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Energy shedding during nonlinear
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Abstract: Self-focusing of intense laser beams and pulses of light in
real nonlinear media is in general accompanied by material losses that
require corrections to the conservative Nonlinear Schrödinger equations
describing their propagation. Here we examine loss mechanisms that exist
even in lossless media and are caused by shedding of energy away from the
self-trapping beam making it to relax to an exact solution of lower energy.
Using the conservative NLS equations with absorbing boundary conditions
we show that energy shedding not only occurs during the initial reshaping
process but also during oscillatory propagation induced by saturation of the
nonlinear effect. For pulsed input we also show that, depending on the sign
and magnitude of dispersion, pulse splitting, energy shedding, collapse or
stable self-focusing may result.

© 2013 Optical Society of America

OCIS codes: (190.3270) Kerr effect; (190.6135) Spatial solitons; (190.5530) Pulse propagation
and temporal solitons; (260.5950) Self-focusing.
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1. Introduction

Self-focusing of light in nonlinear media is a well studied phenomenon first predicted in [1] and
modelled during the 1960s [2]. Since Abbe’s diffraction theory limits the minimum spot size of
a focused beam, self-focusing offers potential means to generate beams that are sub-diffraction
limited. This has potential uses in fields such as optical imaging and micromachining. In gen-
eral there are mechanisms of loss during beam propagation in real media such as multiphoton
excitation [3], and in many media the critical power for self-focusing is above the ionisation
threshold of the medium leading to optical damage or plasma defocusing, thus arresting the
collapse of the beam. Some media, in particular organic compounds, have significantly large
third-order optical nonlinearities [4] and present the possibility of stable, self-focused propaga-
tion below the diffraction limit with limited loss due to material processes. Even in idealized
lossless media, however, there will still be the shedding of energy during entry to and prop-
agation in the medium, occurring in different forms depending on the particular balance of
diffraction, dispersion, nonlinearity and saturation of the nonlinear effect.

In this paper we examine forms of energy shedding in lossless media using the Nonlinear
Schrödinger equation (NLS) and show that, even though the NLS is conservative, in real me-
dia some energy will always be moved away from any self-trapped solution except in the case
where the input beam matches the soliton parameters that correspond to the exact solutions of
the equation. The energy shedding occurs on entry to the nonlinear medium due to the well
known process of reshaping of the beam to the characteristic sech2 profile [2]. Depending on
the level of saturation of the nonlinear effect there may also be energy shedding during propa-
gation or even symmetry breaking of the beam depending on the choice of parameters [5]. With
pulsed input, dispersion also plays a role in determining the forms of energy shedding, with
pulse splitting along the temporal axis and subsequent collapse occurring during propagation
in normally dispersive media [6] compared to potentially stable spatio-temporal self-focusing
occurring in anomalously dispersive media [7]. We quantitatively examine the levels of energy
shedding in these different regimes to examine the most appropriate choice of conditions for
stable self-focused propagation of cw and pulsed input beams.

2. Simulation Model

In dielectric media self-focusing occurs due to a local change in the refractive index (n) caused
by an applied electric field far from resonance inducing a dipole moment on the molecules or
atoms and resulting in an electrostrictive effect that causes a localized increase in the photon
density. For a medium with a sufficiently large, positive Kerr coefficient (n2), diffraction of the
light is balanced and the beam becomes self-trapped when the power reaches a critical value,
Pcr = αλ 2/(4πn0n2) [8]. Here λ is the wavelength of the light and the parameter α depends on
the beam geometry (for a Gaussian profile α ≈ 1.8962). n0 is the linear refractive index, with
n = n0 in linear media, and n2 acting as a small intensity dependent correction to the refractive
index in nonlinear media: n = n0 + n2I. Notably the critical power does not depend on the
intensity and self-focusing occurs when the peak power exceeds Pcr .

A widely accepted model for the evolution of the complex envelope of the electric field under
the slowly varying envelope approximation and for 1D cw and short pulse regimes (> 100 f s)
is the cubic NLS:

∂E
∂ζ

=
i
2

∂ 2E
∂η2 + iγ|E|2E (1)
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where ζ is the retarded time coordinate normalized by the Rayleigh length (ZR) and η is the
normalized spatial variable. E is the electric field normalised by the square root of the input
peak intensity, I0, such that the input power is normalized to unity, i.e.

