6,545 research outputs found

    Energy shedding during nonlinear self-focusing of optical beams

    Get PDF
    Self-focusing of intense laser beams and pulses of light in real nonlinear media is in general accompanied by material losses that require corrections to the conservative Nonlinear Schrödinger equations describing their propagation. Here we examine loss mechanisms that exist even in lossless media and are caused by shedding of energy away from the self-trapping beam making it to relax to an exact solution of lower energy. Using the conservative NLS equations with absorbing boundary conditions we show that energy shedding not only occurs during the initial reshaping process but also during oscillatory propagation induced by saturation of the nonlinear effect. For pulsed input we also show that, depending on the sign and magnitude of dispersion, pulse splitting, energy shedding, collapse or stable self-focusing may result

    Study of 5 and 10 mm thick CZT strip detectors

    Get PDF
    We report progress in the study of 5 and 10 mm thick CZT strip detectors featuring orthogonal coplanar anode contacts. This novel anode geometry combines the advantages of pixel detectors with those of double-sided strip detectors. Like pixel detectors, these are electron-only devices that perform well as hard x-ray and y-ray spectrometers and imagers even in the thicker configurations required for reasonable detection efficiency at 1 MeV. Like double-sided strip detectors in an N x N configuration, these detectors require only 2N readout channels to form N2 “pixels”. Unlike doublesided strip detectors, all signal contacts for spectroscopy and 3- d imaging are formed on one detector surface. Polymer flip chip bonding to a ceramic substrate is employed resulting in a rugged and compact detector assembly. Prototype detector modules 5 mm thick have been fabricated and tested. Prototype modules, 10 mm thick, are currently in procurement. Measurements confirm these devices are efficient detectors throughout their volume. Sub-millimeter position resolution and energy resolution (FWHM) better than 3% at 662 keV and 15% at 60 keV throughout the detector volume are demonstrated. Options for processing the signals from the non-collecting anode strip contacts are discussed. Results from tests of one prototype circuit are presented. We also report on detector simulation studies aimed at defining an optimum geometry for the anode contacts and at determining optimum operating conditions and the requirements of the signal processing electronics

    Bayesian multiscale deconvolution applied to gamma-ray spectroscopy

    Get PDF
    A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy

    Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease

    Get PDF
    Copyright @ 2013 Janssens et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction: Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD). However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness. Methods: Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control. Results: Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p=0.037). Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p=0.047), decreased anterior body sway during back muscle vibration (p=0.025), and increased posterior body sway during simultaneous ankle-muscle vibration (p=0.002). Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p=0.037). Conclusions: Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the fall risk in individuals with COPD.This work was supported by the Research Foundation – Flanders (FWO) grants 1.5.104.03, G.0674.09, G.0598.09N and G.0871.13N

    The Opportunity Spectrum -- Concept and Behavioral Information in Outdoor Recreation Resource Supply Inventories: Background and Application

    Get PDF
    The paper describes an outdoor recreation resource (ORR) Supply Inventory and Classification (SIC) System that is being developed for multiple use natural resource planning. Four previously developed ORR SIC’s on which this system was built are described briefly. A general model for natural resource planning is presented to show how the proposed ORR SIC fits into a larger planning framework. The proposed SIC System is described and its application for regional and unit planning is explained. Relationships between OR consumers\u27 preferences for specific types of satisfying experiences and their preferences for specific attributes of the physical, social, and managerial settings are translated into specific and objective criteria proposed for inventorying and classifying lands as to their potential for providing particular types of OR opportunities on the spectrum

    Energy and position resolution of a CdZnTe gamma-ray detector with orthogonal coplanar anodes

    Get PDF
    We report on the simulation, construction and performance of prototype CZT imaging detectors employing orthogonal coplanar anodes. These detectors employ a novel electrode geometry with non-collecting anode strips in 1D and collecting anode pixels, interconnected in rows, in the orthogonal dimensions. These detectors retain the spectroscopic and detection efficiency advantages of single carried charge sensing devices as well as the principal advantage of conventional strip detectors with orthogonal anode and cathode strips, i.e. an N X N array of imagin pixels are realized with only 2N electronic channels. Charge signals induced on the various electrodes of a prototype detector with 8 X 8 unit cells are in good agreement with the simulations. The position resolution is about 1 mm in the direction perpendicular to the pixel lines while it is of the order of 100 micrometers in the other direction. Energy resolutions of 0.9 percent at 662 keV, 2.6 percent at 122 keV and 5.7 percent at 60 keV have been obtained at room temperature

    Energetic proton spectra in the 11 June 1991 solar flare

    Get PDF
    The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture

    Energetic proton spectra in the 11 June 1991 solar flare

    Get PDF
    We have studied a subset of the 11 June 1991 solar flare γ-ray data that we believe arise from soft proton or ion spectra. Using data from the COMPTEL instrument on the Compton Observatory we discuss the gamma-ray intensities at 2.223 MeV, 4–7 MeV, and 8–30 MeV in terms of the parent proton spectrum responsible for the emission
    • …
    corecore