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EXECUTIVE SUMMARY

Proof testing a component by applying a load greater than it would experience during service

is a well established method of screening out manufacturing and material defects before the

product is delivered. The quality assurance conferred by proof testing hardware and its use

as a method of establishing fitness-for-service have been discussed many times in the open
literature.

Fracture mechanics has often been employed to justify proof test procedures and to quantify

claimed benefits arising from increased structural reliability and remaining safe life. In

recent years there have been a number of developments in the field of fracture mechanics that

impact on the theory underpinning proof test philosophy. With fracture mechanics and proof
testing playing a major role in NASA fracture control requirements, and with the severe

structural demands made on aerospace propulsion systems, such as the space shuttle's main

engine, there is an important need to re-establish the principles on which the proof test

philosophy is based, in the light of state-of-the-art technology.

This report is the first stage in the process of specifying a state-of-the-art proof test

methodology. In it some of the issues which impact the interpretation and quantification of

proof test benefits are identified and discussed. The intent is not to identify all those issues

which are related to proof testing, but to concentrate on those which play a significant role in

determining the ramifications of the proof test, and which can be addressed and resolved

within the current knowledge base, or on a short timescale. Examples of some of the fracture
mechanics issues addressed within this context are:

• application of elastic-plastic fracture mechanics to proof test analyses;

• effect of material's fracture behavior, whether it is brittle or ductile, on proof test
procedures;

• sensitivity of a proof test analysis to assumed defect shape;

• influence of ductile tearing and instability on analysis of single and multiple cycle
proof tests;

• relative merits of deterministic and probabilistic analyses;

• relationship of proof test load level to the margin of safety conferred by proof
testing;

• effect of proof loading on subsequent structural integrity under service conditions;

• effect of proof loading on subsequent material fracture behavior;

• optimization of periods between proof tests to maximize the lifetime of

re-certifiable components;

• relationship of proof loading to non-destructive examination;

• effects of proof loading in a service environment.

Other issues which are not related to the technical aspects of proof test analysis are also

discussed for completeness. These non-technical subjects influence how, and how frequently,

a proof test should be carried out, but do not directly affect the technical justification for the
testing. Examples of these kinds of issues are:

• the economics of proof testing

• personnel training and certification

• proof test procedures, documentation and safety plans

• role of test fixtures, seals and fasteners

P_G, JE B_.ANK NOT FILM_
yJ_±i



Some important technical issues which directly relate to proof testing methodology are

presently being addressed in two other NASA sponsored projects being performed at
Southwest Research Institute and under subcontract at Rocketdyne: "Elastic-Plastic and

Fully Plastic Fatigue Crack Growth" (NASA Contract Number NAS8-37828) and

"Comparison of Single Versus Multiple Cycle Proof Testing" (Contract Number NAS8-37451).
The results of these two projects have been used to complement the investigations in the

current project.

The technical issues raised are critically reviewed using the following criteria:

• their importance in a proof test methodology;

• their status and general acceptance;

• the availability of implementing technology;

• further technological requirements;

• the data required to implement the technology;

The conclusion of this review of significant issues affecting proof testing is a list of parameters

and phenomena that are deemed not only essential to formulating a proof test methodology,

but also well enough understood and validated, or probably could be within the time and

resources of the project, to be used as a technical basis for underpinning the methodology.

Inclusion of the list items in a proof test methodology would: promote this to a state-of-the-art

technology; identify those aspects which would aid optimization of proof test design with

respect to maximizing its effectiveness; and increase awareness and understanding of

outstanding issues, like the relative merits of single and multiple cycle proof loading.

Items included on this list are:

Related to analysis:

• guidance on how to determine proof test margins and safe remaining life

• guidance on determining proof test intervals for re-certifiable components

• guidance on which applications, materials, and structures are most conducive to the

benefits of proof testing

• elastic-plastic fracture mechanics (EPFM)
• discussion of different fracture regimes and the fracture mechanics parameters

applicable to each
• ductile instability analyses

• simple approximate methods of estimating the EPFM parameter J
• recommended treatment of secondary stresses in EPFM

• comment on the use of EPFM parameters for characterizing proof test loads with

respect to service loading
• elements of probabilistic analyses

• relationship of proof test probabilistic methodology to existing NASA probabilistic

methodologies
• suggested methods of deriving probabilistic distributions from existing but limited

data

• indications of the probability of detecting flaws in aerospace hardware

• analysis treatment of multiple cycle loading

• guidance on residual stress distributions in typical aerospace hardware
• indications of defect distributions in aerospace components

xJ_v



• discussion on the impact of defect shape on proof test margins

• comments of the significance flaw characterization in proof test analyses

• synergistic relationship of proof testing and NDE

Related to material behavior

• recommendations for obtaining material data for proof test usage

• description of different types of material fracture behavior and their impact on proof

test analysis

• rules for assessing the interaction of static and cyclic crack extension mechanisms

• rules for assessing the effect of load history on subsequent fracture behavior

• rules for assessing the effects of environment on material behavior

Related to test conditions

• guidance on proof test temperature

• guidance on when to perform multiple cycle or single cycle proof tests
• recommendations on the need to simulate service environments

• recommendations on loading rates and hold times

• suggested test media

• use of real-time NDE to enhance flaw screening capability

It is concluded in this report that a proof test methodology based on probabilistic analysis will

be far more effective than one based solely on a deterministic philosophy. The probabilistic

approach removes many of the technical problems and logical inconsistencies which beset a

deterministic methodology. The value of the proof test is greatly enhanced as a flaw

screening method when combined with non-destructive examinations of the component.

It should be recognized that the proof test is not universally applicable as a pre-service

method of guaranteeing structural reliability during service, especially if more reliable and

effective NDE methods are available. This is because its range of application may be limited

by both non-technical and technical factors. Furthermore, the process of guaranteeing the

structural reliability of a component during service is usually not based solely on the results

of a proof test. These observations lead to the conclusion that a proof test methodology should

be pragmatically based on a series of levels with guidance on which level is most appropriate

for a given application: the higher the level, the greater the technological sophistication.

It is also concluded that proof test analysis capabilities would be greatly increased by

developing:

• a probabilistic data base consisting of source data, and/or distribution functions and

their respective constants, for all key assessment parameters

• computer software for calculating elastic-plastic fracture mechanics parameters and

performing a proof test analysis
• a methodology for determining the cost benefits of proof testing
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1. INTRODUCTION

Proof or overstress testing a component consists of applying a load greater than it would

experience during service. This practice is well established as a means of detecting, possibly

destructively, gross manufacturing and material defects before the product is delivered. The

quality assurance conferred by the proof testing of hardware and its use as a method of

establishing fitness-for-service, have been discussed in a number of published articles [1-10].

There are still major outstanding issues concerning the advisability of performing proof tests

in some situations, its effectiveness as a flaw screening method, and whether the potential

benefits outweigh the costs and effectiveness of establishing quality assurance using

alternative non-destructive (NDE) methods. However, it is not acceptable to dismiss the

proof test because of cost, because of difficulties in performing the test, or because of the

damage it might inflict, without having a reliable NDE alternative of assuring the quality of
the delivered article.

Examples of some areas where uncertainties still linger are the efficacy of proof testing

ductile materials and the advantages and disadvantages of single cycle versus multiple
cycling proof tests. On technical grounds, for example, components made of ductile materials

should be poor candidates for proof testing because of their high toughness, low yield stress,

and ability to tolerate crack extension under a rising load. This high tolerance to cracking

implies that large defects will survive the proof loading and reduce its flaw screening

capability. The effectiveness of the proof test for ductile materials may be so reduced that

relatively simple and cheap NDE procedures will be able to provide a more effective means of

ensuring acceptable quality. It has also been argued that multiple cycling will introduce

more damage into the component than single cycling, because of the additional increase in

crack size this will produce. This factor would appear to eliminate any benefits that may

accrue from multiple cycle proof testing of ductile materials. However, the Rocketdyne

Division of Rockwell International has pioneered the application of multiple cycling proof
testing to propulsion systems and demonstrated the benefits on actual hardware in terms of

increased survivability during service. This contradiction between the preconceived

expectation of poor performance of proof testing, and the actual results, illustrates but one of

the many conflicting issues which help confound and confuse questions as to whether and
how to proof test.

The proof test cannot be treated in isolation from its effects on subsequent structural
reliability. It is not sufficient to argue that a component is fit-for-service because it has

survived the proof loading. This assurance can only be made if the damage introduced by the

proof test can be quantified in some form and judged against the benefits, which themselves

have been similarly quantified based on the extra knowledge gained from the test. It is only

through this quantification of damage and benefits that the test conditions that maximize the

effectiveness of the proof test can be identified. Before this procedure can be carried out the
mechanics and mechanisms of the proof test process have to be understood in terms of
structural and material behavior.

The discipline of fracture mechanics provides the analytical tool that links the

mechanics and mechanisms of proof testing and relates their effects to fracture behavior, and

hence to a means of quantifying damage and benefits. Fracture mechanics plays a key role

in analyzing proof test procedures that are used to screen for unacceptable defects. It

provides the means of quantifying benefits arising from increased structural reliability and



remaining safelife. Over the past 20yearsthere havebeenmajor developmentsin fracture
mechanicswhich mayhave important ramificationson the waya proof test is analyzed. For
example,there havebeensignificant developmentsin elastic-plasticfracture mechanics,the
assessmentof crack instability after ductile tearing, and failure analysis due to plastic
collapsemechanisms. Sincefracture mechanicsplays a major role in NASA fracture control
requirements [2,11-15],there is an important needto re-visit the principles under-pinning
the proof test procedures which form part of those requirements, in the light of current
state-of-the-art technology. This is particularly the casefor aerospacepropulsionsystems,
such as the spaceshuttle main engine, which have severestructural demandsplacedon
them.

A previousNASA review of proof test technology[7] suggestedthat increasedknowledgein
four areas would producegreater understanding of proof testing, and hencea consequent
improvement in its effectiveness.Theseareasare relatedto the effectsof multiple cyclingon
proof testing; probabilistic modellingof proof testing; innovative testing techniques;and the
relationship of proof testing to non-destructivetesting. To these topicscould beaddedthe
effect of proof loading on subsequent fracture behavior; optimization procedures for
determining proof test intervals; andthe effectivenessof testing in serviceenvironments.

Two major technical issueswhich directly relate to proof testing methodologyare presently
beingaddressedin parallel NASAsponsoredprojectsbeingperformedat SouthwestResearch
Institute and under subcontractto RocketdyneDivision of RockwellInternational. Theseare
NASA Contract Number NAS8-37828,"Elastic-Plastic and Fully Plastic Fatigue Crack
Growth", and Contract Number NAS8-37451,"Comparisonof SingleVersusMultiple Cycle
Proof Testing". The results of these two projects have provided,and continue to provide,
valuable state-of-the-art technologywith direct application to proof testing.

In this report the available information on these and other proof test related topics is
reviewed with the intent of defining the current state-of-the-art in proof test logic and
practice. This information is thenusedto identify thosetechnicalissueswhich are important
in understanding the ramifications of proof testing and in the formulation of a methodology
for assessingits effectiveness. To further this end, eachtechnical issueis judged against
criteria related to its perceivedimportancein prooftesting; its status and generalusage;the
availability of enabling technology;further technologicalrequirements;andthe datarequired
to implement the technology.

Eachsectionof the Reportaddressesa particular aspectofprooftestingpracticeand analysis.
Section2 reviewsthe manyusesof prooftesting anddiscussesits perceivedadvantagesand
disadvantages.This discussionhighlights the difficulties in prooftest decisionmaking. Proof
test methodologies are addressedin Section3, where deterministic and probabilistic
approachesare discussed.Section4is concernedwith the factorsthat influence thechoiceof
proof test conditions, such as the test environment and the type of loading. Section5
describestechnical aspectsof the analysesused to support the proof test, and Section6
addresseshow the proof test loading impacts on the assessmentof subsequentstructural
integrity of the testedcomponentunder serviceconditions. Issueswhich arenot related to a
prooftest analysisbut whichplay an important role in the quality andsafetyof the test, such
as personnel training, test proceduresand safety plans, are discussedin Section7. In
Section8, the results of the investigations reportedin the previoussectionsare discussedin
general terms, and in Section9 conclusionsare drawn regarding those parameters and
phenomenawhich aredeemedimportant in the formulation of a proof test methodology.
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2. APPLICATIONS AND PERCEIVED BENEFITS

AND CONCERNS OF PROOF TESTING

There are many kinds of structures that are proof tested. Ultimately, the decision as to

whether to proof test a component rests on the perceived benefits and concerns. These are

driven by, among other things, the safety, quality assurance, and economic considerations of

proof testing relative to other in-process and final NDE inspection techniques. This section

briefly reviews some of the reported applications of the proof test method and highlights some
of its potential benefits and detriments.

2.1 Review of Proof Test Applications

Prior to 1959 proof testing was performed to expose material and/or manufacturing

deficiences, but there was no quantitaive interpretation as to what a successful proof test

meant in terms of subsequent operational usage. A quantitative interpretation based on

linear elastic fracture mechanics was first introduced in that year and reported some years

later by Tiffany and Masters [1] along with other applications of fracture mechanics to

pressure vessels.

Nichols [3,4] in his major review of overstressing techniques in 1968 quotes many examples

where proof testing has been applied, including structures as diverse as bridges, storage

tanks, pressure vessels, pipelines, penstocks and spiral casings for hydraulic turbines.

Tiffany [2] has discussed the role of proof testing in the fracture control of metallic pressure

vessels in the aerospace industry. His developed proof test methodology addresses such

components as high pressure gas bottles, solid propellant motor cases and storable and

cryogenic liquid propellant tanks. Certification procedures used for pressure vessels at

deactivated ATLAS missile sites have been described by Luttrell and Henderson [16] and

re-validation of air storage vessels by Smith and Cameron |17].

There are other reported applications of proof testing to pressure vessels in a variety of

industries. Notable amongst these are the proof testing of nuclear reactor pressure vessels

in the power generation industry [5,8,9,18,19]. The significance of the proof overload on the

fracture resistance in ferritic steel pressure vessel materials has been reviewed by Smith and

Garwood [20]. Novotny [21] has reported on the increase in pressure vessel service life due

to the mechanical stress relieving effects ofoverstressing. Other pressure vessel applications

have included the optimization of proof testing and non-destructive examination (NDE) for

aluminum pressure vessels [22]; structural integrity verification by acoustic emission (AE)

during proof testing of welded steel and aluminum vessels [23]; applications to reactor

components [25]; and an assessment of the influence ofpre/in-service inspections and tests on
reactor pressure vessel reliability [24].

Many other uses have also been found for proof testing in the aerospace and aircraft

industries. Buntin [26] describes the theory and practice behind proof testing of F-111

production aircraft. Carlyle [27] has shown how the effectiveness of the proof test can be

enhanced by NDE monitoring using real time AE. Au and Speare [28] detail the calculation
of proof test safety factors in relation to reusable solid fuel motor cases. Corle and

Schliessmann [29] have demonstrated improved flaw detection in rocket motor casings by AE

when used in conj unction with proof testing. Broek [10] has argued for the use of proof testing

to determine safe inspection intervals for aircraft subject to multiple site damage. Collipriest

and Kizer [30] have investigated proof test logic when applied to construction materials used

3



for the structural tankage of Saturn V secondstagerockets. Dawicke,et al. [31] evaluated

the pressure proof test concept for fuselage structures. Hsieh, et al. [32] have proposed a

methodology for utilizing the flaw screening capabilities of the proof test in order to establish

the integrity of fracture critical fasteners. Also, in the aerospace industry, NASA, through its

fracture control documents, has specified proof testing for pressure systems, rotating

machinery, and fracture critical fasteners [2,11-14].

The foregoing applications are based on a single cycle proof test. The benefits of multiple

cycle proof testing of ductile aerospace hardware have been addressed by Mendoza and
Vroman [6], Besuner, et al. [7], Hudak and Russell [33], and Hudak, et al. [34]. These authors

investigated the role of ductile tearing and probabilistic analyses in proof test assessments.

Proof testing has been employed to assess the defect tolerance of pipelines [35]; to assess the

implications of hydrotesting on line pipe serviceability [36-41]; to investigate the defect

tolerance of high toughness pipe steels [42]; to develop a proof test logic for hydrogen

embrittlement control [43]; and to monitor the proof testing of a repaired steam locomotive

boiler using AE [44].

There have been many proof test applications of reliability and probability analysis

techniques. Yang [45,46] has presented reliability analyses for fatigue critical structures in

aircraft based on periodic proof testing. Shinozuka and Yang [47] have addressed the

problem of optimum structural design based on cost constraints and Barnett and Hermann

[48] have performed a similar exercise with respect to the role of proof testing in design with
brittle materials. Statistical and reliability treatments based on proof test results have also

been developed for pressure vessels [49,50] and gas duct pressure welds [51]. The combined

effects of proof testing and NDE on the reliability of cyclically loaded structures has been

explored by Harris [52].

These multivarious applications of the proof test demonstrate the versatility and widespread

usage of the method as a tool to establish the integrity and reliability of structures for service.

