135 research outputs found

    On-Farm Forest Income in the United States, 2003–2012: Thoughts for Extension Programming

    Get PDF
    Forest-based production on U.S. farms totaled 653.2millionin2012,admittedlyasmallportionoftotalfarmwealth.However,despitetheeffectsoftherecenteconomicdownturn,on−farmforestproductrevenuesstillapproachedthegatevalueofNorthCarolinatimberin2012,whichwas653.2 million in 2012, admittedly a small portion of total farm wealth. However, despite the effects of the recent economic downturn, on-farm forest product revenues still approached the gate value of North Carolina timber in 2012, which was 730.6 million. Providing the research-based information, technology transfer, and educational programs farmers need to manage trees to generate income while preserving the ecosystem in a manner that is socially acceptable requires a multidimensional approach by Extension specialists working across disciplines. Two examples of multidimensional approaches, one centered on audience segmentation for targeted outreach and the other on forest economic development, are proposed and discussed

    Technical Note: A Preliminary Study on the Bending Stiffness of Chemically Treated Wood Material for Structural Composite Lumber

    Get PDF
    This research explored the effect of a chemical treatment on the stiffness of three southern hardwoods, yellow-poplar, sweetgum, and red oak, with the aim of broadening the potential feedstocks for structural composite lumber. Water-saturated 3 × 15 × 150 mm samples from each species were heated at 150° C for 30 min in three solutions: 1.0% H2SO4, water, and 1.0% NaOH. The specimens were nondestructively tested by static bending before and after treatment, and the reduction in modulus of elasticity (MOE) was determined. A significant interaction was present between the species and solutions. The trend in mean response for each species was generally a quadratic function of the solution. MOE was reduced the least for each species exposed to water. Sweetgum had a higher reduction in MOE in all three solutions, being significantly greater in the alkaline solution

    Technical Note: The Susceptibility of Chemically Treated Southern Hardwoods to Subterranean Termite Attack

    Get PDF
    Ongoing research into chemically treating southern hardwoods for producing structural composite lumber suggests that some improvements may be imparted by modifying the wood. How chemical treatment(s) affect modified wood durability, particularly resistance to Reticulitermes flavipes, was the objective of this study. Water-saturated samples of yellow-poplar, sweetgum, and red oak were heated at 150°C for 30 min in two solutions: water and 1.0% NaOH; controls were also included. Samples were subjected to the AWPA E1-09 no-choice termite test in which mass loss from R. flavipes was determined. The species and treatments independently and significantly affected the mass loss. Yellow-poplar, which had the lowest specific gravity, averaged significantly greater mass loss than sweetgum and red oak for all three exposures. All species treated in water or NaOH showed a higher degree of termite degradation as compared with the controls

    Technical Note: The Susceptibility of Chemically Treated Southern Hardwoods to Subterranean Termite Attack

    Get PDF
    Ongoing research into chemically treating southern hardwoods for producing structural composite lumber suggests that some improvements may be imparted by modifying the wood. How chemical treatment(s) affect modified wood durability, particularly resistance to Reticulitermes flavipes, was the objective of this study. Water-saturated samples of yellow-poplar, sweetgum, and red oak were heated at 150°C for 30 min in two solutions: water and 1.0% NaOH; controls were also included. Samples were subjected to the AWPA E1-09 no-choice termite test in which mass loss from R. flavipes was determined. The species and treatments independently and significantly affected the mass loss. Yellow-poplar, which had the lowest specific gravity, averaged significantly greater mass loss than sweetgum and red oak for all three exposures. All species treated in water or NaOH showed a higher degree of termite degradation as compared with the controls

    Conservation of context-dependent splicing activity in distant Muscleblind homologs

    Get PDF
    The Muscleblind (MBL) protein family is a deeply conserved family of RNA binding proteins that regulate alternative splicing, alternative polyadenylation, RNA stability and RNA localization. Their inactivation due to sequestration by expanded CUG repeats causes symptoms in the neuromuscular disease myotonic dystrophy. MBL zinc fingers are the most highly conserved portion of these proteins, and directly interact with RNA. We identified putative MBL homologs in Ciona intestinalis and Trichoplax adhaerens, and investigated their ability, as well as that of MBL homologs from human/mouse, fly and worm, to regulate alternative splicing. We found that all homologs can regulate alternative splicing in mouse cells, with some regulating over 100 events. The cis-elements through which each homolog exerts its splicing activities are likely to be highly similar to mammalian Muscleblind-like proteins (MBNLs), as suggested by motif analyses and the ability of expanded CUG repeats to inactivate homolog-mediated splicing. While regulation of specific target exons by MBL/MBNL has not been broadly conserved across these species, genes enriched for MBL/MBNL binding sites in their introns may play roles in cell adhesion, ion transport and axon guidance, among other biological pathways, suggesting a specific, conserved role for these proteins across a broad range of metazoan species.National Institutes of Health (U.S.) (DP5 OD017865

    Surface Free Energy of Blue-Stained Southern Pine Sapwood from Bark Beetle-Attacked Trees

