174 research outputs found

    Electronics for dummies

    Get PDF

    Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.

    Get PDF
    This is the published version. Copyright 1998 by American Society for Clinical Investigation.A soluble monomeric form of Alzheimer's amyloid-beta (1-40) peptide (sAbeta1-40) is present in the circulation and could contribute to neurotoxicity if it crosses the brain capillary endothelium, which comprises the blood-brain barrier (BBB) in vivo. This study characterizes endothelial binding and transcytosis of a synthetic peptide homologous to human sAbeta1-40 using an in vitro model of human BBB. 125I-sAbeta1-40 binding to the brain microvascular endothelial cell monolayer was time dependent, polarized to the apical side, and saturable with high- and low-affinity dissociation constants of 7.8+/-1.2 and 52.8+/-6.2 nM, respectively. Binding of 125I-sAbeta1-40 was inhibited by anti-RAGE (receptor for advanced glycation end products) antibody (63%) and by acetylated low density lipoproteins (33%). Consistent with these data, transfected cultured cells overexpressing RAGE or macrophage scavenger receptor (SR), type A, displayed binding and internalization of 125I-sAbeta1-40. The internalized peptide remains intact > 94%. Transcytosis of 125I-sAbeta1-40 was time and temperature dependent, asymmetrical from the apical to basolateral side, saturable with a Michaelis constant of 45+/-9 nM, and partially sensitive to RAGE blockade (36%) but not to SR blockade. We conclude that RAGE and SR mediate binding of sAbeta1-40 at the apical side of human BBB, and that RAGE is also involved in sAbeta1-40 transcytosis

    Early CT detection of intracranial seeding from medulloblastoma

    Get PDF
    Since 1975, intracranial subarachnoid metastases of medulloblastoma have been detected in seven of 23 initial contrast-enhanced computed tomographic (CT) scans in children with proven medulloblastoma. Furthermore, four of the seven cases with subarachnoid seeding were diagnosed after the introduction of high-resolution contrastenhanced CT. Only three cases of seeding had been detected in the previous 17 lowresolution cases studied with CT. Thus, it is quite likely that the incidence of subarachnoid metastases may be substantially more than the overall figure of 30% indicated by this series. This may have an impact on the treatment of these patients, since the frequent appearance of metastases may indicate the need for more vigorous chemotherapeutic regimens. One should be aware of the possibility of early intracranial subarachnoid seeding and that it can be demonstrated by contrast-enhanced CT. This is particularly true when using high-resolution scanners in conjunction with 5 mm sections through the posterior fossa . At the Childrens Hospital of Los Angeles , medulloblastoma is the most common posterior fossa brain tumor Materials and Methods We retrospecti vely reviewed surgically proven cases of medullobl astoma at Childrens Hospital of Los Angeles between 1975 and September 1983 . Since 1975 . when an EMI scanner was installed at this institution . 23 cases of medulloblastoma have been diagnosed with the aid of an initial CT scan . Several other cases either had no ini tial CT , or the initial record s could not be retrieved. The 23 cases that were available for review were scruti ni zed for evidence of subarachnoid seeding of tu mor . The primary criterion of metastases was subarachnoid enhancement on the postcontrast scan. An area of increased density on the precontrast scan and obliteration of the subarachnoid space were also considered manifestations of metastases. The scanning procedure recommended with high-resolution CT machines includes 5 mm slices through the posterior fossa before and after infusion of contrast material. Conray 60 was admini stered by drip infusion at the rate of 2 ml/ kg . It should be mentioned that this protocol was not in use during the earlier phases of this retrospective survey (before the introduction of high-resolution scanning)

    Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation

    Get PDF
    Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY’s ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation

    The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebrospinal fluid (CSF) contacts many brain regions and may mediate humoral signaling distinct from synaptic neurotransmission. However, synthesis and transport mechanisms for such signaling are not defined. The purpose of this study was to investigate whether human CSF contains discrete structures that may enable the regulation of humoral transmission.</p> <p>Methods</p> <p>Lumbar CSF was collected prospectively from 17 participants: with no neurological or psychiatric disease, with Alzheimer's disease, multiple sclerosis, or migraine; and ventricular CSF from two cognitively healthy participants with long-standing shunts for congenital hydrocephalus. Cell-free CSF was subjected to ultracentrifugation to yield supernatants and pellets that were examined by transmission electron microscopy, shotgun protein sequencing, electrophoresis, western blotting, lipid analysis, enzymatic activity assay, and immuno-electron microscopy.</p> <p>Results</p> <p>Over 3,600 CSF proteins were identified from repeated shotgun sequencing of cell-free CSF from two individuals with Alzheimer's disease: 25% of these proteins are normally present in membranes. Abundant nanometer-scaled structures were observed in ultracentrifuged pellets of CSF from all 16 participants examined. The most common structures included synaptic vesicle and exosome components in 30-200 nm spheres and irregular blobs. Much less abundant nanostructures were present that derived from cellular debris. Nanostructure fractions had a unique composition compared to CSF supernatant, richer in omega-3 and phosphoinositide lipids, active prostanoid enzymes, and fibronectin.</p> <p>Conclusion</p> <p>Unique morphology and biochemistry features of abundant and discrete membrane-bound CSF nanostructures are described. Prostaglandin H synthase activity, essential for prostanoid production and previously unknown in CSF, is localized to nanospheres. Considering CSF bulk flow and its circulatory dynamics, we propose that these nanostructures provide signaling mechanisms <it>via </it>volume transmission within the nervous system that are for slower, more diffuse, and of longer duration than synaptic transmission.</p

    How to make a robot

    No full text

    Robot Builder's Sourcebook

    No full text
    New Yorkxvii, 711 p :Illus; 28 cm

    Robot Builder's Bonanza

    No full text

    Gordon McComb's Gadgeteer's Goldmine : 55 space-age projects

    No full text
    406 p. : ilus. ; 23 cm

    Arduino robot bonanza

    No full text
    corecore