However, the clearly perceived benefits of the approach are not always realized, and Nichols

[3,4] reports a number of cases where failures occurred after overstressing that were
attributed to its deleterious effects. Certainly, if failure occurs during a test on a full scale

structure then massive damage and economic penalties can result, as demonstrated by the

catastrophic failure of a shrunk on disc during overspeed testing at Hinkley Point A power

station [53].

2.2 PQtenti_l Benefits of Proof Testing

The effectiveness of a proof test may differ from location to location within a given component

due to variations in stress amplitude, constraint, material properties, and the efficacy of

complementary NDE techniques. Based upon the review of proof testing, the following

benefits arising from proof testing are often given: increased structural reliability;

fabrication and quality assurance; enhancement of non-destructive examination (NDE);

defect sizing and flaw screening in situations where NDE is not useable; mechanical stress

relief; and verification of stress analysis.
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2.2.1 Structural Reliability

Probably, the most commonly understood reason for proof testing is its use as a

demonstration of structural integrity. The practice of proof or overstress testing prior to

operational usage has been an accepted form of "good design practice" for many years. The

rationale behind this belief is that proof test survival provides increased assurance of survival

of a component at a lower stress during operation. It is argued that the improved structural

reliability occurs because, during the proof test, weaker components are removed from the
in-service population without impairing the reliability of the surviving components. Testing

in an embrittling environment such as pressurized hydrogen may be required in some

aerospace applications in order to prove survivability under these conditions.

2.2.2 Fabrication and Quality Assurance

Many standard structural guidelines exist that call for overstress proof testing as an integral

part of the fabrication and quality assurance procedures. Proof testing can be performed

prior to operation as a post-process or in-process fabrication test, or periodically to re-certify

components after operational usage. The purpose of the proof test in these cases is to expose

deficiencies, poor material, and poor workmanship, which may manifest themselves through

cracking, leakage or rupture during the proof test. In the past, proof testing has also proved

valuable in detecting poor design features, and in checking the functional sealing capability

of the basic design.

2.2.3 Flaw Screening

The value of proof testing is increased when it is combined with fracture mechanics principles

and used as a quantitative flaw screening method. The screening enables the component to

be entered for service with a high degree of confidence that no flaw is present greater than a

size which is determined from fracture mechanics. The significance of this is twofold: first,

confidence is gained in assessing the component during subsequent service since an area of

uncertainty related to the existence of large defects and poor material is reduced; second, an

initial safety margin may be identified based on the ratio of the largest flaw size surviving

the proof test to the critical flaw size calculated at operating conditions. There is also a

related benefit: the severity of the notch or crack may be reduced by blunting due to the proof

loading.

2.2.4 Other Benefits

Proof testing may not only be used as an alternative means of detecting unacceptable defects

(for example, if geometric complexities compromise the effectiveness of non-destructive

examination (NDE)), but also as a complementary method to NDE. Component reliability

may be increased through a strategy of combined inspection using both proof testing and

NDE. In addition, it is also argued that the detectability of defects by NDE is improved by

proof testing as this increases the separation between flaw surfaces due to crack tip blunting.

Mechanical stress relief as a consequence of proof testing may reduce or remove detrimental

residual tensile stresses introduced by fabrication or handling. Furthermore, beneficial

compressive residual stresses can be introduced during this process when localized yielding

occurs. In the case of autofrettage, compression is introduced on the inside diameter of a
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pressurevessel. For notchesor pre-existing defects,plasticity that occursat the tip or notch
root producesbeneficial compressionand crack closurethat can retard subsequentfatigue
crackgrowth.

Finally, prooftesting maygivethe opportunity for strain gaugingthecomponentduring proof
loading in order to provideverification of structural stress analysis. This is an important
consideration because accurate stress analysis results are essential for the accurate
determinationof fracture mechanicsparametersand demonstrationof structural adequacy.

2,3 Concerns Related to Proof Testing

For each specific application, the usefulness of the proof test in verifying the quality of each
article has to be evaluated in the light of possible detrimental effects and cost impacts,

compared with the reliability and cost of alternative NDE methods. Detrimental or negative

effects of proof testing are related to the introduction of damage; cost of testing and failures

that happen during testing; practical difficulties in performing and designing useful proof
tests; and incidental effects resulting from the testing. However, if there is not a reliable

alternative NDE method available, and in-service failures cannot be tolerated, then the cost

of proof testing, and other practical problems and difficulties associated with it, become of less

concern in deciding whether to proof test or not.

2.3.1 Damage

The most common concern in proof testing is how to avoid the introduction of unnecessary

damage in the component. Damage can be introduced into the component during proof

testing from a number of causes. For example, if the test is performed under conditions where

the material is significantly lower in ductility than it would be at operation, there is the

possibility of initiating cracking due to the overload that would not otherwise have occurred.
In addition, even in cases of comparable ductility, severe proof conditions can accelerate

subsequent fatigue crack initiation and growth due to the overload.

The size of existing defects may be increased by subcritical flaw growth occurring by

monotonic, cyclic and time dependent mechanisms which weakens surviving components

relative to the pre-test condition. This flaw growth can be extremely detrimental if allowed

to occur during proof unloading or subsequent storage prior to operational usage.

Potential degradation of future component performance or material capability due to proof

testing can also occur due to the introduction of detrimental yielding; a reduction in ductility

due to prestraining and strain ageing; and the creation of local tensile residual stresses.

2.3.2 Cost

Issues such as complexity of the component design, operational usage and class of material

will contribute significantly to defining test conditions and the relative cost of proof testing

compared with alternative NDE methods. The costs associated with proof testing include the

expense of performing the test and the risk of component failure. The latter expenses include

possible damage to the tooling and test facilities, as well as the component replacement cost.
These have to be weighed against the ramifications of service failure which oftentimes can be

extremely severe.
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The cost and possible advantages of proof testing should be compared to those of
non-destructive testing, to determine its relative value as an effective flaw screener for
ensuring componentreliability. An obviouscriterion for choosinga flaw screeningprocedure
is that it minimizes the total expectedcostwhile meeting a particular structural reliability
level during operation.

A high incidenceof prooffailure canoccurif the flaw sizescreenedby the prooftest is small
comparedto likely defect sizes introduced by the fabrication process. Therefore, while
increasingthe severityand/ornumberof proof testscan leadto greater structural reliability
in servicefor surviving components,it may needlesslyincrease the number of component
failures during proof testing which arise from flaw sizesthat are smaller than the size that
would have grown during subsequentserviceto have causedfailure. As the cost of proof
testing and proof failures decreasesit is anticipated that the optimum numberof proof tests
and the proofload levelwill increase. In addition, if the primary quality assurancemeasure
is through nondestructiveinspectionprocedures,unnecessaryrisk of proof failure canoccur
if the flaw sizescreenedby the proof test is smaller than that which is readily detectableby
NDE.

Besidesthe costof the proof test per se,there arecostsincurred in performing a proof test
analysisin order to assessthe effectivenessof the test. Theseadditional expensesarise from
stressanalysisand acquisitionof material property data that pertains to the test conditions.

2.3.3 Practical Difficulties

The feasibility of performing proof tests is intimately related to practical issues related to

difficulties in performing the test. For example, difficulties in full-scale proof testing of large

structural systems may preclude any possibility of doing so; cryogenic proof testing may be
desirable, but impractical due to effective sealing concerns; simulation of operational stresses

is very desirable, but may not be possible due to the existence of thermal stresses or external

loading during operation. Proof testing in potentially explosive media such as high pressure
hydrogen, may be impractical due to safety concerns.

2.3.4 Incidental Effects

The conditions under which a key component is proof tested may be qualified by the

incidental effects that this has on other components which are intimately associated with the

testing. For example, a sub-component may be overstressed because it forms part of the load

path to the main component. Similarly, some parts may experience multiple cycle proof

testing because they are sub-assemblies of larger structures, each of which is proof tested in
the course of assembling a key component. The proof load level, and hence, the effectiveness

of the proof test, may have to be reduced in order to avoid the consequences of inadvertent
failure of these sub-assembled items.
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3. PROOF TEST METHODOLOGIES

There are two approaches to developing a proof test methodology: the deterministic and the

probabilistic. A deterministic methodology for proof test analysis is an essential precursor to

a probabilistic treatment. Indeed, where the available data is not sufficient to support a

probabilistic approach, a deterministic analysis is the only alternative. Thus, the two

approaches have much that is in common.

The general logic behind proof test methodologies is discussed in Section 3.1. The technical

significance of deterministic and probabilistic approaches to proof test analyses are

summarized in Tables 1 and 2, respectively, and discussed in more detail in Sections 3.2 and

3.3.

3.1 Proof Test Lo_c

The major purpose of a proof test is to ensure the safety of the tested component during

normal operating conditions. Fracture mechanics concepts have been employed for many

years to provide a methodology to support the proof testing of components [1-4].

3.1.1 The Principle

The principle behind the method is illustrated in Figure 1 for the case of a single cycle proof

load application to a cracked brittle material. In Figure 1 the maximum defect size, ao, that

could just survive the proof test overload, Po, is calculated using fracture mechanics

principles. Limited knowledge of the defect size distribution remaining in the component is
obtained if the test is successful, it can be argued that no defect of size greater than ao exists

in the component after the test.

In the context of a proof test, failure does not necessarily imply a catastrophic event, but

refers to any indication that the component is not fit for service. For example, leakage

between compartments in aerospace propulsion systems during operation could result in the

release of volatile liquids with catastrophic results. In this case, penetration of the wall of the

component by a defect during proof loading would be classified as a failure, even if the

through wall flaw remained stable during the test.

The proof test logic assumes the worst case scenario that a defect of size ao is present in the

component, and this is used as the initial crack size in a remaining life estimation. By

adjusting the value of Po it is hoped to arrive at a calculated value of ao so that the required

remaining life can be realized without incurring an unacceptable risk of failure during the

proof loading. The remaining life is determined by sub-critical crack growth during service,
due to mechanisms such as fatigue, environmental attack and creep, up to a maximum

tolerable size, a, which is calculated from fracture mechanics for the most onerous service

load, P_.

In general, the calculation of ao is simpler than the evaluation of as, as the conditions under

which the proof test is performed are usually well defined and controlled, and less complex
than the conditions which pertain at operation. Similarly, the determination of the amount

of crack growth during service can present a formidable task.
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Table 1. Technical Assessment for Issue 3.2: Deterministic Approach

Importance

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the
Technology

A deterministic approach defines those elements of a fracture

assessment that are essential to a proof test analysis. Furthermore,

progress in developing a probabilistic methodology is dependent on

understanding these deterministic elements.

The deterministic approach has been widely used to support proof test

analyses. It has proven successful in the past, although there are

reported instances when unanticipated failure occurred during

subsequent service. However, there are many theoretical problems

and inconsistencies associated with the deterministic approach.

Many workers who have critically reviewed the logic of proof testing

from the deterministic viewpoint, have concluded that it is not

satisfactory. However, it is still employed and considered useful in

quality assurance and fitness-for-service applications, especially in
simulated service environments. Its effectiveness is increased if it is

used in conjunction with other flaw screening technologies, such as

NDE. It provides demonstrative benefits related to such issues as

mechanical stress relief and empirical validation of stress analysis
results.

Some of the deterministic elements, such as stress analysis, linear

elastic and elastic-plastic fracture mechanics, are now well

established and supported by computer software packages.

These are related to the application of the deterministic elements of

the methodology. Topics such as the treatment of secondary loads,

flaw characterization, time dependent fracture, and the interactions

between static and cyclic loading, are still not fully understood.

This is related to the data available to implement the various

deterministic elements of the methodology. In the case of

recertification for service the effects of prior service history on

material behavior are not fully understood.
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Table 2. Technical Assessment for Issue 3.3: Probabilistic Approach

Importance

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the

Technology

The probabilistic approach is essential to providing a technical

understanding, and quantitative justification, for the proof test and

its relationship to subsequent structural reliability.

It is recognized that a probabilistic analysis helps remove the

technical problems and logical inconsistencies which beset the

deterministic approach. It is also seen as a way of combining the

safety, technical and economic issues within a comprehensive

methodology. There are a number of reported instances where

elements of a deterministic approach have been replaced by

probabilistic elements, and this has greatly strengthened the

effectiveness of the proof test argument as a guarantor of component

integrity. It is generally accepted that any benefits that accrue from

multiple cycle proof testing can only be explained in terms of a

probabilistic framework.

The same items as are listed in Table 1 are available. Additionally, a

variety of distribution functions, which describe uncertainties in the

required parameters, and methods of solving probabilistic problems

are available. Probabilistic computer software, such as NESSUS, will

need to be modified for use in a proof test analysis.

The same items as listed in Table 1 for a deterministic approach are

applicable. Additionally, there are requirements related explicitly to

a probabilistic analysis. Most existing fracture mechanics

probabilistic approaches are limited to linear elastic applications. An

adaptation of these to incorporate the additional complexities of

elastic-plastic fracture and ductile instability will be required.

Far more data is required to implement a probabilistic methodology

than is indicated in Table 1 for a deterministic analysis. The data

base has to be sufficient for any uncertainties associated with

material scatter, inspection, measurement and calculation to be

quantifiable by probability distribution functions. This detail of

information is likely to be available only for a limited number of

assessment parameters, such as variations in some of the material

properties and, possibly, the distribution of defect sizes in a

component.
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An important aspect of applying the proof test method is recognition that the defect of size ao

is a postulated defect whose size is calculated using a worst case scenario, it may not actually

exist in the component. However, a comprehensive proof test methodology should take full

account of the effects of proof loading on defects actually present in the component during the

test and which survive it. This should include consequent fracture and fatigue behavior, as

well as the effects of proof loading on the detectability of defects should a post-test

non-destructive examination be performed. This can be accomplished through a probabilistic

approach to proof test analysis.

3.1.2 Influence of Defect Shape

In practice, naturally occurring defects are idealized as semi-elliptical or elliptical in shape,

depending on whether they are surface breaking or embedded. This means that they cannot

be characterized by a single crack-size parameter, ao or a,. If specific information on typical

crack shapes is not available for a given component, then to cater for this situation a range of

defect depths and lengths have to be assessed and proper account taken for the potential

change in defect shape during proof loading and subsequent service. Typical defect shapes

have aspect ratios a/c in the range of 0.1 to 1.

Figure 2 illustrates the application of a proof test analysis to determining the remaining safe

life of a defective component when the flaws are assumed to be surface breaking. Initially, a

locus of crack depths, ao, and surface lengths, 2Co, of defects which could just survive the proof

loading is determined using fracture mechanics principles. A similar exercise is then

performed using the most onerous service loading to obtain a locus of crack depths, a,, and

surface lengths, 2Cs, which would cause failure under these service conditions. The proof load
locus is then used to define a set of initial defect depths (al, a2, a3, etc., in Figure 2) and the

growth of these flaws is assessed under service loading conditions, taking full account of the

change in shape, to obtain the corresponding times (tl, t2, t3, etc.) or cycles to failure. The
minimum of these times or cycles then represents the safe remaining service life of the

component.

Uncertainties in the flaw shape are better treated within a probabilistic analysis rather than

using a deterministic assessment and following the lengthy procedures implied by Figure 2.

3.1.3 Application to Brittle Materials

Fortuitously, the proof test philosophy can most easily be justified for brittle materials, which

are the ones most susceptible to fracture during service. This results from the fact that in

brittle materials crack extension is coincident with catastrophic failure. There are no

complications related to stable crack extension prior to instability. Furthermore, because low

toughness materials are not tolerant of cracking, the maximum tolerable defect size tends to

be small and inversely proportional to the square of the applied load. This increases the flaw

screening capability and produces a greater ratio of as/ao for a given ratio Po/Ps than is the

case for tougher materials, thus giving greater flexibility in the choice of proof load. This

advantage can be further increased by performing the proof test at a temperature where the

toughness is lower than it would be in service [2,7 ], although this advantage may be partly or

wholly offset by the costs associated with higher probability of component failure during the

proof loading.
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Complications can arise as a consequence of the proof testing of brittle materials, such as
ferritic steels, below their ductile-brittle toughness transition temperature. These problems

are relevant to materials that are proof tested at a higher temperature than occurs in service,

and relate to load history and material effects modifying the subsequent toughness of the

material. More discussion of these topics is given in Section 6.4. These types of material are

not widely used in the manufacture of aerospace propulsion systems.

3.1.4 Application to Ductile Materials

Although the illustration in Figure I pertains to materials where fracture occurs without any

prior crack extension due to static failure mechanisms, the concepts have also been applied

to ductile materials where tearing precedes instability. In particular, advantage has been

taken of the increase in toughness of ductile materials with increasing tear length in order to

move from single cycle proof test loading to multiple cycle loading [6,7,34].

The application of the proof test philosophy to ductile materials is complicated by the more

sophisticated analysis required compared with brittle materials. Allowance has to be made

for the possibility of ductile tearing from the crack tip during the proof loading, and a ductile

instability assessment should be performed.

