4,558 research outputs found

    Noise Correlations in a Coulomb Blockaded Quantum Dot

    Full text link
    We report measurements of current noise auto- and cross-correlation in a tunable quantum dot with two or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the auto-correlation evolves from super-Poissonian to sub-Poissonian in the two-lead case, and the cross-correlation evolves from positive to negative in the three-lead case, consistent with transport through multiple levels. Cross-correlations in the three-lead dot are found to be proportional to the noise in excess of the Poissonian value in the limit of weak output tunneling

    Band-structure topologies of graphene: spin-orbit coupling effects from first principles

    Full text link
    The electronic band structure of graphene in the presence of spin-orbit coupling and transverse electric field is investigated from first principles using the linearized augmented plane-wave method. The spin-orbit coupling opens a gap at the K(Kâ€Č)K(K')-point of the magnitude of 24 ÎŒ\mueV (0.28 K). This intrinsic splitting comes 96% from the usually neglected dd and higher orbitals. The electric field induces an additional (extrinsic) Bychkov-Rashba-type splitting of 10 ÎŒ\mueV (0.11 K) per V/nm, coming from the σ\sigma-π\pi mixing. A 'mini-ripple' configuration with every other atom is shifted out of the sheet by less than 1% differs little from the intrinsic case.Comment: 4 pages, 4 figure

    Competency level in radiotherapy across EU educational programmes: A cross-case study evaluating stakeholders' perceptions

    Get PDF
    Introduction: The education of Therapeutic Radiographers (TRs) is regulated in some countries but is not standardised across the EU, leading to differences in competencies between and within member states. This study aimed to explore stakeholders’ perceptions regarding underdeveloped competencies of TRs practising on the linear accelerator, identified in a previous study by the same research team.Methods: Interviews with stakeholders from four countries (selected based on the characteristics of their degrees) were performed as part of this cross-case study. Stakeholders were asked to provide their perception regarding the least developed competencies identified in a previous study.Results: The 27 stakeholders confirmed that Pharmacology, Quality Assurance (QA), Management and Leadership, Research (from the previous study) were underdeveloped and identified Image Verification and Critical Thinking as additional underdeveloped competencies. Suggested causes included: lack of regulation of required competencies at the national level, lack of training dedicated to radiotherapy (RT) (taught within generic modules) and lack of time within the degree programme. The ideal academic level to develop these competencies and whether they are essential varied between country and stakeholder.Conclusion: It is essential to regulate learning outcomes at the national level to ensure a high level of care is provided to all RT patients and, ideally, standardise it across Europe. Education institutions should review their curricula to ensure that sufficient time is dedicated to RT and that the essential competencies are developed. Due to time constraints within some programmes, some competencies must be developed after graduation.Implications for practice: Lack of regulation of learning outcomes (at European level and national level in many countries) and lack of RT-specific training lead to underdeveloped competencies that may compromise patient care.peer-reviewe

    Successful small bowel allotransplantation in dogs with cyclosporine and prednisone

    Get PDF
    Twelve dogs had transplantation of almost the entire small intestine in the orthotopic location; immunosuppression was with cyclosporine and prednisone. Half the dogs had survival of at least one month, and a third lived for at least four months. Two of the animals are still living after 550 and 555 days. Maintenance of nutrition, and absorption of D-xylose and fat were better than in control animals with an iatrogenic short gut syndrome, but distinctly worse than that of normal dogs. © 1984 by The Williams and Wilkins Co

    Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices

    Get PDF
    Spaceflight system electronic devices must survive a wide range of radiation environments with various particle types including energetic protons, electrons, gamma rays, x-rays, and heavy ions. High-energy charged particles such as heavy ions can pass straight through a semiconductor material and interact with a charge-sensitive region, generating a significant amount of charge (electron-hole pairs) along their tracks. These excess charges can damage the device, and the response can range from temporary perturbations to permanent changes in the state or performance. These phenomena are called single event effects (SEE). Before application in flight systems, electronic parts need to be qualified and tested for performance and radiation sensitivity. Typically, their susceptibility to SEE is tested by exposure to an ion beam from a particle accelerator. At such facilities, the device under test (DUT) is irradiated with large beams so there is no fine resolution to investigate particular regions of sensitivity on the parts. While it is the most reliable approach for radiation qualification, these evaluations are time consuming and costly. There is always a need for new cost-efficient strategies to complement accelerator testing: pulsed lasers provide such a solution. Pulsed laser light can be utilized to simulate heavy ion effects with the advantage of being able to localize the sensitive region of an integrated circuit. Generally, a focused laser beam of approximately picosecond pulse duration is used to generate carrier density in the semiconductor device. During irradiation, the laser pulse is absorbed by the electronic medium with a wavelength selected accordingly by the user, and the laser energy can ionize and simulate SEE as would occur in space. With a tightly focused near infrared (NIR) laser beam, the beam waist of about a micrometer can be achieved, and additional scanning techniques are able to yield submicron resolution. This feature allows mapping of all of the sensitive regions of the studied device with fine resolution, unlike heavy ion experiments. The problematic regions can be precisely identified, and it provides a considerable amount of information about the circuit. In addition, the system allows flexibility for testing the device in different configurations in situ

    Black Hole Evaporation in an Expanding Universe

    Full text link
    We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order 10−5(M/106M⊙)1/3(t/14Gyr)−1/310^{-5} (M/10^{6}M_{\odot})^{1/3} (t/14 {Gyr})^{-1/3} but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes.Comment: Accepted for publication in Class.Quant.Grav., 18 pages and 3 figure

    The Effect of Dosage, Gestational Age and Splenectomy on Anti-IgM Interception of Prenatal B-cell Development in Sheep

    Get PDF
    The administration of a single bolus of anti-IgM antibody to foetal lambs early in pregnancy produces prolonged B-cell depletion. The present study investigated this depletion by examining the effect, on B-cell development in the ileal Peyer's patches, of varying the timing and dosage of antibody administration and by supplementing anti-IgM with surgical splenectomy. The capacity of a 1 mg bolus of anti-IgM to deplete Peyer's patches of B cells was lost if its administration was deferred until two thirds of the way through pregnancy, but persisted beyond this time if weight-adjusted doses were used. Splenectomy of the foetus performed at an earlier age failed to extend the age at which a 1 mg dose of antibody remained effective. As the concentration of murine immunoglobulin in foetal serum was greatly reduced after 21 days, it is inferred that ongoing suppression of B-cell development is not dependent on the continued presence of murine immunoglobulin. The enduring nature of suppression could be attributable to a limited period during which differentiation of B cells from stem cells normally occurs, although further studies will be needed to investigate this and other possible explanations for the effect of anti-IgM treatment on prenatal B-cell development in sheep
    • 

    corecore