.05, Family-Wise Error (FWE) corrected.

Results

Behavioral Results

On average, participants successfully pressed on 95.0% of Go trials (SD = 5.51, range = 77–

100%), and committed false alarms on 35.5% of Stop trials (SD = 5.63, range = 10–52%). 

On go trials, participants rarely committed direction errors (e.g., pressing with their right 

hand for a left-facing arrow; M = 1.24%, SD = 1.99, range = 0–12%; 67.2% of participants ≤ 

1 direction error), and we counted these mismatch errors as incorrect Go trials. Stop signal 

reaction time (SSRT), or the rate of the Stop response, was 340 ms on average (SD = 45ms, 

range = 220–480ms). The number of false alarms was positively related to the number of 

successful go trials (r = .29, p = .03), as well as negatively related to the average reaction 

time (RT) on go trials (r = −.76; p < .001), suggesting that adolescents’ false alarm rate was 

associated with the development of a stronger prepotent button press response. Furthermore, 

participants’ total false alarm rate was, as expected, related to their SSRT (r = .414, p = .

002). However, distinct from the total false alarm rate, SSRT was neither related to the 

number of successful go trials (r = .187, p = .172), nor the average RT on go trials (r = .130, 

p = .343).

fMRI Results

Effect of Accumulating False Alarm Errors on Neural Tracking—First, we 

examined the effect of accumulating FA errors on participants’ neural tracking during go 

decisions. Adolescents showed positive tracking of accumulated false alarms in the dmPFC, 

mPFC, bilateral amygdala, bilateral hippocampus, and right temporal pole (Table 1; Figure 

2). In other words, across the task, the more false alarms that adolescents committed, the 

greater these regions linearly increased in activation during go trials. The only area that 

showed negative tracking of accumulated errors was a region of the right inferior temporal 

cortex.

Associations between Neural Tracking of False Alarm Errors and Total False 
Alarms—Next, we examined individual differences in tracking of accumulating errors 

during go trials and the total number of false alarms adolescents committed. To this end, we 

entered the total false alarm rate as a regressor in a whole-brain regression analysis. 

Adolescents who showed reduced tracking of accumulating errors in the mPFC, dmPFC, 

OFC, bilateral IFG/AI, right temporal pole, and right intraparietal sulcus, showed greater 

average false alarm rates across the task (Table 2; Figure 3). This suggests that a lack of 

integration of error information into the ongoing task representation in these regions is 

associated with poorer task performance. Importantly, the mPFC region which showed an 

association with overall false alarm rate overlaps with the mPFC region that tracked 
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accumulating errors (Figure 4). Together, these two sets of findings indicate that while 

adolescents in general tend to track accumulating errors in the mPFC, those who show lower 

tracking in the mFPC commit greater overall errors across the task.

Competing Hypotheses—Finally, we performed two follow-up analyses in order to test 

the specificity of our effects. First, to ensure that results were not being driven by general 

inhibitory ability, we regressed SSRT on neural adaptation to accumulating FA errors on Go 

trials, which reveled significant effects in the medial OFC and thalamus. Secondly, we 

examined the relationship between neural adaptation to accumulating successful inhibition 

trials and the number of false alarm errors committed. We constructed a new model, where 

the parametric modulator instead tracked the accumulated number of successful inhibitions 

(as opposed to false alarms), and then entered total false alarms in a whole-brain regression 

analysis (see Table 1 for Main Effect). The right IFG/AI was the only region to show a 

significant relationship between tracking of successful inhibitions and the total false alarm 

rate. While some significant regions of activation emerged in these analyses, neither revealed 

activation in the mPFC (see Table 2 for both analyses), suggesting that neural adaptation in 

this region plays a particularly important role in tracking error commissions rather than 

tracking successes or general task ability.