3.1.5 Other Considerations

Although most proof test analyses reported in the open literature successfully employed

linear elastic fracture mechanics, it is now recognized that a proof test analysis should be

based on elastic-plastic (EPFM) rather than linear elastic (LEFM) fracture mechanics. Crack

tip plasticity reduces the maximum tolerable defect size in a structure with respect to the

predictions of linear elasticity theory, because it increases the value of the crack driving force

for a given applied load (Figure 3). Thus elastic-plastic fracture mechanics can produce

significantly different failure predictions compared with a linear elastic analysis. It is

imperative that the fracture analysis of ductile materials be based on EPFM as the level of

crack tip plasticity at failure in ductile materials will generally be much greater than in
brittle ones.

The temperature at which the proof loading is applied may differ from the actual operating

temperature and the environment the test is carried out in may differ from the service

environment. Furthermore, the type of the loading used in the proof test may differ from the

most onerous loading experienced in service. For example, the highest risk of failure during

service may be during start-up when the component is subjected to severe thermal stressing

while the proof loading is applied in the form of internal pressurization. Appropriate

allowance has to be made for these possibilities when choosing the proof test parameters,

such as Po, and when interpreting the results.

Periodic proof testing is frequently used to re-certify components for further service.

Depending on the consequences of failure, the criterion for the component to re-enter service

is usually specified in terms of the ratio of the calculated remaining life to the time to the next

proof test. In the aerospace industry, this ratio can be as high as 4 for fracture critical

components.
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3.2 Deterministic Approach

In a deterministic assessment it is necessary to use specific data in the fracture mechanics

calculations. In order to assure safety pessimistic data should be employed. In normal

structural integrity assessments this would mean, for example, using lower bound values for

the fracture toughness and the yield stress in the analysis. However, this approach will not

necessarily assure safety in a proof test methodology.

It is prudent to use upper bound values for the toughness and yield stress in order to

maximize the value of ao because this is postulated to be an upper bound to existing defect

sizes. Conversely, lower bound values for the fracture toughness and yield stress should be

used in the evaluation of as. If the test is carried out in an aggressive environment, then a

lower bound value for the stress corrosion cracking threshold stress intensity factor, Kit^,

should be used instead of the fracture toughness value [2,43]. This choice allows for the

possibility that the crack tip is in an area of good material during the proof test, but

propagates into poorer material during service. Although this conservative approach to

deterministic analyses results from safety considerations, it can seriously erode proof test

factors and reduce the apparent effectiveness of the proof test. To avoid this possibility, proof

test analyses often use consistent data for the calculation ofao and as. This approach can be

justified if it can be demonstrated that there will be no significant variations in material

properties in the region of the postulated defect during its growth in service.

The deterministic proof test concept appears to be a simple and scientific way of assuring

component safety during operation. However, a number of recent applications of the single

cycle proof test method to defective components have indicated that further developments are

required to the original approach [8,9}. This is particularly the case for materials that

fracture by ductile mechanisms with a high toughness and fracture resistance.

There is no discernable benefit to applying multiple cycling proof testing techniques to brittle
and ductile materials if the test is to be analyzed using a deterministic methodology. To

demonstrate that multiple cycle proof testing can have a beneficial effect on ductile materials

requires the application of a probabilistic methodology in order to show that the damage

introduced by concurrent fatigue and stable tearing is more than compensated for by the

removal of detrimental sized defects from the population. Although brittle materials cannot

tear, it is know that there is an appreciable acceleration in their fatigue crack growth rates

as failure is approached due to propagation by combined cyclic and static mechanisms. It may

statistically be possible to demonstrate a beneficial effect of multiple cycles for these

materials also, although the calculated change in the defect distribution may be considerably
smaller than for ductile materials.

3.3 Probabilistic Approach

The proof testing problem is particularly well-suited for probabilistic analysis. The most

common purpose for proof testing is simply to reduce the probability of component failure in

service by removing defective hardware from the population. Influencing this process are

many uncertainties, which include the flaw population in the component, the properties of the

material from which the component is manufactured, the loads which the component will

experience in service, and many others.
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A "successful"proof test doesnot, in general, guarantee a zeroprobability of subsequent
failure in service. Interpreting exactly what a successful(or unsuccessful)proof test does
imply about componentreliability (e.g.,how muchhas the probability of failure in service
changed?)requiresprobabilistic analysis. This sameanalysisprocedurealsoprovidesunique
opportunities to optimize the initial designof the proof test, and to optimize the intervals
between proof tests for re-certifiable components. Someof these powerful connections
betweenproof testing and probabilistic analysiswere recognizedin the early days of proof
testing analysis (e.g.,1960sNASA researchreported in [47]).

Theresults ofa probabilistic analysisareusefulin helpingto rank the relative importanceof
proof test parameters. This information is extremelyusefulin determining the sensitivity of
the results to specificinput items. It is usefulto know,for example,that the resultsof aproof
test analysis may be sensibly independent of how the flaws are characterizedin terms of
shape,or the nature of the test media. Knowledgeof the degreeof uncertainty in the value
of a parameter is important, particularly if the results of the analysis are sensitive to
variations in this value. This kind of information is often not readily extracted from a
deterministic approach, where time and energy may be expendedin calculations and
refinementsthat ultimately donot influencethe outcomeof the analysis.

Formal proof test optimization requires the simultaneousevaluation of a joint reliability
problem: the probability of componentfailure during the proof test, and then during the
subsequentserviceexposure.Theseissuesare illustrated schematicallyin Figure 4. As the
ratio of proof load to design load increases,the probability of failure during the proof test
increases. On theother hand, the probability of failure in servicefor a componentwhich has
previouslysurvivedthis proof test is likely to decreasewith increasingprooffactor. Optimum
designofa proof testmust mathematically optimizethesetwo reliability functions,weighing
the consequencesof prooffailure versusservicefailure.

3.3.1 Choice of a Basic Probabilistic Method

A probabilistic analysis of proof testing can take several different forms, depending on the

specific questions being asked. The setting of these questions is a key part of a probabilistic

methodology. Some possibilities include:

(1) If the component survives the proof test, what does this imply about the post-proof

population? (e.g., what is the largest remaining flaw?)

(2) What is the probability that a flaw larger than some specified size will survive a

given proof test protocol?

(3) What is the probability that a given population of components will all survive a

specified proof test protocol?

(4) If the component survives the proof test, what does this imply about the

probability of failure in subsequent service?

(5) How much does the probability of failure in subsequent service change because

the component survived the proof test?

Questions (1)-(3) are more straightforward because they consider only the proof test itself.

Questions (4)-(5) require much more complex analysis because of the additional need to

evaluate conditional reliability in service, especially when (as is usually the case for

propulsion systems) service loads and proof loads are fundamentally different in character.
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Selection of a specific computational method to solve a probabilistic problem depends on both
the questions posed and the complexity of the analysis involved. A simple brittle fracture

formulation will permit a relatively straightforward solution technique. There are many

examples of brittle fracture problems being solved probabilistically in the literature [48-50].

On the other hand, very few examples are available of probabilistic elastic-plastic fracture

solutions. A proof test analysis presents additional difficulties such as allowing for multiple
cycles, ductile tearing and time dependent effects.

Although a comprehensive and rigorous treatment of the probabilistic analysis of proof
testing is not feasible at this time, simplifying assumptions can be made to facilitate the

computations while still providing meaningful reliability information concerning the efficacy
of the proof loading.

The most general technique for solving the above probabilistic problems is based on Monte

Carlo simulation. Monte Carlo is a well-known and well-established technique which has

often been applied to fracture problems. Approximate techniques based on the Fast

Probability Integration (FPI) concept [54], offer similar accuracy to Monte Carlo but much

greater speed and some additional output information. These methods can be applied to
well-behaved failure functions. Some of the more complicated computations, such as those

involving conditional probabilities and NDE inspection, require more advanced system

reliability analysis methods that combine an efficient importance sampling method with the
FPI method [1271.

3.3.2 Random Variables and Required Data Base

Many of the important variables required to analyze a proof test and to determine its

ramifications regarding subsequent service reliability are characterized by some uncertainty
or randomness. The most obvious random variables are the size, shape, location, and

orientation of any cracks or crack-like defects in the component both before and after the

proof test. If the influence of nondestructive inspection on reliability is considered, then the
probability of flaw detection should also be added to this list.

Scatter or uncertainties in material properties are also significant. The important material

properties needed for a proof test analysis are detailed in Section 5.4, and some of the changes

that may occur to material behavior because of the proof loading are discussed in Section 6.4.

The material properties of concern are: fracture toughness, tensile data, and crack growth
rates due to fatigue and other mechanisms. It is clear that the uncertainties associated with

materials data will be further compounded by the additional uncertainties in material

response resulting from the effects of the proof test.

There are also uncertainties in assessment data resulting from stress analysis and
geometrical modelling of a component under both proof tested and service conditions. The

loads applied to a component during proof testing are usually well-known, but the translation

of those applied loads into local stresses in a complex component will introduce uncertainties.

These can be attributed to several different factors, including variations in component

geometry (tolerances, weldment geometry and distortion, etc.), specification of boundary
conditions associated with proof test fixtures, and the general task of stress analysis itself.

Stress analysis of the component under (usually well defined) proof testing conditions should

be subject to less uncertainty than analyses performed using simulated service loadings

which include, among other things, complex thermal and vibratory phenomena.
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The scatter or uncertainty associatedwith each of these "random variables" must be
describedby somestatistical distribution in orderto performamathematical computationof
reliability. Thesedistributions can typically be representedby standard functional forms
suchasWeibull, lognormal, normal, or exponential distributions. Most of thesedistribution
functions canbecharacterizedby simplemathematicalformswhich describeboth the central
tendencyof the data (for example,the averageor mean value) and the likely scatter of the
data around this central tendency(often describedin terms of the standard deviation). A
typical distribution function is usually completely described by two or three scalar
parameters.

One of the most significant issues limiting the use of probabilistic methods to proof test
analysis is the availability of the required probabilistic data base,that is, lack of specific
information about the appropriate distribution functions for crack size,fracture toughness,
etc. Current material data basesfor aerospacepropulsion componentdesignor fracture
control are typically deterministic. They provide little, if any, information about the
statistical nature of the data, althoughsomeanecdotalinformation for avery limited number
of materials is scattered throughout the literature [49,50]. In the future, the advent of
generalprobabilistic designand analysismethodsfor aerospacepropulsionsystemsis likely
to leadto someincreasesin the amount of probabilistic information available.

In some cases, it may be possible to construct the needed statistical distribution from
available deterministic information. If historical information is available about appropriate

distribution shapes and typical coefficients of variation (i.e., the ratio of the standard
deviation to the mean value) for important random variables, then it may be possible to build

the probabilistic distribution around a given mean value using simple estimation techniques.

For example, Gates [55] has suggested a simple means of estimating distributions for the flow

stress and fracture toughness. The validity of this and other approaches requires further
verification.

The importance of different random variables and the importance of assumptions about their

distributions can be assessed on the basis of probabilistic sensitivity factors. These

sensitivity factors, which can be calculated automatically based on the FPI concept [54] or an

efficient sampling method {128 ], indicate the relative contribution of each random variable
and its associated uncertainty to the reliability. The sensitivity factor reflects both the

assigned scatter in the input variable and its functional influence in the mathematics/physics

of the calculation. These factors provide a rational basis for ranking the relative importance

of different random variables and can suggest where additional work is most or least needed

to improve the data base or analytical theory.

3.3.3 Relationship of Proof Testing to NASA Probabilistic Methodologies

The advent of probabilistic methodologies is proving an important new development for

NASA applications in structural integrity and life analysis. The current centerpiece of NASA

technology in probabilistic structural analysis for propulsion systems is the NESSUS

(Numerical Evaluation of Stochastic Structures Under Stress) software system currently

being developed by Southwest Research Institute under contract to NASA [56,57]. This

computer code, developed to support the larger project on "Probabilistic Structural Analysis

Methods (PSAM) for Select Space Propulsion System Components" is already being used at
NASA Centers, by aerospace contractors, and in other industries as well. These

developments can provide important analysis tools for a probabilistic based proof test
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methodology,and they provide an incentive for the methodologyto beconsistent with the
computational algorithms and data baseswhich are employedin the structural analysis
software. For example, it may bepossibleto developa NESSUSapplicationmodulewhich
supportsthe designand analysisof proof tests.

Furthermore, the impact of probabilistic technologiesin reshaping the philosophy and
processby which future aerospacestructures will bedesignedand analyzedwill, inevitably,
haveimplications in the developmentof aprooftest protocolfor thesecomponents.However,
the full ramifications of thesetechnologicalchangesonprooftestingwill not becomeapparent
until sometime in the future.

Thedesignor evaluationof aproof test onaprobabilistic basismayrequire the identification
of a target reliability level; i.e., a quantitative standard to determine whether the
demonstratedor estimated componentreliability is "goodenough." The definition of this
standard will likely needto originate outside the framework of the proof test methodology,
perhapsin someoverall reliability assessmentof the entire engineor subsystem.Again, this
indicatesthe needfor substantial links betweenthe probabilisticproof testmethodologyand
the total structural reliability programestablishedby NASA.
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4. CHOICE OF PROOF TEST CONDITIONS

Out of necessity, proof test conditions may differ significantly from service conditions.

Oftentimes the environmental conditions during proof testing will be less severe than during

service. Appropriate allowance has to be made for these differences when performing a proof

test analysis.

There are three major issues which need to be addressed when specifying proof test

conditions. These are the nature of the test environment; the kind of loading that will be

applied; and the role to be played by NDE. The technical issues associated with each of these

topics are summarized in Tables 3, 4, and 5 respectively, and discussed in more detail in

Sections 4.1 through 4.3.

4,1 Test Environment

The choice of specific environmental conditions for the proof test, (i.e., temperature and

media), are dependent upon numerous considerations. These include requirements to

conform to standard structural guidelines and the need to directly demonstrate component

survival in the operating environment through structural testing.

The environment can impact on the proof test analysis through its effects on material

characterization; component damage; flaw screening potential; computational complexity;

safety requirements and failure consequences.

4.1.1 Material Property Data

Adequate materials characterization is essential for an accurate proof test analysis: without

it crack growth rates and fracture cannot be predicted. Material behavior is dependent on

temperature, loading rate and media. Testing at temperatures and in environments where
material deformation and damage characteristics are not well understood and quantifiable

will reduce the effectiveness of proof testing.

Interpretation of material behavior may become difficult if the proof test temperature is

different from the operating temperature. For example, it is known that overstressing brittle

materials can change their fracture toughness at lower temperatures due to load history

effects. Conditions which maximize knowledge of material response should be chosen within

the constraints imposed by other issues.

4.1.2 Component Damage

The possibility of causing unnecessary component damage due to proof testing in an

aggressive or embrittling environment, or at severe temperatures, needs to be avoided if at

all possible. Conditions that can contribute to this concern are temperatures where strain or

strain age embrittlement may occur; environments that cause accelerated rates of crack

growth (true corrosion and stress corrosion fatigue and high oxidation rates); embrittlement

due to transition temperature and/or material-environment incompatibility; and proof

testing in the creep temperature regime.
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Table 3. Technical Assessment for Issue 4.1: Test Environment

Importance

Present Status

Availability

Implementing

Technology

Further

Technological

Requirements

of

Data Required to

Implement the

Technology

It is essential that the full implications of testing in a specific

environment are fully understood if a proof test is to be successful and

the introduction of unnecessary component damage is to be avoided.

This depends on the purpose of the test. If it is intended to

demonstrate that the component can survive service conditions, then

it is generally accepted that the test should be carried out in an

environment which simulates operational circumstances. However, if

the proof test is used only as a flaw screening method, then any

complications which make this objective difficult to accomplish should
be avoided.

The technology for performing internal pressurization and

mechanical load tests should be available. The technology becomes

more difficult and costly if testing at cryogenic temperatures, or in

aggressive environments, or under thermal transient conditions, is

required.

A greater understanding of the effects of environment on fracture

behavior would assist in helping to quantify the detriments and

benefits of testing in a given environment.

Data on the effects of environment on material fracture behavior.
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Table 4. Technical Assessment for Issue 4.2: Applied Loadings

Importance

Present Status

Availability

Implementing

Technology

Further

Technological

Requirements

of

Data Required to
Implement the

Technology

The type and magnitude of the loading applied during the proof test

plays an essential role in determining the effectiveness of the test as
a flaw screening method.

It is generally accepted that the proof load should exceed the

!maximum service load by at least 10%. However, there is less

agreement concerning other factors, such as loading rate, the time

over which the proof load should be sustained, and whether single or
multiple cycling should be used.

There should be no problems associated with attaining moderate

loading rates in the proof test. Fast loading rates, and simulation of
service loads, such as thermal transients, is far more difficult.

Sustained loading, and cyclic loading, should not pose any

insurmountable problems with regard to test implementation.

These are related more to the analysis of the test rather than the

practicality of carrying it out. There are still uncertainties associated

with the analysis of time dependent effects, and in taking into account

the interaction between static and cyclic failure mechanisms.
Resolution of these areas would help to define the load conditions

which maximize the effectiveness of the proof test.

