61 research outputs found

    Transmittance Measurement of a Heliostat Facility used in the Preflight Radiometric Calibration of Earth-Observing Sensors

    Get PDF
    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration

    Landsat 9 Thermal Infrared Sensor 2 Subsystem-Level Spectral Test Results

    Get PDF
    Results from the Thermal Infrared Sensor 2 (TIRS-2) prelaunch spectral characterization at telescope and detector subsystem level are presented. The derived relative spectral response (RSR) shape is expected to be very similar to the instrument-level spectral response and provides an initial estimate of the RSR and its differences to the component-level RSR measurements. Such differences were observed at TIRS- 1 and are likely a result of angular dependence of the spectral response of the detector. The subsystem RSR measurements also provide an opportunity for a preliminary assessment of the spectral requirements. Final requirements verification will be performed at future thermal vacuum environmental testing with the fully assembled TIRS-2 instrument

    Ultra-Portable Field Transfer Radiometer for Vicarious Calibration of Earth Imaging Sensors

    Get PDF
    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector-and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods

    'Just open your eyes a bit more': The methodological challenges of researching black and minority ethnic students' experiences of physical education teacher education

    Get PDF
    In this paper we discuss some of the challenges of centralising 'race' and ethnicity in Physical Education (PE) research, through reflecting on the design and implementation of a study exploring Black and minority ethnic students' experiences of their teacher education. Our aim in the paper is to contribute to ongoing theoretical and methodological debates about intersectionality, and specifically about difference and power in the research process. As McCorkel and Myers notes, the 'researchers' backstage'-the assumptions, motivations, narratives and relations-that underpin any research are not always made visible and yet are highly significant in judging the quality and substance of the resulting project. As feminists, we argue that the invisibility of 'race' and ethnicity within Physical Education Teacher Education (PETE), and PE research more widely, is untenable; however, we also show how centralising 'race' and ethnicity raised significant methodological and epistemological questions, particularly given our position as White researchers and lecturers. In this paper, we reflect on a number of aspects of our research 'journey': the theoretical and methodological challenges of operationalising concepts of 'race' and ethnicity, the practical issues and dilemmas involved in recruiting participants for the study, the difficulties of 'talking race' personally and professionally and challenges of representing the experiences of 'others'. © 2012 Copyright Taylor and Francis Group, LLC

    Landsat 9 TIRS-2 Performance Results Based on Subsystem-Level Testing

    Get PDF
    Landsat 9 is the next in the series of Landsat satellites and has a complement of two pushbroom imagers: Operational Land Imager-2 (OLI-2) that samples the solar reflective spectrum with nine channels and Thermal Infrared Sensor-2 (TIRS-2) samples the thermal infrared spectrum with two channels. The first builds of these sensors, OLI and TIRS, were launched on Landsat 8 in 2013 and Landsat 9 is expected to launch in December 2020. TIRS-2 is designed and built to continue the Landsat data record and satisfy the needs of the remote sensing community. There are two sets of requirements considered for planning the component, subsystem and instrument level tests for TIRS-2: performance requirements and Special Calibration Test Requirements (SCTR). The performance requirements specify key spectral, spatial, radiometric, and operational parameters of TIRS-2 while the SCTRs specify parameters of how the instrument is tested. Several requirements can only be verified at the instrument level, but many performance metrics can be assessed earlier in prelaunch testing at the subsystem level. A test program called TIRS Imaging Performance and Cryoshell Evaluation (TIPCE) was developed to characterize TIRS-2 spectral, spatial, and scattered-light rejection performance at the telescope and detector subsystem level. There were three thermal vacuum campaigns in TIPCE that occurred from November 2017 to March 2018. This work shows results of TIPCE data analysis which provide confidence that key requirements will be met at instrument level with a few minor waivers. A full complement of performance testing will be done at the TIRS-2 instrument level for final verification in late 2018 through Spring 2019

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    Dear British criminology: Where has all the race and racism gone?

    Get PDF
    In this article we use Emirbayer and Desmond’s institutional reflexivity framework to critically examine the production of racial knowledge in British criminology. Identifying weakness, neglect and marginalization in theorizing race and racism, we focus principally on the disciplinary unconscious element of their three-tier framework, identifying and interrogating aspects of criminology’s ‘obligatory problematics’, ‘habits of thought’ and ‘position-taking’ as well as its institutional structure and social relations that combine to render the discipline ‘institutionally white’. We also consider, briefly, aspects of criminology’s relationship to race, racism and whiteness in the USA. The final part of the article makes the case for British criminology to engage in telling and narrating racisms, urging it to understand the complexities of race in our subject matter, avoid its reduction to class and inequality, and to pay particular attention to reflexivity, history, sociology and language, turning to face race with postcolonial tools and resolve
    • …
    corecore