    Get PDF
    Blue-stained wood cut from bark beetle-attacked southern pine has a lower economic value than unstained wood. Wood composite products containing blue-stained wood may offer an opportunity to recover some lost timber value. This study investigated the surface-free energy of blue-stained wood. Southern pine sapwood samples with and without blue stain from both green and kiln-dried sources were obtained. Dynamic contact angle analyses were performed using three probe liquids: ethylene glycol, formamide, and deionized water. Surface-free energy was determined by applying the geometric mean model using two-liquid pairs with deionized water. The polar forces were higher across all wood types and in water-ethylene glycol vs water-formamide. Surface-free energy of air-dried blue-stained sapwood was lower than all other wood types. However, kiln-dried blue-stained sapwood had a higher surface-free energy than all other wood types. These results were indicative of a tree's wound response to bark beetle attack, the volatilization of naturally occurring hydrocarbons in southern pine sapwood, and the resulting increase in wood permeability caused by blue-stained fungal colonization across the sapwood. However, improvements in wetting observed for kiln-dried blue-stained sapwood may lead to cost and quality issues in wood composite manufacturing associated with overdrying and overpenetration of an adhesive

    Millennial changes in North American wildfire and soil activity over the last glacial cycle

    Get PDF
    Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent Dansgaard-­‐Oeschger (DO) events. However prior to the last deglaciation, little is known about the response of North American vegetation to such rapid climate changes and especially about the response of biomass burning, an important factor for regional changes in radiative forcing. Here we use continuous, high-­‐resolution ammonium (NH4+) records derived from the NGRIP and GRIP ice cores to document both North American NH4+ background emissions from soils and wildfire frequency over the last 110,000 yr. Soil emissions increased on orbital timescales with warmer climate, related to the northward expansion of vegetation due to reduced ice-­‐covered areas. During Marine Isotope Stage (MIS) 3 DO warm events, a higher fire recurrence rate is recorded, while NH4+ soil emissions rose only slowly during longer interstadial warm periods, in line with slow ice sheet shrinkage and delayed ecosystem changes. Our results indicate that sudden warming events had little impact on NH4+ soil emissions and NH4+ aerosol transport to Greenland during the glacial but triggered a significant increase in the frequency of fire occurrence.This paper has greatly benefitted from the Sir Nicholas Shackleton fellowship, Clare Hall, University of Cambridge, U.K., awarded to HF in 2014. The Division for Climate and Environmental Physics, Physics Institute, University of Bern acknowledges the long-­‐term financial support of ice core research by the Swiss National Science Foundation (SNSF) and the Oeschger Centre for Climate Change Research. EW is supported by a Royal Society professorship. NGRIP is directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen. It is supported by funding agencies in Denmark (SNF), Belgium (FNRS-­‐CFB), France (IPEV and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MEXT), Sweden (SPRS), Switzerland (SNSF) and the USA (NSF, Office of Polar Programs).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ngeo249

    A Methodological Framework for the Reconstruction of Contiguous Regions of Ancestral Genomes and Its Application to Mammalian Genomes

    Get PDF
    The reconstruction of ancestral genome architectures and gene orders from homologies between extant species is a long-standing problem, considered by both cytogeneticists and bioinformaticians. A comparison of the two approaches was recently investigated and discussed in a series of papers, sometimes with diverging points of view regarding the performance of these two approaches. We describe a general methodological framework for reconstructing ancestral genome segments from conserved syntenies in extant genomes. We show that this problem, from a computational point of view, is naturally related to physical mapping of chromosomes and benefits from using combinatorial tools developed in this scope. We develop this framework into a new reconstruction method considering conserved gene clusters with similar gene content, mimicking principles used in most cytogenetic studies, although on a different kind of data. We implement and apply it to datasets of mammalian genomes. We perform intensive theoretical and experimental comparisons with other bioinformatics methods for ancestral genome segments reconstruction. We show that the method that we propose is stable and reliable: it gives convergent results using several kinds of data at different levels of resolution, and all predicted ancestral regions are well supported. The results come eventually very close to cytogenetics studies. It suggests that the comparison of methods for ancestral genome reconstruction should include the algorithmic aspects of the methods as well as the disciplinary differences in data aquisition

    Abrupt Ice Age Shifts in Southern Westerlies and Antarctic Climate Forced from the North

    Get PDF
    The Southern Hemisphere (SH) mid-latitude westerly winds play a central role in the global climate system via Southern Ocean upwelling, carbon exchange with the deep ocean, Agulhas Leakage, and Antarctic ice sheet stability. Meridional shifts in the SH westerlies have been hypothesized in response to abrupt North Atlantic Dansgaard-Oeschger (DO) climatic events of the last ice age, in parallel with the well-documented shifts of the intertropical convergence zone. Shifting moisture pathways to West Antarctica are consistent with this view, but may represent a Pacific teleconnection pattern. The full SH atmospheric-circulation response to the DO cycle, as well as its impact on Antarctic temperature, have so far remained unclear. Here we use five volcanically-synchronized ice cores to show that the Antarctic temperature response to the DO cycle can be understood as the superposition of two modes: a spatially homogeneous oceanic “bipolar seesaw” mode that lags Northern Hemisphere (NH) climate by about 200 years, and a spatially heterogeneous atmospheric mode that is synchronous with NH abrupt events. Temperature anomalies of the atmospheric mode are similar to those associated with present-day Southern Annular Mode (SAM) variability, rather than the Pacific South America (PSA) pattern. Moreover, deuterium excess records suggest a zonally coherent migration of the SH westerlies over all ocean basins in phase with NH climate. Our work provides a simple conceptual framework for understanding the circum-Antarctic temperature response to abrupt NH climate change. We provide observational evidence for abrupt shifts in the SH westerlies, with ramifications for global ocean circulation and atmospheric CO₂. These coupled changes highlight the necessity of a global, rather than a purely North Atlantic, perspective on the DO cycle
    • 

    corecore