Quantification of the effects of cyclic and time dependent loading on
subsequent material fracture behavior.
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Table 5. Technical Assessment for Issue 4.3: Role of NDE

Importance

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the

Technology

NDE is not an essential part of proof testing, but it can greatly

increase its effectiveness when performed in conjunction with it.

NDE methods are now widely used throughout a range of industries

to detect and size crack-like and naturally occurring defects. It is

recognized that proof testing increases the defect detectability of NDE

methods. When used in conjunction with each other, the two methods

provide a powerful flaw screening capability.

Pre- and post-proof test NDE procedures which utilize ultrasonics,

eddy current, radiography and magnetic particle and dye penetration

techniques are now well established. Acoustic emission is available

for real-time monitoring.

i Developing real-time techniques, such as technologies based on

infrared and shearography, may provide possible future alternatives

to acoustic emission.

The probability of detection of defects of different shapes, sizes, and

acuity. The increase in detectability due to proof loading and the

accuracy of sizing detected defects.
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Unnecessarymaterial degradationor crackgrowth during the on-loador loadhold portion of
the proof test canneedlesslyinitiate cracks. Of evenmorecritical concernis the potential for
subcritical growth during either the unload portion of the proof cycleor during subsequent
storage. This should beminimized if at all possible. For example,where it is necessaryto
prooftest in anembrittling environment, suchashigh pressurehydrogen,extremecaremust
be taken to ensure that the unload rate is sufficiently rapid to minimize sub-critical flaw
growth during unloading._In addition, the proof test temperature, pressureand duration
must besuch that minimal hydrogenis diffusedinto the material sothat unacceptablelevels
of internal hydrogenembrittlement will not inhibit subsequentoperationalusage.

4.1.3 Flaw Screening

The efficacy of the proof test to screen flaws is affected by the environmental conditions in the

test in many complex ways. These are related to material properties, the aggressiveness of

the media, the loading and unloading rates, and the time the proof load is sustained. For

example, proof testing at temperatures below operation could afford better flaw screening

potential. This is because the yield stress is typically raised, allowing a higher nominal

elastic stress to be applied, and, in brittle materials, there is generally a corresponding drop

in toughness. Both of these factors will enable the proof test margin to be increased.

However, this increase in flaw screening potential may be countered by unnecessary

initiation of cracks or an increase in proof test mortalities. A detailed proof test analysis is

required before the optimum environmental conditions for proof testing can be specified.

4.1.4 Computational Complexity

The easiest situation to analyze is a proof test based on linear elastic fracture mechanics, an

inert medium, and low loading rates at temperatures where time dependent phenomena are

not significant. Any change in circumstances that moves away from this ideal scenario

introduces additional complications. Although the computational difficulty of performing an

analysis will not usually play a major part in determining proof test conditions, it should be

a consideration in choosing the test environmental variables which are not dictated by more

important considerations.

4.1.5 Failure Consequences and Safety Considerations

The type of"fluid" used in the proof test and whether pneumatic or hydrostatic pressurization

is used has ramifications regarding safety considerations, proof failure and the possibility of

performing post mortem failure analysis. Due to the incompressible nature of liquids,

hydrotesting will usually result in a leak-before-break situation for ductile materials. In

contrast, the compressibility of gases enables them to store up large quantities of energy

which can be released suddenly, giving rise to a potentially catastrophic rupture. This

possibility requires special precautions to be implemented in the test facility design and

operating procedures, as well as additional leak detection equipment and analytical support

to assess the likelihood for leak-before-burst. Special precautions are also required when

rotational loading is used in the proof test.

Determining the cause of proof failure is much easier when the failure is contained and the

fracture region is readily accessible. There have been numerous instances where brittle

failures have occurred and produced so much destruction in the component and surrounding

structure that diagnostic failure analysis was greatly hampered.
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4.2 Applied Loadings

The selection of a specific proof load history -- load factor, hold times, loading and unloading

rates, and number of proof cycles -- is perhaps the central decision in proof test design. The

implications of these choices for a total proof test strategy are, in some cases, straightforward

and direct, and in other cases complex and multidimensional. It must be emphasized that

these choices should not be made in isolation from other proof test design issues, such as test

environment or material properties.

4.2.1 Proof Load Factor

The proof load factor is normally expressed as a multiple of the nominal design load, and is

typically in the range 1.1 to 1.5. The larger the factor, the smaller are the defects screened

by the proof test. It follows naturally, therefore, that a higher proof load will generally

indicate higher reliability during subsequent service exposure. It may also have other
beneficial effects, such as enhancing shakedown, creating compressive residual stresses, and

blunting sharp crack tips.

There is clearly a limit to the size of the proof load beyond which unacceptable detrimental

effects begin to occur. Some of these limits are specified in order to avoid detrimental yielding

and plastic failure in uncracked regions of the component. Most importantly, high proof loads

increase the chance of expensive hardware failures during the proof test from defects which

would have been innocuous under the subsequent service history. The potential for

subcritical growth of existing defects under high proof loads also cannot be ruled out.

Selection of a proof load factor is confounded by differences between proof test and actual

service conditions, such as load types, local stress profiles, temperatures, and environments.

While typical proof loading of pressurized systems involves only an applied internal pressure,

service loads may also include thermal stressing, tensile forces and bending moments.

Furthermore, proof test fixturing may not exactly simulate boundary conditions experienced

in service. The proof load factor may need to be adjusted to simulate or to compensate for

these effects. However this is done, it is clear that in complex geometrical components there

will always be the likelihood that local stresses occurring during service will exceed the

maximum level which can safely be generated in the proof test using simple loading devices.

One possibility of overcoming these generic difficulties would be to modify the standard

definition of the proof factor and utilize fracture mechanics concepts to relate the factor

directly to the crack driving forces present during proof testing and service. It is the ratio of
these driving forces which ultimately determines the ratio ao/as, which in turn controls the

remaining safe life under service conditions. This was recognized by Tiffany [2] who used an

inverse load factor, namely the ratio Kt/K1c derived from linear elastic fracture mechanics, to

infer the remaining life. Here KI is the applied stress intensity factor at the proof load, and

Kl_ is the fracture toughness at operation.

These complications raise a critical question whose answer is fundamental to the formulation

of both a proof test methodology and protocol: how important is it to compensate fully for

differences between proof and service conditions? Differences between proof and service may

be of limited significance if the proof test is used only to evaluate and screen the existing

defect population in the component, or to demonstrate general quality of workmanship. If, on
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the other hand, the proof test is intended to simulate moreonerousloading conditionsthan
those encounteredin service in order to provide a direct assessmentof remaining life or
reliability under serviceconditions,then thesedifferencescanbevery significant.

4.2.2 Hold Time

The selected time during which the maximum pressure or maximum load is held constant is

influenced by both operational and fracture mechanics concerns. The hold time should be at

least long enough to ensure that the maximum load is actually attained and can be

maintained stably. Additional time may be required to adequately monitor the component

for leaks or other irregularities.

Time-dependent flaw growth at a constant load can be attributed to two major causes:

sub-critical growth due to environmental attack or creep deformation at the crack tip, and, in

ductile materials, stable tearing (see Section 5.4 for more discussion on the material aspects

of these topics). These two causes have different implications on the proof test analysis.

Subcritical growth can reduce the survivability of the component in service if it occurs during

the proof test. This arises because relatively small and innocuous defects may be extended

in size to give a greater population of larger defects than before, increasing the probability of

failure. Alternatively, subcritical growth could promote failure of service life threatening
defects during proof loading by propagating them to a critical size. This scenario would

beneficially screen out damaging defects. Since both of these effects could occur concurrently,

it is not clear without performing a probabilistic analysis whether the end result would be

deleterious or advantageous.

Flaw growth due to stable tearing is limited to materials that fail by ductile mechanisms. In

principle, time dependent tearing during sustained proof loading is not different from the

tearing that occurs as the applied load is increased. The time dependent extension can be

viewed as equivalent to further tearing due to an increase in the crack driving force which

results, not from an increase in load, but from a reduction in the yield properties of the

material due to creep deformation [58,59]. The problem then reduces to the non-trivial one

of estimating this increase in crack driving force with time.

Some observers have reported that when proof test failures were attributable to

time-dependent growth, failure always occurred during the first minute or so at constant load

I15]. They concluded that much longer hold times (which they also explored) produced no

significant effects. Other observations, including limited research conducted by SwRI under

the related NASA-Marshall contract on multiple cycle proof testing, suggest that

time-dependent crack growth rates will gradually decrease (perhaps to zero) during a hold

period, unless failure is imminent. In that case, growth rates will either monotonically

accelerate or perhaps first decrease, pass through a minimum, and then increase to failure

t601. These observations suggest that an absolute "threshold time" beyond which failure in

the proof test is most unlikely may not exist, although it may be practical to define a

maximum hold time in order to avoid acceleration in subcritical time dependent growth.

The situation is complicated if the proof test is performed in an aggressive environment which

accelerates the time dependent growth. The environment could do this by reducing the

toughness of the material (in a hydrogen environment, hydrogen may diffuse into the highly

stressed material around the crack tip) or by a synergistic interaction whereby the crack
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extension due to the environment per se (i.e., subcritical crack growth) increases the crack

driving force, which in turn promotes more tearing. Although this scenario would manifest

itself as enhanced time dependent tearing, the possibility that the environment degrades the

fracture toughness could have serious implications with regard to structural reliability

during subsequent service operation (see also Section 6.4).

Real-time acoustic emission (AE) monitoring during the proof test may be able to detect

time-dependent subcritical crack growth, and this may influence hold time selection. The use

of AE or other real-time NDE techniques, discussed in Section 4.3, may also require some

additional time at maximum load to permit complete interrogation of the component.

4.2.3 Loading and Unloading Rate

The effects of loading and unloading rate follow closely the arguments for hold times. Some

concerns are operational: practical limits exist on how fast a complex engineering component

can be pressurized or depressurized while maintaining adequate control on total pressure

and adequate monitoring of component response. Slow loading or unloading rates also raise

the possibility of time-dependent crack growth due to environmental attack or creep

deformation, if the temperature of the test is high enough. Tiffany [2] makes the pertinent

point that the damage resulting from subcritical growth during sustained loading could be

dangerously enhanced by a slow deloading rate which still permitted subcritical growth to

occur while suppressing the possibility of the larger defects initiating failure. Since analysis

of time-dependent growth during load cycling is likely to be even more difficult than analysis

during constant load, a reasonable engineering response is probably to minimize time spent

during the load increasing or load decreasing portions of the proof test. This is especially true

for the unloading half of the cycle.

Extremely fast loading rates may induce changes in the material properties of rate sensitivity

materials: the values of yield stress and fracture toughness could significantly differ from the

values measured in a conventional static test if strain rates are high enough. Fortunately,

typical pressurization rates may be too low to generate these effects in aerospace materials.

4.2.4 Number of Cycles

Tiffany [2] argues that there is nothing to be gained from MCPT and, indeed, multiple cycling

could do some needless damage to the component because of cyclic crack growth. This

position is generally accepted for brittle materials, and there are good reasons for taking this

view if the proof test is performed in an aggressive environment. However, the experiences

of Rocketdyne in successfully using MCPT methods on ductile materials provides practical

evidence that there are exceptions to Tiffany's view. In practice, some components may be

subjected to cyclic loadings similar to a planned MCPT for other reasons. These include the

requirement for additional proof tests of components which have been repaired or modified

following the initial proof test; complex component systems which must be proof tested at

different times during their assembly; and repeat proof testing for component recertification.

It has been proposed that the damage introduced into the component by multiple cycle proof

loading can be reduced because lower proof loads can be employed in this case compared with

a single cycle proof load [7]. The logic of this conjecture is not apparent to the present authors
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sincea reduction in the proof load will result in an increasein sizeof defectthat couldjust
survive the proof test. This would reducethe flaw screeningcapability of the test and erode
proof test margins.

MCPTof componentsfabricatedfrom ductile materialshasbeenperformedat Rocketdynefor
manyyears, and was originally motivated by failures of componentswhich had survived an
initial single-cycletest and were subsequentlyretested. Later Rocketdyneexperiencewith
MCPT has shown that componentfailures can occuron the second,third, fourth, or fifth
cyclesat significantly lower pressuresthan applied on the first cycle [61]. Thesefailures
generally initiated from undetectedflaws in the component,typically in thin sectionswhere
the defects were large compared to the thickness. In several cases these hardware
deficiencies,revealedonly after having passedthe first proofpressurecycle,werejudged to
havepresenteda significant risk of componentfailure or malfunction in service.

This direct hardware experienceillustrates the potential deficiencyin the conventionalsingle
cycletest, demonstratesthe potential benefit arising from MCPT, and posesa challenge to
determineoptimum strategies for proof testing. The challengearisesbecausethe potential
benefitsof MCPT must beweighedagainst the possibility of inflicting additional undetected
damageon the componentthrough further subcritical crackgrowth during multiple loading
cycles.

The successfulrecord of performanceof Rocketdyneengines whenever MCPT has been
implemented,alongwith occasionalfailures of defectivehardwareduring MCPT,haveserved
as engineering justification for the practice, at least on componentsand under conditions
whereverification hasbeenobtained. But while MCPTlogic is generallyconsistentwith the
conceptof subcritical crack growth in ductile materials, a rigorous, comprehensive theory of

crack behavior during MCPT is not yet available as a formal scientific justification for the

relative merits of MCPT versus conventional single-cycle proof testing. The early work of

Mendoza and Vroman [6], and the follow-up work of Besuner, Harris and Thomas [7] were

admirable attempts to develop this theory, but the elastic-plastic fracture mechanics tools

available at that time were insufficient to build a technically adequate explanation.

However, the basic concept that these works utilized appears to be sound. Increased service

reliability is conferred by MCPT because the calculated defect size distribution remaining in

the component after cycling is less onerous than the distribution before the proof test, or,

indeed, after a single cycle has been applied.

Extensive studies of MCPT are currently ongoing at SwRI under the sponsorship of

NASA-Marshall. These studies have prompted the development and evaluation of several

different analytical approaches to crack response during MCPT, including interactions

between resistance curves and elastic-plastic fatigue crack growth when ductile tearing and

fatigue crack extension are concurrent, and probabilistic analysis [33,34]. More recent work

in the MCPT program has shown the models of Kaiser [62] and Chell [63] for including the

interactions between monotonic and cyclic modes of crack growth to be generally true,

although experimental investigations have identified some conditions under which

alternative crack growth phenomena may come into play. These phenomena include

time-dependent growth near instability and the effects of locally reversed deformation

prompted by geometric constraint or displacement control modes.
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It appearsthat the optimum designof MCPT may depend,at least in part, on the specific
geometry,material properties,and probableflaw distributions for eachcomponent,although
more general engineering conclusions may be admissible and appropriate. Further
experimental and analytical researchinto MCPT is actively in progressat SwRI under the
NASA contract, and this researchis expectedto providemoreconclusiveanswersabout the
optimum numberof proof cyclesrequired to maximizethe effectivenessof the proof test.

4.3 Role of NDE

The interaction between proof testing and NDE should be considered when designing an

optimum proof test strategy. Although proof testing is sometimes conducted as an alternative

to NDE, more frequently proof testing is conducted in coordination with NDE inspections,

particularly when the effectiveness of NDE is compromised by geometric complexities of the

component. The challenge is to optimize simultaneously the design of both proof test and

related NDE procedures, with particular attention to the unique contributions of each

technology and their mutual interaction. NDE is most often conducted before and/or after the

proof test, but useful NDE techniques for real-time proof test monitoring are available and
should also be considered.

Coordination between NDE and the proof test is expected to be especially important for

components fabricated from tough, ductile materials, where stable growth of pre-existing

flaws and leak-before-break is more likely before instability. The need for NDE is influenced

by the extent and nature of the expected post-proof service history. If a primary motivation

for the proof test is to facilitate improved NDE inspections, then it should be possible to

decrease the proof load factor and hence reduce the potential for unnecessary damage to the

component.

NDE also interacts with other proof testing issues which are discussed elsewhere in this

report. These include economic and management factors, and the influence of NDE on a

probabilistic treatment of structural reliability (e.g., probability-of-detection information).

4.3.1 NDE Before and After the Proof Test

NDE is often performed on a routine basis with normal inspection techniques either prior to

the proof test, following the proof test, or both. Special attention should be given to the types

of defects which are most or least likely to be detected by NDE or by proof testing, with a view

towards maximizing the total probability of detection by coordinating the two inspection

protocols. Ideally, proof testing should not be performed without the benefit of coordinated

NDE, especially for critical components fabricated from highly ductile materials.

Post-proof NDE is especially useful for two reasons: deformation caused by the proof loading

may increase the detectability of pre-existing flaws, and the proof loading may also cause

additional damage in the form of subcritical crack growth which needs to be detected.