Discussion

Previous examinations of learning and information integration processes have focused on 

learning in the context of explicit feedback based on task performance (e.g. van 

Duijvenvoorde et al., 2008; Peters et al., 2014). However, this approach does not capture the 

more-subtle ways in which individuals learn from and adjust their behavior in response to 

experience. We were specifically interested in the process of learning in the context of self-

generated, error-related feedback. That is, how does internal recognition of errors, as well as 

subsequent neural integration of this error monitoring, relate to behavioral outcomes in task 

performance? Adolescence is a period of exploration and flexible adaptation to many new 

contexts and goals (Crone & Dahl, 2012), and integration of error-related information may 

help adolescents avoid repeating maladaptive behavioral strategies even when not receiving 

direct feedback from their environment. This internalized feedback learning mechanism may 

help adolescents evaluate their own behavior against previously learned rules without the 

need for continued external feedback. As such, examining the processes of this self-

generated feedback learning can extend and complement findings using more-explicit 

feedback paradigms, giving us a more-complete understanding of the complex ways in 

which individuals learn.

Our findings suggest that adolescents show neural adaptation to the accumulation of false 

alarm errors across task performance. Specifically, when looking at go trials that follow 

increasing FA errors, adolescents show increased neural tracking in the mPFC, a region 

previously implicated in the integration of explicit feedback (van Duijvenvoorde et al., 2014; 

McCormick & Telzer, 2017b). This novel finding suggests that some of the same neural 

systems that support integration of explicit feedback (van Noordt & Segalowitz, 2012; van 

Duijvenvoorde et al., 2008; McCormick & Telzer, 2017b) are similarly involved in learning 

from self-generated, implicit feedback information. Adolescents also showed increased 
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tracking in the amygdala and hippocampus, structures involved in learning from negative 

information (Walker & Davis, 2002; Sigurdsson et al., 2007; Ruediger et al., 2012). 

Increased tracking in these regions may be related to detection of the error commission and 

the retrieval of goal-related information (i.e., that they should withhold a button press). 

Taken together, these findings suggest that as adolescents engage with the task, they 

maintain a neural trace of their prior performance. Excitingly, adolescents appear to do so 

even in the absence of instruction to keep track of errors, or any explicit indication of error 

commission within the task. Exhibition of this neural trace during go trials following 

accumulating errors likely reflects the role of these regions, and the mPFC in particular, in 

adjusting behavioral strategies to avoid future errors.

Importantly, an examination of individual differences in the neural tracking of accumulating 

errors revealed that individual differences in mPFC tracking was related to behavioral 

performance during the task. Adolescents who showed increased tracking of accumulating 

errors in the mPFC also showed lower overall false alarm rates across the task. This suggests 

that failing to integrate error-related feedback information results in higher commission of 

false alarm errors, while increased integration may help adolescents prevent future errors. 

Follow-up analyses support this inference, as mPFC tracking of FA errors was not related to 

general inhibitory ability, nor were the total number of false alarms committed by 

participants linked to mPFC tracking of successful inhibition trials, suggesting the particular 

importance of mPFC for tracking negative information about task performance. This is 

supported by previous research showing the importance of mPFC responsivity to negative, 

rather than positive, feedback as important for task behavior (McCormick & Telzer, 2017b).

The link between mPFC tracking of accumulating errors and total error rate may represent 

two potential forms of feedback-learning. One possibility might be that adolescents who 

show greater tracking are more sensitive to this form of self-generated, error-related 

feedback on an implicit level, and that increased tracking in the mPFC prompts behavioral 

changes that support avoidance of future errors. Alternatively, activation in the dmPFC, a 

region implicated in self-referential processing (see Northoff et al., 2006), might suggest that 

integration of error-related feedback involves self-evaluation of current behavioral strategies 

and how they might be changed in order to improve subsequent task performance. 

Disentangling whether this neural trace of error accumulation represents an automatic versus 

deliberative reaction to error commission should be a focus of future research. Furthermore, 

future research should investigate whether individual differences in mPFC tracking are 

stable, inter-individual trait differences in the reactivity of mPFC to negative feedback 

information, or whether these differences emerge in vivo during the task. The SST is not an 

ideal context to examine this question, as it adapts to changes in behavioral performance. 

