236 research outputs found

    Pre-Treatment With Glucagon-Like Peptide-1 Protects Against Ischemic Left Ventricular Dysfunction and Stunning Without a Detected Difference in Myocardial Substrate Utilization

    Get PDF
    AbstractObjectivesThis study sought to determine whether pre-treatment with intravenous glucagon-like peptide-1 (GLP-1)(7-36) amide could alter myocardial glucose use and protect the heart against ischemic left ventricular (LV) dysfunction during percutaneous coronary intervention.BackgroundGLP-1 has been shown to have favorable cardioprotective effects, but its mechanisms of action remain unclear.MethodsTwenty patients with preserved LV function and single-vessel left anterior descending coronary artery disease undergoing elective percutaneous coronary intervention were studied. A conductance catheter was placed into the LV, and pressure-volume loops were recorded at baseline, during 1-min low-pressure balloon occlusion (BO), and at 30-min recovery. Patients were randomized to receive an infusion of either GLP-1(7-36) amide at 1.2 pmol/kg/min or saline immediately after baseline measurements. Simultaneous coronary artery and coronary sinus blood sampling was performed at baseline and after BO to assess transmyocardial glucose concentration gradients.ResultsBO caused both ischemic LV dysfunction and stunning in the control group but not in the GLP-1 group. Compared with control subjects, the GLP-1 group had a smaller reduction in LV performance during BO (delta dP/dTmax, –4.3 vs. –19.0%, p = 0.02; delta stroke volume, –7.8 vs. –26.4%, p = 0.05), and improved LV performance at 30-min recovery. There was no difference in transmyocardial glucose concentration gradients between the 2 groups.ConclusionsPre-treatment with GLP-1(7-36) amide protects the heart against ischemic LV dysfunction and improves the recovery of function during reperfusion. This occurs without a detected change in myocardial glucose extraction and may indicate a mechanism of action independent of an effect on cardiac substrate use. (Effect of Glucgon-Like-Peptide-1 [GLP-1] on Left Ventricular Function During Percutaneous Coronary Intervention [PCI]; ISRCTN77442023

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Temporal variability in gas emissions at Bagana volcano revealed by aerial, ground, and satellite observations

    Get PDF
    Bagana is a remote, highly active volcano, located on Bougainville Island in southeastern Papua New Guinea. The volcano has exhibited sustained and prodigious sulfur dioxide gas emissions in recent decades, accompanied by frequent episodes of lava extrusion. The remote location of Bagana and its persistent activity have made it a valuable case study for satellite observations of active volcanism. This remoteness has also left many features of Bagana relatively unexplored. Here, we present the first measurements of volcanic gas composition, achieved by unoccupied aerial system (UAS) flights through the volcano's summit plume, and a payload comprising a miniaturized MultiGAS. We combine our measurements of the molar CO2/SO2 ratio in the plume with coincident remote sensing measurements (ground- and satellite-based) of SO2 emission rate to compute the first estimate of CO2 flux at Bagana. We report low SO2 and CO2 fluxes at Bagana from our fieldwork in September 2019, ∼320 ± 76 td−1 and ∼320 ± 84 td−1, respectively, which we attribute to the volcano's low level of activity at the time of our visit. We use satellite observations to demonstrate that Bagana's activity and emissions behavior are highly variable and advance the argument that such variability is likely an inherent feature of many volcanoes worldwide and yet is inadequately captured by our extant volcanic gas inventories, which are often biased to sporadic measurements. We argue that there is great value in the use of UAS combined with MultiGAS-type instruments for remote monitoring of gas emissions from other inaccessible volcanoes

    Dynamics of the 16^{16}O(e,e'p) cross section at high missing energies

    Get PDF
    We measured the cross section and response functions (R_L, R_T, and R_LT) for the 16O(e,e'p) reaction in quasielastic kinematics for missing energies 25 60 MeV and P_miss > 200 MeV/c, the cross section is relatively constant. Calculations which include contributions from pion exchange currents, isobar currents and short-range correlations account for the shape and the transversity but only for half of the magnitude of the measured cross section

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    corecore