Enhanced flaw detectability due to proof loading is a well-documented phenomenon. Local

plastic deformation can permanently "open up" cracks such as tight weld fissures in

compressive residual stress fields, so that standard post-test NDE inspection can find flaws

which might have been missed by pre-test NDE. For example, following the application of

multiple proof test cycles to engine combustor cases for the C-5 aircraft in 1969, conventional

dye penetrant inspections found cracks in 6 cases which were undetectable prior to proof [64].
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Similar experienceswerereported byMartin Marietta during ultrasonic inspectionsof 2219
aluminum weldmentsfor the SpaceShuttle External Tank [22]. This phenomenondoesnot
appearto require a large prooffactor.

The requirement for post-test NDE is increased if the proof loading causesa significant
increasein damage(e.g.,cracksize)during the test. In thesecasestheremaybespecialvalue
in coordinatingorcomparingNDE information from different inspections,perhapsemploying
post-testNDE to focuson regionswheretherewereindications from pre-testor real-time test
monitoring, or comparingpre-testwith post-testsignalsto notesignificant differences.

The techniquesavailable for pre- and post-testNDE are long establishedand the principles
behind them are well understood. The main techniques--ultrasonics, eddy current,
radiography, magnetic particle and dye penetrant--have established protocolsfor use by
certified technicians.

4.3.2 Real-time NDE Monitoring During the Proof Test

Several NDE techniques can be employed to detect the real-time response of a crack or flaw
to the proof test loading itself. Of special interest are acoustic emission (AE), infrared, and

shearography techniques. These techniques typically have a large field of view and, hence,

do not require either prior knowledge of the flaw location or exhaustive scanning of the

component. This does require some substantial initial investment in equipment and trained

technicians, but actual monitoring is relatively simple and fast, probably necessitating no

delays in the usual proof test procedures.

The most mature NDE technology for real-time monitoring is AE, which detects the elastic

energy spontaneously released by nearly all materials when they undergo deformation. The

primary target of AE monitoring during proof testing is the emissions from localized
deformation associated with flaws and flaw growth. Acoustic emissions can be generated

from cracks by several different mechanisms, including plastic deformation at the tip of

stationary or growing cracks, creation of new surfaces during crack growth, and the contact

and rubbing of opposing crack faces during loading or unloading. The relative amplitude of

emissions from these different sources may vary from application to application, and this may

have implications for the optimum selection of hold times or loading/unloading rates.

Emissions activated by crack propagation may be predominant only during periods of

appreciable growth, such as near failure, when an increasing AE event rate is a likely

predictor of flaw criticality [23].

AE was first employed to monitor proof testing around 1965, and AE applications to proof

testing and related structural reliability problems are now common in many different

industries [65]. Some AE investigations are being conducted at SwRI in conjunction with the

current SwRURocketdyne/NASA-Marshall program on multiple-cycle proof testing, and

these results will provide additional insight.

AE is typically detected by a piezoelectric transducer temporarily affixed to the surface of the

interrogated component. If multiple transducers are employed, the specific location of

individual emissions can be located based on the relative time of arrival of the AE signal at

each sensor. The number of transducers required depends on the geometry of the component

and attenuation in the material. Since AE signals can travel relatively long distances in most
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materials without significant attenuation, a smallnumber oftransducerscanservicea single
component. Standardcommercialinstrumentation is designedto managemanychannelsof
information.

Essentially all structural materials will emit AE during deformation, but the AE signal
strength, and hencethe general feasibility of the AE technique,may dependsomewhaton
material condition, componentconfiguration, and other proof test parameters[90]. Signal
attenuation will begreaterin somematerials, aswell. Theeffectsof all theseparametersare
not well understood, but it appears that less advantageousconditions can usually be
overcomevia improved instrumentation and monitoring procedures.Someprior experience
with the specificmaterial and generalclassof geometryis desirable.

The sensitivity of the AE method canbe limited by ambient backgroundnoise which can
obscureemissionsfrom cracks,especiallyin a production environment. Specialprecautions
and fixturing may be necessaryto reducesuch backgroundnoiseto tolerable levels. AE
signalscanalso begeneratedby generalor localplastic yielding in the component,residual
stressrelief, inclusions,and other material features. At this time, it is difficult to determine
the nature of an AE sourcemerely by its signature from a single emission. Locating the
sourceof AE is the bestmeansof identification. A follow-up inspectionwith another NDE
methodis often required at the locatedAE sourcefor further verification. The behaviorof an
AE sourceasa function of time and stressingmechanismcanprovide further cluesabout its
identity. AE methodscannot beusedby themselvesfor measuringflaw size,orientation, or
depth.

Other advancedNDE methodsareavailablewhich havehad limited applicationsto real-time
proof test monitoring but which show considerablepromise. Infrared techniques sense the

applied mechanical energy which is disturbed, concentrated, and dissipated at local defects

as thermal energy: in effect, the defective region becomes hotter. Extremely sensitive

infrared cameras are able to detect minute changes in local temperature (less than 0. I°C).

Electronic shearography compares successive video images of a component illuminated by

coherent laser light during application of an increasing stress. Comparisons of

before-and-after video images systematically distorted by a shearing lens permit construction

of an interferogram which reveals minute changes (as small as microinches) in out-of-plane

surface displacements. Local distortions in the component displacement field caused by

cracks, such as crack opening displacements or surface dimpling caused by near-crack plastic

deformation, would be important targets in proof testing applications.

Both infrared and shearography are non-contacting techniques with relatively large
fields-of-view, although some changes in camera orientation might be required to interrogate

all of a complex three-dimensional part. The field of view is, in general, smaller than for AE

methods. The sensitivity of these alternative techniques to flaws in actual hardware is not

yet well established. Uncertainties remain regarding the effects of different material

conditions, flaw sizes and locations, and other proof test parameters. The potential

susceptibility of the techniques to false positives from other (non-crack) sources of

deformation and displacement also requires further exploration.
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5. ASPECTS RELATED TO PROOF TEST ANALYSIS

The information and choice of technology required to perform a proof test analysis is

dependent on being able to characterize key elements of the component in terms of material

response under load, stress distributions consistent with the applied loading, structural

restraints, residual stresses, and local changes in materials due to weldments, etc. The

assessment of defects under proof test conditions requires appropriate fracture mechanics

parameters and the technology to calculate them. Characterization of the shape, size,

orientation and distribution of flaws, and appropriate material property data, are necessary

in order to implement the technology. A summary of the technical issues related to

component characterization, fracture mechanics, flaw characterization and material

property aspects are presented in Tables 6, 7, 8, and 9 respectively, and discussed in more
detail in Sections 5.1 to 5.4.

5.1 Component Characterization

Understanding the characteristics and mechanical responses of components during proof and

operation is crucial for development of successful proof testing procedures. Fracture

mechanics based proof assessments depend on accurate component modelling, material

characterization, and analysis, to provide realistic stress analysis, crack growth and failure
estimations.

5.1.1 Constitutive Modeling

Constitutive models that accurately describe material deformation responses are essential

for stress analysis and determination of fracture assessment parameters during proof and

operation [66-68]. Ideally the models should simulate monotonic, cyclic and time dependent
material behavior, particularly if service history effects are considered important. Although

the changes in material properties due to service and proof test conditions (due to cyclic

hardening and softening, strain ageing embrittlement, etc.) may be important, in practice it

is unlikely that constitutive equations are available for adequately describing these, and

resort to direct material property measurements is recommended.

Most finite element analyses used in analyzing proof tested hardware use linear elastic
theory, conventional plasticity approaches, or combined plastic/creep models. These are

sufficient for most stress analysis and fracture mechanics applications. For components

tested or operated at high temperature where creep and rate effects are significant, unified

constitutive models may be necessary to adequately capture the deformation response.

Unified models combine creep and plasticity into one inelastic strain contribution rather than

treating them separately. At present, usage of unified models is not sufficiently mature for

them to be efficiently utilized in practice. Therefore, conventional models will have to be used

for component analysis in most cases, and proof test conditions should be chosen wherever

possible so that these apply.

5.1.2 Stress Analysis

Stress analysis provides the magnitude and distributions of stresses and strains in

component critical sections. These quantities are required for fracture mechanics analyses.

The accuracy of the stress analysis will be determined by how accurately service and proof

test loading conditions are known. Special considerations are also required in order to
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Table 6. Technical Assessment for Issue 5.1: Component Characterization

Importance

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the

Technology

An accurate characterization of the component for stress analysis and

fracture mechanics purposes is necessary for a proof test analysis

based on flaw screening capability.

Stress analysis methods, geometrical modelling of structural

components, and characterization of material deformation by

constitutive laws are the three key tasks of component

characterization. Techniques for performing these tasks have been

available for many years and are widely accepted and used. In

practice, simplifying assumptions regarding component

characterization are frequently made in order to expedite a
cost-effective solution.

Modern finite element stress analysis computer codes, such as

ABAQUS and ANSYS, allow detailed three-dimensional modelling of
complex structural components, they also usually contain routines for

evaluating fracture mechanics parameters. Constitutive equations

describing material behavior in the linear elastic, plastic and time

dependent regimes are normally available within the software.

Simple, but relatively accurate, technology is required that can be

readily integrated into deterministic and probabilistic proof test
methodologies. Characterization of residual and other fabrication

stresses is an outstanding problem.

Constitutive laws governing material deformation are required.

Reviews of welding residual stresses should provide some guidance on
the magnitudes and distributions of stresses at various weldments.
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Table 7. Technical Assessment for Issue 5.2: Fracture Mechanics

Importance Aspects of linear elastic (LEFM) and elastic-plastic (EPFM) fracture

mechanics are essential for the analysis of proof tested components.

Present Status The concepts behind LEFM have long been established as a means of

assessing the integrity of defective structures subjected to static and
cyclic loads. In LEFM the crack driving force is characterized by the
stress intensity factor, K1. The limitations of LEFM are also

recognized: if significant crack tip plasticity occurs then LEFM
over-predicts failure conditions. EPFM extends LEFM into the
plastic regime through the J-integral parameter, which has been
widely used to assess the fracture behavior of ductile materials.
However, J also has limitations on its use, and a universal EPFM

parameter is currently not available. There have been several
approximate methods proposed for estimating J in the presence of
secondary loads, but none of these are generally accepted.

Availability of
Implementing
Technology

Further

Technological
Requirements

Data Required to
Implement the
Technology

There are now a number of published compendia ofK I solutions which
cover a great variety of defective structures and applied loadings. The
computer codes FLAGRO and NASCRAC can generate KI solutions
which are relevant to aerospace propulsion systems, and also perform

cyclic crack growth analyses. Finite element computer codes such as
ABAQUS and ANSYS contain routines for evaluating LEFM and
EPFM parameters. A limited number of J solutions have been
tabulated in EPRI elastic-plastic engineering handbooks.

Approximate and versatile methods of evaluating J based on a
reference stress approach are available and can be relatively easily
applied. These depend on knowing//'i and the plastic collapse load of
the structure. Methods of determining J for secondary loads have
been proposed within the EPRI J estimation scheme, and within the

reference stress approach. Fracture criteria, and equations
describing material resistance to crack extension under static, cyclic

and time dependent deformation conditions are available expressed in
terms of calculable fracture mechanics parameters.

Work for NASA at SwRI and Rocketdyne is continuing and will lead
to recommendations of EPFM parameters for use in the static and

cyclic assessments of aerospace propulsion systems. This project

should help resolve some of the outstanding issues associated with the
treatment of secondary loads. The development of computer software

for implementing these recommendations would provide a valuable
tool for proof test analyses. There is presently no accepted procedure
for accurately assessing defects at welds. Since welds are a major
source of flaws, this problem requires resolution. Experimental
validation of the existing material crack growth resistance equations
describing the interactions between static and cyclic failure modes is

required for materials used in the aerospace industry. Consideration
should be given to resolving the problems of employing EPFM

parameters to explicitly characterize proof test margins.

Stress analysis results, tensile data, fracture toughness and

sub-critical crack growth constants are required. Characterization of
flaws in terms of crack-like defects which can be treated by fracture
mechanics is also necessary.
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Table 8. Technical Assessment for Issue 5.3: Flaw Characterization

Importance It is necessary to simplify the characteristics of naturally occurring

defects so that they are amenable to fracture mechanics analysis

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the

Technology

Rules currently exist for characterizing flaws of irregular shape,

arbitrary orientation, and that appear in clusters. These rules are

intended to produce a pessimistic representation of the flaw, and are

based on LEFM concepts. The rules were not explicitly intended for

proof test or EPFM applications.

Rules for characterizing flaws are given in ASME Boiler and Pressure

Vessel Code, Section XI.

Flaw characterization rules applicable to EPFM and proof test

applications are required.

Knowledge of fatigue and fracture behavior of naturally occurring

defects under elastic-plastic conditions.
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Table 9. Technical Assessment for Issue 5.4: Material Property Aspects

Importance

Present Status

Availability

Implementing

Technology

Further

Technological

Requirements

of

Data Required to

Implement the
Technology

Material property data that are representative of the material

condition during the proof test and under service conditions are

essential for proof test analyses

Presently ASTM standards specify the procedures to be followed in

the measurement of tensile data, fracture toughness and fatigue crack

growth data. The special problems associated with proof testing,

namely, use of "upper bound" data in some circumstances, and

specification of the statistical significance of the data, are not directly
addressed.

Standard material property testing is relatively straightforward.

However, application of a proof test methodology requires material
property measurements under conditions which are outside of the

scope of normal testing procedures. For example, J-resistance

(toughness) values at large tear lengths and the fracture behavior of

materials undergoing crack extension by concurrent static and cyclic

mechanisms may be required for ductile materials. Knowledge of the

effects of proof test environment on material behavior may also be
necessary.

Recommendations for obtaining and analyzing material property data
which have to be measured in conditions which violate the standard

testing procedures are required.

Not applicable.
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analyze complicated structural geometries and other features, such as welds. These
considerations are made more difficult if fracture mechanics parameters are to be calculated

from numerical analyses based on finite element computer codes.

Finite element methods provide the most versatile approach for performing numerical stress

analyses, and are generally the preferred method in the analyses of complicated

three-dimensional structures. Computer codes such as ABAQUS [69] and ANSYS [70] are

widely available and used. In practice, detailed finite element stress analyses are often
avoided due to time constraints and cost. Factors which impact on the accuracy and realism

of stress analyses are: use of simplified methods; simulation of plastic constraints and

geometric restraints; determination of residual stresses; and problems associated with welds.

Simplified analyses

Finite element or other numerical stress analysis methods are often simplified by reducing

the geometrical complexity of a component to a form which is more readily addressed by

coarsening finite element meshes and modifying and simplifying boundary conditions. The

sophistication of numerical calculations is frequently reduced by using approximate methods

to predict elastic-plastic stress redistributions from linear elastic stress analysis results,

direct geometric simplification to take advantage of handbook stress and stress intensity

factor solutions, and simplifying the applied loads (including residual stresses).

Simplification of stress analyses should be performed with care to ensure that realistic
analysis conditions exist. If proof test condition simulations are overly conservative, the flaw

screening potential of the proof test may be grossly overestimated, resulting in an

underestimate of the size of flaws that may survive the proof test, an overestimate of service

life, and an unrealistically high component mortality rate prediction during the proof test. If

the proof test conditions are optimistically simulated (the stresses are underestimated), the

apparent effectiveness of the test is reduced as margins conferred by the proof test are eroded,

as is its flaw screening capability.

Constraints and restraints

It is important to simulate the level of plastic constraint and geometric restraints that exist

in the structure, as these affect deformation in the vicinity of a defect. This is particularly

the case when numerical methods are being used to evaluate fracture mechanics parameters.

Factors which may significantly influence constraints and restraints include local geometry

(e.g., thickness, geometric discontinuities); far field state of stress (plane stress versus plane

strain); far field applied loading type (tensile forces or bending moments); degree of crack tip

plasticity (small scale or large scale yielding); whether the defect is submerged in a plastic

enclave (crack tip yielding to free surface, potential load shedding or stress redistribution);

and boundary conditions (restraints against rotation, imposed displacements).

The calculated values of fracture mechanics parameters can be very sensitive to the form of

loading and geometric restraints: there can be significant differences between values

evaluated under load and displacement control for similar values of the local stresses in the

defect free component. In the latter case, there can be a strong interaction between the

effective loading on the defect and the change in structural stiffness due to its presence.

Analysis simplifications should incorporate these important effects.
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Residual/preload stresses

Residual/preload stresses are developed during fabrication, installation, or surface treatment
processes. The residual/preload stresses of a component are oftentimes difficult to estimate

but can be significant relative to determination of component defect tolerance. In addition,

the limitations of mechanical stress relief of residual stresses (shakedown) imposed by

triaxial states of stress should be fully recognized.

Weld issues

Welded sections are particularly important as sites for pre-existing or initiating defects:
there is an increased likelihood of generating processing and fabrication flaws in the

weldment compared to the parent metal. Complications arise in the stress analysis of welds

due to inhomogeneous material properties resulting from uneven heating and cooling,

discontinuities caused by weld mismatch and unflushed weld beads, remaining residual cool

down stresses when no stress relief operation is performed and strength variations that may

exist between welds and the adjacent parent metal (soft or hard welds).