Thus, future work should seek to disentangle behavioral and neural adaptation in response to 

error-related feedback.

These findings both support and extend previous research on feedback learning in important 

and novel ways. First, previous findings on feedback learning have involved explicit 

feedback (van Duijvenvoorde et al., 2014; McCormick & Telzer, 2017b), while the current 

study relied on internally-generated feedback in response to error commission. Additionally, 

these previous findings have been in the context of risk-taking behavior and rewards, while 
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the current study relies on a difficult behavioral inhibition task. However, despite these 

marked differences in context, the current findings support the idea that feedback-related 

processes may generalize across explicit and self-generated feedback types. Similar to 

mPFC recruitment following explicit negative feedback (McCormick & Telzer, 2017b), we 

find that the mPFC is involved in tracking the accumulation of errors. This points to a 

general role of the mPFC in integrating feedback information into on-going task 

representations, regardless of the source of that feedback. Furthermore, we found that 

decreased tracking of false alarm errors in the mPFC was related to poorer behavioral 

performance across the task, reflecting a “cool” counterpart to the increase in risk behavior 

seen in adolescents who show reduced mPFC activation following negative feedback in a 

risky context (McCormick & Telzer, 2017b). This exciting replication across samples and 

context may offer a potential answer to questions previously posed regarding whether mPFC 

reactivity in a risky context are the result of intrinsic sensitivity to negative feedback versus 

goal-directed suppression of sensitivity to feedback (McCormick & Telzer, 2017b). In 

contrast to risk-taking tasks where rewards can be obtained through risky behavior, there is 

no value to ignore feedback information in the SST. Indeed, the stated goal of the task is to 

avoid false alarm errors, reducing participants’ motivation to ignore error-related feedback. 

These two findings, therefore, appear to argue for the view of mPFC reactivity to negative 

feedback (either external or internal) as reflecting an intrinsic difference in sensitivity to that 

negative information.

In conclusion, we took a novel approach by modeling neural activation changes across the 

SST in response to accumulating errors. In doing so, we offer the first evidence that 

individuals track behavioral inhibition performance in a region of the mPFC previously 

implicated in feedback integration (van Duijvenvoorde et al., 2014; McCormick & Telzer, 

2017b). Furthermore, we found that individual differences in this tracking of errors in the 

mPFC is related to performance on the task. Excitingly, we found a negative relationship 

between mPFC tracking of errors and total false alarm error rate. While a positive 

relationship might suggest that those with greater errors simply have more data to boost 

signal in the mPFC, adolescents who showed the greatest mPFC tracking of accumulating 

errors showed that effect despite having the fewest false alarms overall. Taken together with 

previous work (McCormick & Telzer, 2017b), these findings suggest a domain-general role 

for the mPFC in the integration of feedback information. This correspondence across 

contexts offers an exciting new extension of our understanding of learning processes that do 

not rely on external, explicit feedback cues.
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Figure 1. 
On Go Trials (66.7% of trials), participants were instructed to execute a button press 

corresponding to the direction of the presented arrow. On Stop Trials (33.3% of trials), 

participants were instructed to withhold a button press if the circle turned red. The Stop 

Signal Delay (SSD; initial = 150 ms) was increased by 50 ms after each successful Stop trial 

and decreased by 50 ms after each unsuccessful Stop trial (i.e. false alarm).
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Figure 2. 
We found increased tracking of accumulating false alarms during go trials in the mPFC, 

dmPFC, and right temporal pole, along with decreased tracking in the right inferior temporal 

cortex.
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Figure 3. 
We found that decreased tracking of accumulating false alarms in the mPFC, OFC, and 

bilateral IFG/AI was associated with fewer total false alarms.
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Figure 4. 
We created a mask of the voxels that showed overlap in the analyses tracking of error 

commission at the group level and those that showed decreased tracking when participants 

committed a greater number of false alarms. The overlap included k =229 voxels.
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