P =
∫

|E0|2d�x = 1 (2)

for input field E0 where�x = η in the 1D case,�x = (η ,ξ ) in the 2D case. The nonlinear coeffi-
cient is γ = k0n2ZRI0/n0, where k0 is the free space wavenumber. The first term on the RHS of
(1) describes diffraction and the second term describes an instantaneous third-order nonlinear-
ity.

In 2D, however, the NLS is not suitable for simulation without some changes as it allows un-
bounded collapse within a finite distance [9]. In order to avoid this problem the saturable Non-
linear Schrödinger equation is used, with saturation of the nonlinearity derived from Maxwell-
Bloch equations included in the model to prevent collapse. This makes the model more physical
and results into:

∂E
∂ζ

=
i
2

(∂ 2E
∂η2 +

∂ 2E
∂ξ 2

)
+ iγ

|E|2
1+σ |E|2 E (3)

where ξ is the second transverse spatial coordinate and σ = I0/Isat is the saturation parameter
for saturation intensity Isat . We can see that as σ tends towards zero, the cubic nonlinearity is
regained.

In order to model spatio-temporal input propagating through nonlinear media, the general-
ized Nonlinear Schrödinger equation is required [10] since it includes dispersion phenomeno-
logically derived from the Taylor expansion of the wavenumber in Fourier space:

∂E
∂ζ

=
i
2

∂ 2E
∂η2 +

iβ
2

∂ 2E
∂T 2 + iγ

|E|2
1+σ |E|2 E (4)

where T is the normalized temporal variable and β = k2ZR/T 2
0 is the normalized group velocity

dispersion (GVD) coefficient for input pulse length T0. This new term accounts for dispersion
in the medium with positive β giving normal dispersion and negative β providing anomalous
dispersion.

In all cases an initial Gaussian profile is used corresponding to TEM00 laser modes focused to
a diffraction limited spot at the edge of the nonlinear medium before propagation. The equation
is propagated forward in time by use of a split-step method, with the linear operators prop-
agated in the frequency domain and the nonlinearity evaluated on the alternate steps by use
of a Runge-Kutta method. Transverse absorbing boundary conditions are included at the edge
of the computational domain in order to remove shed energy from the simulation and avoid
unphysical reflections back towards the propagating beam.

3. Spatial Results for CW Input

3.1. Cubic Nonlinearity

On entry to a linear medium a 1D cw beam diffracts as expected. Diffraction, however, is in-
creasingly slowed as the nonlinear coefficient is increased up to a value of γ = 5.8 at which point
the beam has sufficient power to self-trap. This is illustrated in Fig. 1(a) where it can be seen
that diffraction is balanced with self-focusing leaving a stable, self-trapped beam after an initial
period of reshaping. Figure 1(b) shows the self-trapping on a log intensity scale and shows that
there are low levels of energy shed away from the self-trapped beam during the reshaping. This
initial shedding always occurs for Gaussian input, accounting for approximately 2% energy loss
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at the point of self-trapping. As Fig. 2 shows, the amount of shed energy increases as the non-
linear coefficient increases, up to 25% at γ = 19.2. At this point the first higher-order oscillating
soliton solution and a second self-trapped state are reached. Figure 2 also shows that increasing
the nonlinear coefficient leads to a decreasing beam width between the first self-trapped state
and the second, reducing the width to half the initial, diffraction limited, size at γ = 19.2.

Fig. 1. (a) Reshaping of the self trapped beam from initially Gaussian input to a sech2

distribution. Energy is shed and oscillation in the amplitude is caused by the reshaping
process, γ = 5.8. (b) Logarithmic intensity scale of (a), revealing the energy being shed
upon entry to the medium.

Fig. 2. Final power (blue) and resulting beam width (red) dependence on the nonlinear
coefficient. From each self-trapped state, power loss during reshaping increases and the
resulting beam width decreases. .