_,2 Fracture Mechanics Aspects

Fracture mechanics concepts underpin proof test analysis methodologies: the calculation of

a crack driving force for actual or postulated defects and the comparison of this driving force

with an appropriate representation of the material resistance to crack growth. The general

role played by fracture mechanics in a proof test analysis has already been described in

Section 3.1. Here discussion will center on the definition and computation of appropriate

crack driving forces for sub-critical growth and fracture, and their relationship to material

resistance to propagation. Consideration is given to both linear elastic (LEFM) and

elastic-plastic (EPFM) fracture mechanics.

5.2.1 Linear Elastic Fracture Mechanics

As noted in Section 3.1, proof test analyses should be based on EPFM rather than LEFM.

Nevertheless, a LEFM characterization of the problem is the first step in performing the full

elastic-plastic analysis, and some aspects of the full elastic-plastic analysis will occasionally

reduce to a LEFM computation.

The most widely used and validated LEFM parameter is the stress intensity factor, K_. For

a broad range of configurations, the applied K_ can be expressed as a function of applied

(nominal) stress, crack size, and component geometry according to

K, = Fc _N/_- (1)

Here g characterizes the applied stress, a is a characteristic crack dimension, and F is a

nondimensional term typically of order 1 which describes the functional dependence of K_ on

geometrical attributes (such as the crack shape, size, and orientation) in comparison to the

nominal dimensions of the component.
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Methodsof determining K_ are now well established. As can be seen from Equation (1), this

is largely a matter of obtaining an expression or value for the parameter F. These days, F

solutions are available for many common cracked geometries in analytical or tabular form in

handbooks [71-74]. Algebraic expressions for F for some of the most commonly occurring

defects in aerospace structures subjected to simple loads (e.g., pure tension, pure bending)

have been derived and many of these are conveniently summarized in the FLAGRO manual

[75]. Several computer codes are available to perform these K_ calculations directly, including

the two NASA codes FLAGRO [75] and NASCRAC [76], and these codes typically

accommodate complex applied stress distributions. In the event that a LEFM problem of

interest is not addressed by an existing handbook or computer code, several techniques are

available to compute K, using numerical procedures, including the finite element and

boundary element methods. These LEFM technologies are all quite mature and readily

available for the use in engineering applications.

5.2.2 Elastic-Plastic Fracture Mechanics

Several different parameters have been proposed and used for EPFM analyses, including

crack-tip opening displacement (CTOD) and crack-tip opening angle (CTOA), but the most

widely accepted and extensively developed and applied parameter is the J-integral.
Therefore, the J-integral is the natural choice as the primary characterizing parameter for

the proof test methodology. J describes the intensity of the elastic-plastic crack-tip
stress-strain fields under many conditions, and when nonlinear deformation near the crack

tip occurs on a sufficiently small scale, J is directly related to the LEFM parameter K,

according to

(2)

where E'=E in plane stress, and E'=E/(1-v 2) in plane strain, E is Young's modulus and v is
Poisson's ratio.

A convenient approach to estimating an elastic-plastic J value is to represent it as the sum of

independently derived elastic, Je, and plastic, Jp, components:

j=j_+je (3)

The elastic J is computed from K_ as described earlier, but it is usual to evaluate it with

respect to an effective crack depth, a'. This modification generally, but not always, increases

the computed value of K, slightly, and is introduced to allow for crack-tip plasticity under

small-scale yielding (SSY) conditions. The effective crack depth a' is usually larger than a by

roughly half of a computed crack tip plastic zone size. This correction is usually significant

only for a narrow range of J values falling between the early onset of plasticity and the

development of EPFM conditions.

Jp is more difficult to evaluate than Je, but several engineering approaches are available.

EPRI has published several handbooks [77,78] which tabulate finite element Jp solutions for
various cracked geometries based on a power-law constitutive relationship, but the total

number of geometries thus addressed is much smaller than for LEFM Kl values. Ainsworth
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[79] hasdevelopedthe so-calledreferencestressmethodologywhich maybeusedto calculate
J from the LEFM stress intensity factor, an estimate of the plastic limit load for the cracked

body, and an expression for the material constitutive relationship. This approach lies at the

heart of the R6 structural reliability methodology developed by the former Central Electricity

Generating Board (CEGB) in the UK and now widely used throughout the UK and other
countries.

The SwRIJRocketdyne team is currently investigating the use of the reference stress

approach to compute J for cracked geometries of particular relevance to aerospace propulsion

systems under another NASA-Marshall contract on elastic-plastic fatigue crack growth, and

this technology is expected to mature significantly during the next few years. This work is

expected to generate a compilation of tabular and analytical (reference stress) J solutions,

along with insights on how the reference stress method can be used to extend this data base.

However, there are still likely to be outstanding problems in obtaining relatively accurate,

but simple, expressions for J which can be used to assess complicated three-dimensional

defective structures subjected to complex loading conditions and geometrical restraints. This

is particularly true if the loading includes secondary stresses, and there are additional

uncertainties associated with crack shapes and plastic constraint (i.e., whether the

deformation is plane stress or plane strain, or a mixture of the two).

The accurate computation of the applied J is more complicated when the crack is located in

or near the interface between dissimilar materials, such as weldments, which may have

different stress-strain relationships (e.g., different strengths). Recent studies [119] have

suggested that under some conditions, simple bounding techniques can provide sufficient

accuracy, although these methods do not work under all conditions. The application of

estimation schemes such as the reference stress method to this class of problems has not yet

been explored in depth.

5.2.3 Criteria for Fracture

Brittle materials

EPFM should be applied when assessing the structural integrity of cracked brittle (as well as

ductile) materials, unless it can be demonstrated that failure will occur under linear elastic

conditions. This is because materials that fail by brittle mechanisms can still possess a high

toughness. Furthermore, materials with low toughness can still fail with significant crack tip

plasticity if the defect is present in a thin section where the absolute crack depth is small.

The failure criterion for brittle materials is:

j _> (4)

where Jlc = Kl_ 2 / E'.
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Ductile materials

The fracture toughness of ductile materials increases as ductile tearing increases so that

further load must be applied to cause failure after crack extension has initiated. The simple

failure criterion of Equation (4) needs to be modified to take this into account and the piont

of ductile instability is predicted when 2 criteria are simultaneously satisfied. These are:

J = JR(_) (5)

and

dJ/da = d(JR)/d(Aa ) (6)

where a is the crack depth, Aa the amount of ductile tearing, and JR(Aa) the toughness,

measured in terms of J, corresponding to the tear length Aa. A graphical representation of

the instability criteria represented by Equations (5) and (6) is shown in Figure 5.

5.2.4 Plastic Collapse

Plastic limit analysis plays an important role in the reference stress approach to calculating

J. The plastic collapse load also determines fracture behavior of very ductile materials:

theoretically it is the parameter that governs failure for materials which have infinite

ductility and toughness. Therefore, under conditions of widespread plasticity, predicted

failure results based on J or the plastic collapse load will be very similar, as shown in

Figure 6. Cracked ductile materials will typically initiate tearing at loads near to the general

yield load, continue to tear as the applied load is increased, and become unstable at or near

the plastic collapse load (see Figure 6). In very thin sections containing part-penetrating

defects (which is the situation for some aerospace propulsion components), initiation of

tearing will be coincident with plastic collapse because the absolute depth of the defect will

be too small to produce a significant crack driving force.

In materials that do not possess any strain hardening capability, plastic collapse occurs when

the stress in the cracked section is everywhere at yield and a mechanism (for example, a

plastic hinge) exists to accommodate the displacements required for collapse. Under these

conditions, and in its simplest form, the cracked section behaves like a tensile specimen

undergoing yielding, although this analogy cannot be taken too far. For example, in complex

structural geometries, such as a nozzle attached to a pressure vessel, the mechanism of

collapse may require the formation of plastic hinges at several locations in order for unlimited

deformation to occur. A flow stress rather than the yield stress is used to calculate the plastic

collapse loads of materials which strain harden. In general, the flow stress is evaluated as

the average of the yield stress and the ultimate strength of the material.

Expressions for plastic collapse loads for structures subjected to tensile forces, bending

moments and internal pressure, may be obtained from the compendium of solutions

published by Miller [80]. Unfortunately, the range of solutions is not so great as for the

equivalent compendia which detail K1 solutions. This is because of difficulties in deriving

accurate and meaningful plastic limit solutions for complex structural geometries and

loadings. It is usually possible to estimate a lower bound value for the plastic collapse load,
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but not always possible to determine how pessimistic the resulting solution is. Presently, the

most accurate method of establishing plastic collapse loads is to perform fracture tests on
scaled-down models of the structure.

5.2.5 Treatment of Secondary Stresses

Although it is unlikely that proof testing procedures will involve thermal transient stresses,

secondary stresses due to welding residual stresses may be present. A fracture mechanics

treatment for thermal stressing will almost certainly be required as part of an assessment
under service conditions.

J-integral formulations have been developed for two-dimensional geometries subjected to

combined primary and secondary loads [81,82], and also for axisymmetric and other
three-dimensional structures [83]. However, the situation with regard to existing J solutions

for secondary (i.e., thermal, residual, displacement imposed) loads is far less advanced than

for the primary loading cases, due, to a large extent, to the variety of such loads, which makes

a general characterization of them difficult, if not impossible.

These complexities obviate the possibility of developing a compendium of J solutions for

secondary loads as has been done for primary loads in the elastic-plastic handbooks

sponsored by EPRI [77,78]. There is thus a need to develop and validate alternative

approaches which make use of existing elastic-plastic J based methodologies, but which have

the flexibility to cope with the wide variety of secondary loads encountered in practical

situations. In the case of displacement loading there may be a strong interaction between the

effective loading on the crack and the size of the defect due to changes in structural stiffness

arising from the presence of the defect [84]. These effects should properly be taken into

account in determining J.

In LEFM, the stress intensity factors due to secondary and primary loads may be calculated

independently and linearly added to give the total value [85]. Thus primary and secondary

loads that give rise to the same value of stress intensity factor will contribute equally to the

possibility of fracture. This is not the case in the fully plastic regime where the cracked

section has undergone general yielding. In this regime, the effects of secondary loads on

fracture are greatly reduced as they cannot influence the conditions at plastic collapse, which

are determined solely by primary loads.

There are a number of methods which have been proposed for evaluating J for combined

primary and secondary loads which avoid having to resort to elastic-plastic finite element

computations [86-89]. Under EPRI sponsorship, Kumar, German, Wilkening, Andrews,
deLorenzi and Mowbray [86] have suggested a method for extending the EPRI J estimation

scheme to thermal stresses. The method was developed taking account of the different effects

that secondary loads have on fracture behavior in the elastic and plastic regimes. It was

proposed that these effects could be adequately simulated by including secondary loads

together with primary loads in the elastic contribution to J.

Other approximate J estimation schemes for primary and secondary loads have been

developed as part of the R6 defect assessment procedures [87,88] or are related to them [89].

Although these methods are more complicated to use than the EPRI estimation scheme,

under some circumstances they have advantages over it. For example, because they are

related to the reference stress approach of Ainsworth [79], they can be applied to a wider
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range of structures and loadings than is containedin the EPRI elastic-plastic handbooks.
The methodologiesof Chell [89] and Budden [88] alsoallow the effectsof plastic relaxation
and redistribution of stress to be taken into accountshould the local peak value of stress
exceedyield magnitude.

In the event that a J solution is not already available or easily derivable for some specific

cracked component of interest, J can be computed directly from elastic-plastic finite element

analysis. While the technology to perform this computation is relatively well-established, the

cost and time required to perform the analysis can be substantial, and so this is not currently

a viable option for many practical engineering situations.

5.2.6 Characterization of Proof Loading

One of the problems which may limit the effectiveness of the proof test is the difference

between the proof load and actual service loads. As discussed in Section 4.2.1, fracture

mechanics provides one possible way of resolving this problem, as illustrated in by early work

of Tiffany [2] who utilized LEFM concepts. A similar approach to this but based on EPFM

offers a way of reconciling the effects of the diverse forms of loading which can occur between

proof testing and service. For example, the effects of severe thermal stressing on the value of

the crack driving force, J, is limited because these stresses are self-equilibrated. This offers

the possibility of producing a similar J level during the proof test through the application of

a lower local stress generated by internal pressure. The lower pressure stresses could in

theory produce greater crack tip plasticity and a similar applied J value to that induced by

thermal loading, because pressure stresses contribute to the plastic collapse load, and the

thermal stresses do not (for example, [89]).

Although the foregoing approach offers a solution for some situations, at this time it is not

clear how, in general, to best define a proof load factor in terms of crack driving forces.

Indeed, it would be difficult to characterize a complicated component by a single proof factor

based on J when different parts may experience different local stress levels and be made of
different materials.

5.2. 7 Limitations on J Theory

Besides the problems of obtaining simple, but relatively accurate, expressions for J which are

applicable to complex hardware and service conditions, the application of J to structural

assessments is also limited by two other factors. These are its limitations as a crack tip field

characterizing parameter; and the lack of an accepted approach to treating time dependent

crack tip deformation.

Characterization of crack-tip stress fields

The J-integral is known to have some theoretical limitations as a one-parameter

characterization of elastic-plastic fracture, although the practical implications of these

limitations for engineering problems are not always fully understood. The most fundamental

shortcoming is that J does not fully characterize the near-tip stress fields in conditions where

plastic constraint at the crack tip is reduced with respect to the constraint under small scale
yielding (e.g., above general yield and in some structural geometries). This effect can

manifest itself as an apparent dependence of toughness or tear resistance on the size or

configuration of the specimen. One of the best-known examples of this effect is that the
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resistancecurve for a compacttension (CT) geometryis often significantly lower than for a
center-crackedor surface-crackedgeometry[33]. Sincearchival J-resistance data are usually

based on CT experiments and actual flaws in propulsion system hardware are usually

tension-loaded surface cracks, this disagreement could lead to potentially serious errors in
interpreting proof test results if not recognized and addressed.

Extensive research is ongoing in the international fracture mechanics community to address

the problem of plastic constraint and the characterization of crack tip fields. Currently most
attention is focused on a two-parameter approach to elastic-plastic fracture in which the

crack-tip stress fields are described by J and Q. Q is a hydrostatic stress parameter which

describes the variation in the near-tip stress fields from the small scale yielding solution [91].

In reference [91] it is shown that a J-Q approach does satisfactorily describe the crack-tip

fields for a variety of specimen geometries (mostly 2-D, although some investigators have
begun to explore J-Q approaches to semi-elliptical surface cracks [92]) and have used the

analytical framework to rationalize experimental results for cleavage fracture. The

applicability of the J-Q approach to ductile tearing has been postulated but not yet
demonstrated.

Other current limitations on the general usage of J-Q are the lack of a complete description

of three-dimensional plasticity effects (including plane stress versus plane strain

deformation) and an absence of engineering methods to estimate Q for practical component

geometries. In short, two-parameter approaches to elastic-plastic fracture show considerable

promise but are still immature research concepts, not practical engineering tools.

Time-dependent effects

As mentioned in Section 4.2.2, time-dependent crack growth can become significant when

hold times are employed. It is known that cracked materials can fail when subjected to a

constant sustained load, the time taken to failure depending on the level of crack tip plastic

deformation and whether ductile tearing resulted from the initial loading [97]. The time to

failure is shorter the greater the plasticity, and becomes particularly significant after general

yielding has occurred. Since tearing of ductile materials is postulated as part of the proof test
analysis when calculating ao, then the potential for time dependent deformation increases in
this case.

Time dependent fracture behavior is attributed to creep relaxation, even though the

temperature is below that at which creep deformation is usually significant. It is currently
not clear whether this behavior can be attributed to an increase in J with time due to a

reduction in the effective yield stress of the material, or to a reduction in toughness due to

time dependent changes in the mechanism of fracture. Recent work by Brust and Leis [58,59]

supports the proposition that changes in the mechanics, rather than the mechanism,

dominate time dependent fracture behavior. Unfortunately, fracture mechanics technology
for time-dependent growth at ambient temperatures and in non-aggressive environments is

rather immature and no validated methods are currently available.

5.2.8 Cyclic Loading

Except for the initial load application, most cyclic loading tends to occur under linear elastic

conditions. This is because the cyclic yield stress of materials is approximately equal to twice

the yield stress under monotonic loading. However, short cracks in plastic enclaves produced
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by severe thermal loading or geometricdiscontinuities, and deepcracks subject to high
nominal primary loads, can undergo cyclic yielding and should be treated using EPFM
concepts.

Linear elastic cycling

During service, or while proof testing (if multiple proof cycles are applied), crack extension by

cyclic growth mechanisms may be significant. Cyclic crack growth in the LEFM regime is

characterized by the stress intensity factor range, AK, which is calculated from the

expressions

hK = Kr"ax- Kr"i. (7)

where/(max is determined using the maximum stress in the cycle, o_,, and Km_, using the

minimum stress, Or,i,. Under proof test conditions the cyclic loading is usually characterized

by changes in a single load parameter (e.g., internal pressure). In these cases, Equation (7)

simplifies to Equation (1) with o replaced by Ao =Om, x - Omin.

