1,638 research outputs found

    Clocked Atom Delivery to a Photonic Crystal Waveguide

    Get PDF
    Experiments and numerical simulations are described that develop quantitative understanding of atomic motion near the surfaces of nanoscopic photonic crystal waveguides (PCWs). Ultracold atoms are delivered from a moving optical lattice into the PCW. Synchronous with the moving lattice, transmission spectra for a guided-mode probe field are recorded as functions of lattice transport time and frequency detuning of the probe beam. By way of measurements such as these, we have been able to validate quantitatively our numerical simulations, which are based upon detailed understanding of atomic trajectories that pass around and through nanoscopic regions of the PCW under the influence of optical and surface forces. The resolution for mapping atomic motion is roughly 50 nm in space and 100 ns in time. By introducing auxiliary guided mode (GM) fields that provide spatially varying AC-Stark shifts, we have, to some degree, begun to control atomic trajectories, such as to enhance the flux into to the central vacuum gap of the PCW at predetermined times and with known AC-Stark shifts. Applications of these capabilities include enabling high fractional filling of optical trap sites within PCWs, calibration of optical fields within PCWs, and utilization of the time-dependent, optically dense atomic medium for novel nonlinear optical experiments

    A comparison of single-cycle versus multiple-cycle proof testing strategies

    Get PDF
    An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading

    Non-contact technique for characterizing full-field surface deformation of shape memory polymers at elevated and room temperatures

    Get PDF
    Abstract Thermally activated shape memory polymers (SMPs) can display modulus changes of approximately three orders of magnitude in transitioning from the high modulus, "glassy" state below the glass transition temperature (Tg) to the low modulus, "rubbery" state above the Tg. In the high temperature region, SMPs can achieve strain levels well above 100%. Their complex behavior includes large modulus changes to as low as ∼1 MPa, extremely high strain levels, and path dependent properties, thus precluding the use of traditional strain gages and low-contact force extensometers. The present study presents a comparison of thermomechanical testing techniques developed to characterize the material behavior of SMPs. Specifically, the performance of strain measurements using contact methods (clip-on extensometers and adhesive strain gages) are compared to non-contact methods (laser extensometer and digital image correlation). An MTS environmental chamber with an observation window allows for non-contact optical measurements during testing. A series of tensile tests are performed on a commercial SMP (with a Tg of ∼105 °C) at 25 °C and at 130 °C. It is observed that the clip-on extensometer significantly affects the SMP behavior even in the low temperature, high modulus state. Overall, the laser extensometer provides a robust method for controlling the axial strain in the gage section of the samples at moderate strain rates. The digital image correlation allows for full field measurement of both axial and transverse strains of SMPs over a range of temperatures and strain rates

    Cloning of the rice Xo1 resistance gene and interaction of the Xo1 protein with the defense-suppressing Xanthomonas effector Tal2h

    Get PDF
    The Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription and is suppressed by truncated variants called truncTALEs, common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zinc finger BED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is more similar to those mediated by two other NLR resistance genes than it is to the response associated with TALE-specific transcriptional activation of the executor resistance gene Xa23 and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And endogenous Xo1 specifically coimmunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical interaction. They further suggest that effector coimmunoprecipitation may be effective for identifying or characterizing other resistance genes

    Efficacy and safety of a novel delayed-release risedronate 35 mg once-a-week tablet

    Get PDF
    Dosing regimens of oral bisphosphonates are inconvenient and contribute to poor compliance. The bone mineral density response to a once weekly delayed-release formulation of risedronate given before or following breakfast was non-inferior to traditional immediate-release risedronate given daily before breakfast. Delayed-release risedronate is a convenient regimen for oral bisphosphonate therapy

    Strain Rate Dependence and Short-Term Relaxation Behavior of a Thermoset Polymer at Elevated Temperature: Experiment and Modeling,"

    Get PDF
    The inelastic deformation behavior of polymerization of monomeri

    Significant issues in proof testing: A critical appraisal

    Get PDF
    Issues which impact on the interpretation and quantification of proof test benefits are reviewed. The importance of each issue in contributing to the extra quality assurance conferred by proof testing components is discussed, particularly with respect to the application of advanced fracture mechanics concepts to enhance the flaw screening capability of a proof test analysis. Items covered include the role in proof testing of elastic-plastic fracture mechanics, ductile instability analysis, deterministic versus probabilistic analysis, single versus multiple cycle proof testing, and non-destructive examination (NDE). The effects of proof testing on subsequent service life are reviewed, particularly with regard to stress redistribution and changes in fracture behavior resulting from the overload. The importance of proof test conditions are also addressed, covering aspects related to test temperature, simulation of service environments, test media and the application of real-time NDE. The role of each issue in a proof test methodology is assessed with respect to its ability to: promote proof test practice to a state-of-the-art; aid optimization of proof test design; and increase awareness and understanding of outstanding issues
    • …
    corecore