3.2. Saturating Nonlinearity

Significantly different behavior occurs when the saturating NLS [Eq. (3)] is used, even with
only one spatial variable. Although the behavior is very similar to the cubic 1D case up to the
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point of self-trapping, self-focusing in the saturating case does not result in a constant soliton
solution by its strictest definition since the equation is no longer integrable [11, 12]. Rather than
reshaping and relaxing to a constant profile, the beam has a long lived oscillation in amplitude
[Fig. 3] and width [Fig. 4(a)], undergoing periodic focusing and defocusing. Figure 3 shows the
evolution of the amplitude of the beam during propagation as well as the total power. It can be
seen that rather than just shedding energy during the initial reshaping process, there is now a
constant shedding of energy during propagation that occurs during the defocusing cycles of the
oscillation [see Fig. 4(b)]. As predicted in [13, 14], depending on σ and the input power, there
are two possible soliton solution branches that have the same width but different amplitudes.
The lower branch exists for input power corresponding to Pcr, with solutions below the branch
untrapped and solutions above and close to the branch radiating energy during defocusing cy-
cles until the power has been reduced to that of the lower branch. If the solution is far above the
lower branch (input power sufficient to excite the first higher-order solution) the evolution dis-
plays symmetry breaking instabilities [see Fig. 5]. The solutions of the upper branch are not of
as much interest in terms of stable sub diffraction limited focusing, as they require significantly
more power, thus increasing the impact of modulation instability [12]. The effect of an increase
of the saturation parameter is to increase the magnitude of nonlinear coefficient required to get
the same level of self-focusing. Similar behavior occurs for each level of saturation though on
different length scales, with the oscillations taking longer to damp during propagation in higher
saturation regimes [see Fig. 6]. Notably it also has an effect on the critical power required for
self-focusing to dominate over diffraction, with the point of self-trapping requiring an increased
nonlinear coefficient for increased saturation.

Fig. 3. Intensity (green) and normalized power (blue) for saturating NLS propagating 50
ZR. γ = 16, σ = 0.1. Here it can be seen that after the initial reshaping process there is a
long lived damped oscillation in the amplitude rather than the stable soliton solution of the
cubic NLS, and loss of power during propagation that is proportional to the oscillation in
the width and amplitude.

2D simulations using the saturating NLS give results similar to the 1D case. There are A)
two soliton branches [14]; B) oscillations in width and amplitude [see Fig. 7(a)]; C) energy
shedding to the lower branch of solutions [see Fig. 7(b)]; D) instabilities displayed by higher-
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Fig. 4. Oscillations in the beam width and amplitude after 500 ZR of propagation in a satu-
rating medium. γ = 200, σ = 10. (b) Logarithmic intensity scale of (a), showing shedding
of low levels of energy during each defocusing cycle of the damped oscillations in saturable
media.

Fig. 5. Symmetry breaking instability of saturating NLS solution falling between solution
branches. γ = 30, σ = 0.1.
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Fig. 6. Final power (top) and resulting beam width (bottom) dependence on the nonlinear
coefficient for different values of σ . It can be seen that the point of self-trapping and hence
the required critical power depends on the saturation parameter, requiring greater levels of
power when there is greater saturation. At the point of exciting the second self-trapped state
the solution becomes unstable and symmetry breaking instabilities occur.

order solutions. The effect of varying σ is the same in 2D as in 1D - higher saturation requiring
a larger nonlinear coefficient to get the same results. There are also distinct differences. The
magnitude of γ required to cause a particular level of self-focusing is larger in 2D and the
increase in intensity during focusing is significantly larger than for 1D [see Fig. 7]. The beam
focusing is also more significant and when the oscillations have decreased to negligible levels
after propagation over 100s of Rayleigh lengths, the beam width may be as small as (1/10)w0

[see Fig. 8].

4. Spatio-temporal Results for Propagation of Short Pulses

4.1. Zero GVD Regime

Equation (4) was first integrated with β and σ = 0. The resulting spatial profile evolution is
similar to an equivalent 1D simulation. The temporal profile does not spread or focus as the
pulse propagates, as expected in cases of no dispersion, but it does exhibit an oscillation in the
intensity of the centre of the pulse as a consequence of the transient oscillation in the trans-
verse spatial dimension after entering the medium [see Fig. 9]. Spatially, the entire pulse is not
compressed. Only those transverse ’slices’ that have power above the critical level experience
self-focusing, so that the front and back of the pulse diffract and only the middle section is
trapped [see Fig. 10].