Calculations of cyclic crack growth are typically performed using a fatigue crack growth

(FCG) law which relates the driving force AK to an empirical description of the material

resistance. The most common description of cyclic resistance is a simple power law form,

da (8)
--= c(M¢)"
dN

where C and m are derived from least-squares regression of experimental FCG data.

Elastic-plastic cycling

The driving force for cyclic crack growth under elastic-plastic conditions is satisfactorily

described by AJ, the cyclic change in the J-integral. The EPFM equivalence to Equation (8)

is obtained by using the same material constants and replacing AK by (E'_J) _. This is an

important point, because it enables the extensive FCG data obtained from AK characterized

tests to be used to evaluate crack growth under conditions of cyclic plasticity. Engineering

expressions for AJ based on the EPRI handbook and reference stress approaches to J are

available [77-79]. More solutions are being generated at SwRI as part of a NASA contract on

elastic-plastic fatigue crack growth. When the total stress range Ao is small compared to

twice the yield stress, the plastic component of AJ will be negligible, and the cyclic driving

force sensibly reduces to Equation (2) with K_ replaced by AK.

The crack driving force may be significantly changed if crack closure occurs during cyclic

loading [120]. Although crack closure is clearly promoted when part of the cycle is in

compression, it can also occur during the tensile part. Changes in closure are more likely to

occur when significant plastic deformation occurs at maximum load in a cycle since crack

opening stresses can be considerably lower at large maximum stresses or in the presence of

net section yielding [121]. In these cases, the crack driving force is related to the part of the

cycle where the crack remains open and is characterized by an effective driving force
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expressed in terms of AK, tr or AJ, ff. The evaluation of AJ with closure is more difficult then

when it is not present. Closure phenomena can lead to nonconservative predictions of crack

growth if not properly accounted for.

5.2.9 Subcritical Crack Growth Under Steady Loading

Under steady loading conditions crack extension can occur by other mechanisms, such as

stress corrosion cracking (SCC) and creep crack growth, (CCG) depending on the

environment and temperature. In these cases the crack resistance is usually expressed in a

form similar to Equation (8) with da/dN replaced by the crack velocity, da/dt, and AK by K,_

for SCC, and by the creep parameter Ct for CCG, with a corresponding change in the value of
the material constants C and m.

5.2.10 Crack Growth due to Static and Cyclic Loading

Multiple cycle proof testing and cyclic loading under service conditions may induce crack

growth by static and cyclic mechanisms. The static mechanisms may consist of local cleavage

of grains in brittle materials, and coalescence of adjacent voids in ductile materials. This

combination of static and fatigue crack growth mechanisms is especially likely as failure is

approached.

Brittle materials

The cyclic crack growth rate will be enhanced for materials failing by a brittle mechanism as

the conditions at the maximum load in the cycle approach those required to cause fracture.

Several different forms for the material resistance have been proposed to account for this
situation, but only two will be mentioned here.

Forman, Kearney and Engle [93] have proposed the following growth law for LEFM
situations:

da/dN = (da/dN) I / [(1 -R)Kz_ -AK] (9)

and Chell [63] has derived an elastic-plastic version of a form originally proposed by Heald,

Lindley and Richards [94]. This is:

da/dN = (da/dN) I / [ 1 - Jmax/JJ'"
(10)

where (da/dN) r is the normal fatigue law (see Equation (8)), m' is a material constant and

J_ax the value of the applied J at the maximum load in the cycle. Both of these laws predicted

infinite growth rates (instability) when the brittle failure criterion defined in Equation (4) is
attained.
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Ductile materials

The form of the material resistance governing combined static ductile and fatigue

mechanisms (so-called tear-fatigue) is not currently known if part of the load cycle is

compressive. However, for cycles typical of proof testing, where only tensile loads are applied,

the following law appears to describe the enhancement in the crack propagation rate due to
tear-fatigue [63,95,96]

da/dN = (da/dN)y / { 1 - (d]max/da )/[dJ R(Aa )�el (Aa )1} (11)

where dJ,,_/da is the gradient of the applied J, Jm_ at the maximum load in the cycle, JR(Aa)
is the crack growth resistance at tear length Aa.

This equation is applicable when J,_ > J:c. Note that Equation (11) predicts an infinite

growth rate (ductile instability) when dJ,,Jda = ddn/d(Aa) as required (compare
Equation (6)).

5.2.11 Mixed Mode Loading

The most onerous loading experienced by defects is usually that due to the component of

stress which acts perpendicularly to the plane containing the crack. This form of loading,

called Mode 1, is the most common. However, situations do arise where cracks can experience
shearing (Mode 2) and/or torsional (Mode 3) forces. The number of K solutions for these forms

of loadings are very limited, and the available elastic-plastic J solutions are even rarer.

Furthermore, the failure criteria which govern these loading modes are only poorly
understood and quantified in terms of toughness values. This is particularly the case where

loading involves combinations of Mode 1, Mode 2, and Mode 3. Given these difficulties, it is

not possible at the present time to include the effects of mixed mode loading in a proof test
analysis.

5.3 Flaw Characterization

Most existing J solutions, like the K_ solutions, are based on standardized, mathematically

regular crack shapes (e.g., planar through cracks with straight crack fronts, planar elliptical

embedded and semi-elliptical surface defects, and quarter-elliptical corner cracks). Actual

crack shapes may deviate significantly from these idealized representations. The use of
available J or Kt solutions will generally require recharacterization of the actual size and

shape of the defect into some equivalent idealized form. This process is an art rather than a

science, and depends more on engineering judgement than on validated fracture mechanics
analysis.

The process of modelling defects by geometrically simpler ones which are easier to analyze is

called flaw characterization. The distributions of size and shape of pre-existing and service

induced flaws, as well as the characteristics or peculiarities of naturally occurring defects, are

important issues in assessing component reliability: the initial crack size and shape are two
of the most important variables in any fracture mechanics assessment. Flaw

characterization should be performed so as to produce a conservative assessment result. In

a deterministic proof test analysis this can lead to contradictions in the assumptions made

with respect to assessing critical defect sizes in the component under proof and service
conditions (see Section 3.2).
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Guidelinesfor flaw characterizationarecontainedin ASME Boiler andPressureVesselCode,
SectionXI. Unfortunately, for the reasonstatedabove,thesemay not besuitable for direct
application to a proof test analysis. Furthermore, the guidelines were developedusing
engineering judgement basedon linear elastic fracture mechanics. Their application to
defectswhich arepredictedto fail in theelastic-plasticregimeshouldbetreatedwith extreme
caution.

Somedefect characteristic issues of direct concernto proof testing are irregular shapes,
bluntedasopposedto sharp defects,interactionsbetweenmultiple defectsin closeproximity,
and the orientation of the defectwith respect to a free surfaceor the maximum principal
stress.

5.3.1 Irregular Shapes

Naturally occurring defects are normally irregular in shape, and pose difficult engineering

problems because they do not always conform to conventional defect types addressed by
fracture mechanics handbooks. Paris and Sih [122] provided guidelines on how to estimate

K_ around the crack front of an irregular defect. These can be used to approximately calculate
the local rates of crack advance or the possibility for local instability. However, the task of

estimating the nominal rate of crack advance or instability for the crack as a whole is

expected to be more desirable for practical purposes. There are presently no J solutions or

guidelines available for irregularly shaped defects.

5.3.2 Blunted Tip Radius

Naturally occurring defects are frequently blunt: they have a finite notch root radius. Rice

{981 has given an estimate of the maximum tangential strain directly ahead of the notch.

Assuming the onset of rapid crack extension is controlled by a particular value of maximum

strain, an apparent toughness can be derived which is predicted to increase in proportion to

the square root of root radius. Experimental data by Mulherin [99] illustrating the influence
of a finite root radius shows excellent agreement with prediction down to a critical minimum

root radius. An engineering approach to assessing failure by brittle mechanisms from blunt

notches has been proposed by Milne, Chell and Worthington [100]. This approach showed

good agreement with experimentally measured apparent toughness values for steels over a

range of notch sizes. Similar approaches applied to fatigue crack growth initiation from the

root of a sharp notch have shown that the number of cycles to initiation are approximately

proportional to the stress range and the square root of the root radius [101].

Given the potential for a substantial increase in apparent toughness above the toughness
measured for a sharp defect, assurance needs to be made that crack initiation does not occur

in a component during operation after it has survived the proof test. In these situations, a

substantial drop in apparent toughness could occur after the crack tip has been sharpened by

fatigue, or some other mechanism, and a potentially catastrophic failure might result.

5.3.3 Interacting Multiple Cracks

Interacting multiple cracks can seriously impact residual life or stress at failure. If the

defects are sufficiently close, a magnification of the crack driving force can occur due to the

interaction of the adjacent defect. In linear elastic fracture mechanics, the interaction is

small, and produces a less than 10% increase in/(i values, if the land separating the defects

exceeds the maximum dimension of the larger defect [73,102]. However, if the defects are
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close,a significant reduction in loadcarrying capability or remaining life is to beanticipated.
It is not clear at the current time howthesepredictionswouldchangeif elastic-plastic,rather
than linear elastic, conditionsprevailed.

5.3.4 Defect Orientation

Cracks may be inclined to free surfaces or be in a plane which is not normal to the applied

maximum principal stress. In such situations, it is usual to recharacterize the defect for

assessment purposes in order to avoid problems associated with shear loading, and to

overcome the possible unavailability of an appropriate fracture mechanics solution. There

are a number of ways that the recharacterization can be done. A common method used in

LEFM is to project the defect onto planes which are perpendicular to the three applied

principal stresses and to assess the most onerous of these situations. Whichever approach is

adopted it should be demonstrably conservative with respect to a proof test analysis.

5.4 Material Property Aspects

Material property data are needed to perform the fracture mechanics calculations required in

the proof test methodology. Some aspects concerning the choice of upper and lower bound

materials data in a deterministic approach to a proof test philosophy have been discussed in

Section 3.2. Aspects related to a probabilistic approach have been addressed in Section 3.3.

The type of materials data required to support fracture mechanics analyses have been
indicated in Section 5.2.

Ideally the material property data should be measured on materials which are in the same

condition as the proof tested component during its proof test and during service. If proof

testing is being used to re-certify a component for further service, then account should be

taken of the effects of service exposure on material behavior. Another important

consideration is to assess the effects of the proof test loading on consequent material fracture

behavior. A fundamental part of the proof test methodology involves demonstrating that

components surviving the proof loading will have their integrity enhanced rather than

impaired by the proof test. The effects of proof loading on subsequent material response, and

the implications regarding the methodology, are discussed in Section 6.4.

The material properties that are important in assessing the possibility for fracture are tensile

data, fracture toughness and crack growth constants.

5.4.1 Tensile Data

Yield stress, ultimate strength and the constitutive equations relating stress to strain are

required for elastic-plastic computations of the stress field and fracture mechanics

parameters, and in the use of alternative J methods, such as the reference stress approach
[79]. Although actual stress-strain data can be used in evaluating J via the reference stress

approach, the data has to be represented by a power law before the EPRI J estimation scheme

can be employed. Yield properties are also necessary for evaluating the plastic collapse load
of the structure.

5.4.2 Fracture Toughness

Plastic constraint is a key parameter in determining the fracture toughness value which is

appropriate for the structure, which in turn governs the calculated critical flaw size. Factors

53



local to the crack which may significantly influence fracture toughnessare: geometry(e.g.,
thickness); material variability, particularly at the microstructural level (local embrittled
zones);state of stress(planestressversusplanestrain); localloading(tensileor bending);and
degreeof crack tip plasticity (small scaleor large scaleyielding).

Special considerationwill needto be given to crackswhich are locatedat welds. In these
cases,the variation of micr0structure andmaterial propertiesbetweenthe weld,heataffected
zone(HAZ) and basemetal canproducedifficulties regardingthe measurementand selection
of the most appropriate fracture toughnessto use. A pessimisticdeterministic proof test
analysis can always be performedby using a combinationof the highest valuesof fracture
toughness and yield stress obtained from the weld and base metal properties when
calculating ao, and the lowest combination when determining a,, but this approach may
seriously erode proof test margins.

Consideration should also be given to the possible detrimental influence of environment,

should the proof loading occur in an aggressive atmosphere, such as hydrogen. The

environment may significantly reduce load carrying capacity especially where the proof load
is held steady for any length of time, allowing sub-critical crack extension to occur.

It is generally accepted that the fracture toughness value used in normal defect assessments

should have been measured on a valid sized test specimen according to fracture toughness

testing standards [103]. Alternatively, toughness values measured on specimens of the same

section size as the component may be acceptable in some circumstances although even this

approach cannot be readily applied to very thin sections. These requirements are intended

to facilitate transference of toughness data measured on laboratory sized specimens to use in

structural assessments. Provided the so-called J-validity requirements [103] are met in

measuring toughness, then these values will produce a conservative assessment.

The J-validity requirements introduce a complication into the proof test methodology: a

deterministic proof test analysis may require "upper bound" toughness values (see

Section 3.2) and there are presently no guidelines regarding the measurement of these. This

problem may be overcome by measuring toughness data on actual components, which would

be very expensive, or on specimens that reproduce as near as is possible the situation in the

component regarding typical dimensions and plastic constraint. This type of data is likely,

however, to have the stigma of being classified as invalid. A procedure for obtaining data for

use in proof test analyses, that recognizes the special problems associated with this, is
required.

There are particular problems associated with ductile materials. Materials failing by ductile

mechanisms will generally tear before they become unstable. A resistance curve expressed

in terms of fracture toughness as a function of tear length is required to assess for this. This

curve will contain information regarding the toughness value at the onset of tearing, and the

gradient of the resistance curve, which is needed to assess instability (compare Equation (6)).

A proof test analysis of a ductile material requires the full toughness against tear length

curve to be determined. This is a difficult exercise, not only due to the complications in

measuring toughness on very large specimens to allow enough ductile tearing, but also with

regard to the J-validity specimen size requirements: it is well known that at large levels of

ductile crack extension, the toughness curve becomes dependent on the dimensions of the

specimen used for the measurement [104,105].
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The inverseof this situation is encounteredwhen assessingvery thin structures, where the
section sizemay be of the order of a fraction of a millimeter. In thesecasesthe so-called
stretch zone,which characterizesthe dimension of the crack tip openingdisplacement in
ductile materials, may becomparableto the sectionthickness. It is unlikely that toughness
data obtained from testson standard sizedlaboratory specimens,which are usually tensof
millimeters in size,will be relevant to theseapplications asthe "initiation" value in these
specimensis usually around0.2 millimeter. Indeed,in very thin componentsductile failure
will occurby a plastic collapsemechanismwhich is insensitive to the material's toughness.

Analysis of multiple cycleproof loading of ductile materials requires postulated fatigue
growth beyondthe initiation of tearing (so-calledtear-fatigue, where fatigue crack growth
occursconcurrentlywith stable ductile tearing, seeSection5.2.10).Thereis evidencethat no
significant mechanisticinteractions occurbetweenfatigue crackgrowth and ductile tearing
providedthe R ratio (minimum load in the cycle divided by the maximum load) is equal to or

greater than zero [95,96]. The interactions appear to be mechanical and result from physical
crack extension.

Some measurements of Jm_, the value of J at the maximum load point in the cycle, during

tear-fatigue at negative R ratios on pipeline steels have been interpreted as indicating a

reduction in the fracture toughness with respect to a monotonically measured resistance

curve [106]. This effect is not properly understood at the moment, although it is known that

crack closure occurs during fatigue crack propagation at negative R values. Rather than an

actual reduction in the toughness resistance of the material due to tear-fatigue the possibility

strongly exists that the problem is related to how Jm_x is measured in a tear-fatigue test where

crack closure occurs. Tear-fatigue tests on the same material at R values greater than or

equal to zero did not indicate any deleterious effects on the material's toughness.

Provided multiple cycle proof testing are carried out at zero or positive values of R, the

current evidence suggests that no significant reduction in toughness will occur during the

proof test because of cycling. This may not be the situation under service conditions, and

appropriate allowance should be made in service-based assessments for cyclic loading at
negative R if this occurs in the tear-fatigue regime. Note that negative R values are also

possible during the proof test if localized yielding occurs at geometric discontinuities.

If the proof test load is sustained for any appreciable time, especially at temperatures where

creep deformation is significant, then consideration should be given to the possibility of time

dependent deformation and its influence on fracture toughness. Unfortunately, relatively

little is known about time-dependent crack growth in common aerospace alloys at ambient

temperatures. A few research programs addressed this topic in the late 1960s and early

1970s [124], but these efforts all predated the development of formal elastic-plastic fracture

mechanics. Apparently only Ingham and Moreland [97] have attempted to characterize

time-dependent EPFM effects in the formal framework of J-resistance curves. Further basic

studies are currently planned under the MCPT contract which may elucidate the relevance

of time dependent fracture to aerospace propulsion systems. This effect can be minimized by

reducing the time that the proof test load is applied.