The inclusion of saturation (σ > 0) does not qualitatively change the results as the focusing
is in effect 1D and there is no danger of collapse. The only noticeable effect is that the intensity
does not reach the same peak levels, resulting in a slower dynamic. After propagation for around
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Fig. 7. (a) Oscillations in a 2D cw beam propagating in a saturable medium. r is the trans-
verse radial variable. Intensities reached are roughly 6 times that of the 1D case. γ = 20,
σ = 0.1. (b) Logarithmic intensity scale of (a), showing shedding of low levels of energy
during defocusing, reducing the power of the beam.

Fig. 8. Final power (blue) and resulting beam width (red) dependence on the nonlinear
coefficient for a 2D beam in saturable media (σ = 0.1). As in the 1D case, increasing the
nonlinear coefficient causes first self trapping (γ = 12.4) and then self-focusing. Unlike the
1D case the resulting beam width is significantly smaller, reducing to as much a 10% of
the input, and the power lost due to energy shedding is increased, varying from 4% at the
point of self-trapping up to 40%. Varying the saturation parameter again changes the length
scales on which the same behavior occurs.
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100 Rayleigh lengths the pulse has settled to a steady shape with both temporal and spatial
sections displaying narrowing [see Fig. 11] with up to 33% of the energy having been shed.
The temporal length is decreased to roughly 50% by the shedding of untrapped energy at the
front and rear of the pulse and the spatial width is reduced to about 1/3 of the input by self-
focusing.

Fig. 9. Left - evolution of the pulse profile on the temporal axis. Right - evolution of the
profile on the spatial axis on entering a nonlinear medium. Without GVD there is no fo-
cusing or defocusing on the temporal axis, the splitting and reforming of the peak is due
to oscillation along the spatial axis. Spatial evolution is similar to that of an equivalent 1D
spatial simulation.

Fig. 10. Left - initial pulse shape. Right - pulse shape after propagation to a stable pro-
file. The front and back of the pulse have diffracted away, while the transverse slices with
enough power to self-focus have become trapped.

4.2. Normal GVD Regime

Equation (4) was next integrated with positive β to provide normal dispersion during propaga-
tion. The results show that with normal GVD acting on the pulse as it propagates there is no
approach to a stable steady state [see Fig. 12]. In normally dispersive media, the spreading of
the pulse in conjunction with the nonlinearity induced self-phase modulation causes the pulse

#195878 - $15.00 USD Received 15 Aug 2013; revised 16 Sep 2013; accepted 16 Sep 2013; published 25 Sep 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.023459 | OPTICS EXPRESS  23467



Fig. 11. Left - initial (red dash) and final (blue) temporal cross section. Right - initial and
final spatial cross section. The pulse has narrowed in both dimensions during propagation,
due to self-focusing in the spatial dimension, resulting in the sech2 distribution, but due to
untrapped energy being shed in the temporal dimension, resulting in a parabolic profile.

to split along the temporal axis due to the new frequencies being created at the front of the pulse
travelling faster, and new frequencies at the back of the pulse travelling slower. Each time the
pulse splits it reduces the power in the central spatial regions until it is below the critical level
for self-focusing everywhere. The effect of increasing the magnitude of γ is only to prolong
the duration of the splitting behavior. Inclusion of a saturating nonlinearity did not change the
results significantly as at no point does the intensity reach a level at which the saturation may
be relevant.

Fig. 12. Temporal (left) and spatial (right) evolution of a pulse in the normal GVD regime.
β = +0.01,γ = 15. Due to the spreading of the pulse along the temporal dimension, the
power in the spatial slices is reduced to the point at which no self-focusing can occur,
resulting in collapse of the pulse.

4.3. Anomalous GVD Regime

In the anomalous GVD regime there are significantly different results to normal or zero GVD. In
our numerical simulations we identify a regime featuring focusing nonlinearity and anomalous
dispersion in which a narrow and intense pulse can be formed. Figure 13 shows pulse propaga-
tion in the regime where diffraction and dispersion lengths are equal (i.e. |β |= Ldi f /Ldis = 1).
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As the effects balance in this regime, the pulse envelope evolves stably and symmetrically. The
results are similar to 2D spatial propagation of a cw beam with a spatial dimension replaced by
a temporal one. Saturating nonlinearity is required to arrest collapse and avoid the formation
of a singularity. As in the 2D spatial case there is energy shedding on entry to the medium due
to reshaping and shedding of energy during propagation due to the inclusion of saturation. The
resulting beam width and power loss for varying γ are presented in Fig. 8. As the nonlinear co-
efficient is increased, more focused oscillations occur with larger and larger frequencies. Once
the oscillations have damped down, our results show significantly reduced beam widths/lengths
compared to the input. Figure 14 shows the resulting pulse sizes for β =−1,γ = 20 and γ = 50,
with the achievement of a width as small as 1/10 the input size, again equivalent to the 2D spa-
tial case.

Fig. 13. (a) Evolution of the T/X profile in the anomalous-GVD regime. β = −1,γ = 20,
Saturating nonlinearity. (b) Logarithmic intensity scale of (a). The results are similar to 2D
spatial propagation of the pulse with a spatial dimension replaced with the temporal one

Although these results are very encouraging about possible regimes in the anomalous GVD
regime where spatial and temporal compressions are observed in the presence of energy shed-
ding, we note that there are regimes where for both Kerr and saturating nonlinearity pulse
collapse is observed. Increasing the number of transverse grid points does not remedy the situ-
ation as the pulse is being compressed beyond the capabilities of the current simulation model
and further terms in the equation would be necessary to model such ultra-short pulses. The
case is somewhat similar to the inclusion of higher order dispersive terms in the generation of
super-continuum radiation [10].

5. Conclusions

Dynamical energy shedding is an important phenomenon in the analysis of propagating beams
in media with optical nonlinearities. We have shown that in lossless media, modelled by conser-
vative Nonlinear Schrödinger Equations, there exist mechanisms that cause shedding of energy
away from the self-trapping beam.

Reshaping of the profile of the initially Gaussian beam or pulse profile was observed in all
cases, causing shedding of energy upon entry to the medium. In the 1D cw regime this is the
only observed mechanism of energy shedding and accounts for up to 25% of the input energy
being shed as a stable soliton is formed.

The inclusion of saturation in the model is required in order to simulate propagation of beams
in two or more dimensions and introduced another mechanism of energy shedding. A long lived
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Fig. 14. Final pulse shape after propagation to a stable profile, showing signiificantly re-
duced length and width. (a) β =−1,γ = 20, (b) β =−1,γ = 50

oscillation is induced and shedding of small amounts of energy occurs during the defocusing
cycles of these oscillations as the beam relaxes towards a stable solution branch. We observed
that with larger values of the saturation parameter, σ , a larger value of γ is required to get
the same self-focusing effect, including increasing the critical power required for self-focusing.
Unlike the results for media with a cubic nonlinearity, we also observe that higher-order solitons
are unstable in the saturating regime and result in a symmetry breaking collapse of the beam.

For the case of 2+1D spatio-temporal pulses we have observed that in anomalous media,
when the diffraction and dispersion lengths have equal magnitude, there is a symmetrical fo-
cusing of the pulse followed by a periodic alternation of defocusing and focusing that is very
similar to the cw 2D spatial propagation in a saturable medium. We have shown that the self-
focusing is increased with increasing γ , indicating that a tightly self-focused (2+1)D pulse exists
and can stably propagate over long distance although it will be accompanied by greater energy
shedding during the reshaping process. When anomalous dispersion and diffraction are signif-
icantly unequal, we have also observed asymmetrical self-focusing regimes that may require
additional dispersive terms in the modelling.

For normal dispersion our results match those of simulations [15] that have been verified by
experiments [6]. At low power or low nonlinearity the pulse diffracts and above a critical level
the pulse splits until the power drops below critical level. These results confirm that the normal
GVD regime is not favourable for self-focusing.
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