5.4.3 Crack Growth Propagation Rates

Crack propagation data are needed to assess the remaining service life and sub-critical crack

growth during the proof test. This is the case if multiple cycling is used as part of the proof
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testing procedurefor ductile materials. Techniquesfor measuring and analyzing fatigue
crack growth data are documentedin ASTM Standards[103]. Datawhich is relevant to the
temperature and environment of the componentshouldbeobtained.

Crack growth laws needto besuitably expressedin terms of fracture mechanicsparameters,
taking into account the environment during the proof test and service. The sub-critical
growth mechanismsthat couldcausecrackextensionare fatigue,possiblyenvironmentally
enhanced,stresscorrosioncrackingand creepcrackgrowth. Stresscorrosioncrackingwould
beof concernunder steadyloadingconditions for any significant amount of time, and creep
crack growth if the loading was sustained at temperatures where creep deformation was
significant. It is clear that sometest fluids and environments can greatly promote time
dependentpropagationunder asteadyload,and someaerospacematerials, suchastitanium
alloys, are susceptible to environmentally assistedcrack extensioneven under nominally
ambient test conditions [123].

The importance of sub-critical crack extension involving multiple cycling will increase if
cracks undergoductile tearing during the proof test. Ductile tearing may be postulated to
occuraspart of the proof test analysis,or it could be real and occurat existing defects. In
either case,the combinationof ductile tearing and fatigue crack extension(tear-fatigue) is
known to enhancethe total crackextensionpercycle[62,95,96].
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6. EFFECTS OF PROOF TESTING ON

SUBSEQUENT COMPONENT INTEGRITY

On occasion analysis will indicate that the proof test should not be carried out because it will

be prove ineffective in guaranteeing reliability of the component in service. Some of the

reasons why a proof test may be ineffective are discussed in Section 6.1.

If a proof test is performed, then the ramifications of proof loading on the subsequent

assessment of component integrity need to be fully recognized. The proof loading can

influence the residual stress distributions which were present in the component prior to the

test; change flaw size distributions; and change subsequent material behavior. The technical

issues associated these topics are summarized in Tables 10 through 12 respectively, and

discussed in more detail in Sections 6.2 through 6.4.

6.1 Reasons Why a Proof Test Anal=vsis May Fail to Provide Assurance of

Safety

The concept of providing an assurance of safety is a deterministic one. In situations where a

proof test does not provide assurance of subsequent safe operation, a probabilistic analysis

may still be able to demonstrate an improvement in reliability due to proof loading. The

successful application of MCPT by Rocketdyne to aerospace components is an example of an

apparent increase in reliability in a situation where an assurance of safety was difficult to

establish only through proof testing.

The margin of safety provided during service by proof testing a component is related to the

ratio aJao, and this ratio increases as the size of the proof test load Po is increased. However,

there is a maximum value of proof load that can be applied above which the threat of failure

during the proof test exceeds the anticipated benefits that may accrue from it. Similarly

there is a minimum proof load P,,,n below which the safety of the component cannot be assured

from a proof test analysis (see Figure 1). If the difference between Po and Pm,,_ is unacceptably

small, or negative, then the proof test cannot be used to establish the integrity of the

component for service. In these cases alternative NDE methods should be investigated for

detection capabilities, which may be considerably below that predicted from a proof test

analysis. Fracture mechanics concepts can then be applied to establish that the undetected

defects do not impair the safety of the component. However, if the NDE detection size is

larger than ao, there may be no alternative but to redesign the proof test to allow a larger

proof test factor, and/or to introduce a schedule of very frequent re-proof tests.

There are a number of reasons why a proof test analysis may fail to provide sufficient

assurance of safety during subsequent service. These are related to: pessimistic assumptions

made in the analysis; the tolerance of the structure to cracking; degradation of material

properties resulting from the proof loading; and anticipated severe service loads which cannot

be simulated in the proof test.

6.1.1 Pessimistic Assumptions

A prudent deterministic approach to proof test analysis combines the results of two

pessimistic fracture analyses, one related to maximizing ao, the other to minimizing as.

Although this is intended to guarantee subsequent component integrity, it often imposes a
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Table 10. Technical Assessment for Issue 6.2: Redistribution of Stresses

Importance

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the
Technology

The proof load may result in either compressive or tensile residual

stresses. The latter may be a threat to the future integrity of the

component.

iThe use of the proof load as a means of mechanical stress relief is well

known. There are a number of cases where welding residual stresses

have been measured before and after an overload, and a reduction in

the peak tensile stresses has been demonstrated as a result of the

overload. In contrast, there has been at least one reported case of a

'notched bar that was loaded in compression and failed during the

unloading due to the generation of tensile residual stresses at the
notch root.

This is a stress analysis problem which can be addressed using the

finite element computer codes ABAQUS or ANSYS, or alternative

more simpler but less accurate methods.

To improve prediction and measurement of residual stresses.

Knowledge of the residual stresses in the component prior to proof

testing, and the loads applied during the test.
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Table 11. Technical Assessment for Issue 6.3: Post-test Flaw Characterization

Importance

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the

Technology

It is necessary to know the change in flaw size and shape distributions

produced by proof testing in order to be able to accurately assess the

integrity of the component during subsequent service.

Flaw characterization rules, such as those contained in ASME Boiler

and Pressure vessel Code, Section XI, do not explicitly address the

possible re-characterization problem related to proof loading.

In principle, fracture mechanics concepts can be used to assess the
changes in size and shape of defects as a result of proof loading.

Flaw characterization rules relevant to the post proof test situation

are required.

Knowledge of defect size distribution and the behavior of natural

defects under elastic-plastic proof test conditions.

59



Table 12. Technical Assessment for Issue 6.4: Post-test Material Response

Importance

Present Status

Availability of

Implementing

Technology

Further

Technological

Requirements

Data Required to

Implement the
Technology

It is essential that any degradation in material fracture properties

due to proof testing are recognized and quantified in order for a

reliable assessment of subsequent service life to be made.

Although it is widely recognized that materials data relevant to the
condition of the material at the time should be used in an assessment

of structural integrity, there are few, if any, guidelines regarding how
this data is to be obtained. It is known that preloading a cracked

component prior to service may have beneficial as well as detrimental

effects on subsequent fracture behavior. (For example, beneficial

effects occur on warm prestressing ferritic steels, and fatigue crack

growth retardation can result from an overload. In contrast,

preloading a cracked ductile component so that the defect tears and

undergoes extensive plastic deformation will induce observable

damage, in the form of the enlargement and possible coalescence of

voids, in the material ahead of the crack tip.)

The technology to characterize load history effects on material
fracture behavior is still in its infancy.

The development of measuring procedures and technologies that
enable the effects of load history on material fracture behavior to be

quantified are required.

Test data showing the effects, if any, of previous load history on
current fracture behavior.
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high penalty in the reductionof proof testmargins, if not their total erosion. A probabilistic
analysiscouldprofitably beusedto reducethe levelof pessimismcontainedin this approach,
or, if it couldbejustified, the useof consistentassessmentdata shouldbeconsidered.

To employfracture mechanicsit is necessaryto idealizenaturally occurringdefectsassharp
planar crackswith shapesthat are compatiblewith existing fracture mechanicssolutions.
On occasion,it may benecessaryto re-characterizeclusters of natural defectsby a single
crack whose size bounds the cluster. These approximations introduce potential
inconsistencies,as well aspessimisms,into the analysis. For example,it may benecessary
to treat natural defectsas non-planar defectswhen calculating ao, but to assume they are

planar when evaluating a_.

6.1.2 Defect Tolerance

Structures made from very tough, ductile materials, are usually extremely tolerant of

cracking, and will fail at, or very near to, the plastic collapse load. Similarly, thin section

components are tolerant to deep part-penetrating defects because the absolute size of the
crack is limited and the crack driving force insufficient to cause instability before the onset of

plastic collapse. In both these cases, the ratio of defect depth to section size at failure will

generally be large, and the difference between ao and as will be small. These factors can

contribute to a major erosion of proof test margins derived using a deterministic approach.

This conclusion is consistent with the accepted view that structures which are intolerant to

cracking provide the best candidates for proof testing.

6.1.3 Material Property Degradation

There are two possible ways that material properties may deteriorate: due to the proof

testing conditions, and due to the effects of service exposure. The latter is clearly relevant to

components which need to be re-certified in order to re-enter service. The former represents

damage which is unavoidably introduced as a consequence of the proof testing procedure.

The possible types of material degradation are discussed in more detail in Section 6.4. It

should be noted that the effects on material response resulting from the proof loading may

not all be detrimental. For example, it is known that under some circumstances the proof

loading may retard fatigue crack propagation rates during service.

6.1.4 Unreproducible Service Loads

It is normally only practicable to apply relatively simple types of loads during the proof

testing, such as internal pressure or tensile loads. More complicated loads, especially those

that do not have a mechanical source, such as thermal stresses, are either too difficult or too

expensive to apply, or both. Thus there may be parts of a component that can experience local

stressing during service operation that is more onerous than that which can be applied at the

proof test stage. In these cases alternative screening methods, such as NDE, should be

employed to determine the defect sizes required for an integrity assessment. In a sense these

cases do not constitute a failure of the proof test methodology, they are more an indication of

the practical limitations of applying proof testing concepts to all components.

6,2 Redistribution of Stresses

There is a potential during the proof loading for redistribution of stresses to occur in those

regions of the component where the local stress is at or near yield point magnitude. These
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regions are normally associatedwith geometricdiscontinuities, suchas sharp corners and
holes, and residual welding stresses. If the componentis being re-certified after being
subjectedto serviceloadings,then there is the possibility that further residual stressesare
present, the consequenceof local plasticity generated by severe thermal loading during
operation,or local geometricdiscontinuities.

The effect of the proof loading on the stresses in these local regions of high stress may be

either beneficial or detrimental. Benefits may arise from shakedown when the stresses are

tensile. This is illustrated in Figure 7(a), where yielding produces a non-linear relationship

between the local stress and the applied load, so that the change in the local stress as the load

is increased is far less than if the material behaved linear elastically. The benefits of

shakedown arise because when the applied load is reduced the material unloads linear

elastically so that the stress after unloading is less than it was before the proof load

(Figure 7(a)).

The detrimental aspects arise from the inverse behavior to this, as shown in Figure 7(b).

Here the proof loading results in a local compressive stress which reinforces an existing

compressive stress to produce yielding. When the proof load is removed, a tensile stress

remains which could now reinforce any tensile loading experienced by the region during

service. One of the authors is aware of one instance where a notched bar loaded by a

compressive force fractured during unloading due to the generation of tensile residual

stresses at the root of the notch resulting from the compressive yielding that had occurred

during loading.

It is pessimistic to ignore the benefits from shakedown resulting from local tensile stressing,

but the detrimental effects of generating tensile residual stresses by proof testing in regions

where there were previously compressive stresses needs to be addressed in developing a proof

test methodology. Regions where this is likely to occur should be identified and appropriate

stress analysis performed to establish whether the region is fracture sensitive.

The proof test will also affect the stress distribution in the crack tip plastic zone. After the

proof loading the crack tip will be in compression, but a tensile stress zone will emanate from

the tip during reloading under service conditions. Sub-critical crack growth at operation will

also reduce the size of any remaining compressive zone. The effects of this complex load

history are not easily quantifiable. In terms of assessment, the effects will manifest

themselves in apparent changes in material deformation behavior, which is discussed in
Section 6.4.

6.3 Flaw Characterization

The most fundamental effect of proof testing on the subsequent component reliability in

service - in fact, the direct effect most often intended by the proof test - is increased knowledge

regarding the distribution of flaw sizes in the component. Fracture mechanics assessments

of remaining operational life should be based on some presumption about the size and shape

of the crack-like defects already present in the component. A properly designed proof test will

eliminate the possibility of large flaws being part of the defect population that enters service

by failing hardware which contains these flaws. However, the change in defect distribution

due to the possibility that some flaws have grown in size during the proof test should also be

considered when evaluating the effects of proof on in-service reliability.
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For brittle materials, the largest calculated flaw that could just survive the proof test can be

used in a deterministic analysis of the remaining service life. In a probabilistic analysis the

flaw distribution can be truncated at the largest survivable defect size, and the distribution

renormalized with respect to the remaining population.

However, determining the post-proof flaw size distribution for ductile materials is more

complicated. The pre-proof distribution can be changed by the proof test in three ways, as

shown in schematically in Figure 8. Some flaws are sufficiently small (Region 1) that ductile

crack growth is not initiated, and so they do not change in size. More accurately, flaws in this

region can be treated as having experienced a single cycle of fatigue crack growth, although
in many cases the amount of crack growth so calculated will be negligible. At the other

extreme (Region 3), some flaws are sufficiently large that they cause component failure

during the proof test, and so they are removed from the population. In the intermediate case

(Region 2), the flaws experience some stable growth but do not cause failure. Computation of

the boundaries between these three regions and the extent of crack growth in region 2

requires application of the fracture mechanics technology described in Section5.2.

Depending on the nature of the proof test history, these computations may include elements

of resistance curve, fatigue crack growth, and time-dependent crack growth analyses.

As noted above in Section 5.3 on flaw characterization, many naturally occurring flaws will

be highly irregular in shape, rather than mathematically straight or semi-elliptical as
frequently assumed in fracture mechanics analyses. Proof loading of these defects can cause

a variety of other changes in flaw geometry besides self-similar growth. The flaw can extend

or change shape locally by separation of small ligaments or "fingers" along the crack front,

and closely adjacent defects can link up to form a single larger flaw. These effects are

essentially impossible to quantify or to predict from a formal fracture mechanics standpoint.

Instead, appropriately conservative assumptions should be made about the simplified initial
and final shapes and sizes of the crack-like defects.

Proof loading can also cause the formation of sharp, crack-like flaws from previously blunt or

non-planar defects, especially in weldments and perhaps near stress concentrations. This

phenomenon may be more likely when proof loading is especially severe or when multiple

cycles are applied. Multiple cycles can potentially cause localized low cycle fatigue

deformation which can enhance flaw initiation or sharpening in locally susceptible regions.

Again, characterizing or predicting these effects is not practical in an engineering

methodology, but it should be recognized that they introduce a possible nonconservatism into
the proof test logic.

Another potential change in defect geometry due to proof loading is crack tip blunting, which

can cause retardation of subsequent crack growth in service. This phenomenon is discussed
further in Section 6.4.

6.4 Material Response After PrQof Loedin?

The application of a proof test load which exceeds the normal service loading can have

important implications on the fracture behavior of the material during subsequent operation.

The material properties of most significance that are liable to change as a result of proof
loading are tensile data, fracture toughness, and crack propagation rates.
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6.4.1 Tensile Data

Materials are known to be susceptible to cyclic hardening or softening. This phenomenon can

occur in regions of the component undergoing cyclic plastic deformation. It should not be a

problem in a single cycle proof test, but needs to be considered in a multiple cycle application.

It may be possible to show that cyclic changes to the yield properties are negligible for the

strain ranges and the number of cycles that arise in the proof test. If this is not the case then

allowance should be made for any changes that occur in the tensile data used to calculate the

maximum tolerable defect size, as.

Cyclic changes could occur in the crack tip plastic zone during proof testing, especially if the

cracked section is loaded to beyond general yield and crack tip plasticity is extensive.

However, this is only possible if the crack does not extend during the multiple cycling. Proof

test methodologies pessimistically assume in the calculation of ao that crack extension has
occurred. Hence cyclic changes to the tensile properties in the plastic zone of the defect need

not be considered because, by extending, the crack will increase its stress field and new

plastic deformation will remove any cyclic effects arising from the previous load cycle.

However, during multiple cycling, defects below a given size will not propagate and cyclic

prestraining in their plastic zones cannot be ruled out.

6.4.2 Fracture Toughness

The effects of proof loading on toughness is dependent on whether the material is brittle or

ductile.

Brittle materials

It is now widely recognized that loading a material that fails by cleavage to a load which

exceeds its operating load, and at a temperature above the operating temperature, changes
the fracture toughness at the operating temperature [3,107-111] (Figure 9). This effect is

called warm prestressing and is observed in metals, such as ferritic steels, that fracture at

temperatures below their ductile-brittle toughness transition temperature. The reasons why
this occurs are understood and theoretical models based on the mechanisms of cleavage, and

the mechanics of plastic flow [112] have been proposed to explain warm prestressing, and

appear to do so with reasonable accuracy. The enhancement in toughness is observed even if

ductile tearing occurs during the proof loading [113].

Toughness enhancement is not predicted to occur if the proof loading occurs at the same

temperature as the operating temperature, or at a temperature below it. It also appears to

be dependent on the failure mechanisms being stress controlled: there is no evidence that

warm prestressing will affect the toughness of materials failing by strain controlled

mechanisms, even if fracture occurs with little or no crack tip plasticity, and without any

significant stable crack extension preceding the event. This is not intended to imply that the

toughness of such materials will not be affected by the proof loading due to other causes.

It is reasonable not to invoke the benefits from warm prestressing in a proof test analysis

because of the possibility of sub-critical crack growth during service. Although there is some

theoretical evidence that the warm prestressing effect persists even after some sub-critical
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crack extension, the amount of crack growth required before the effects are removed is

small, and, under some circumstances, the threat of catastrophic failure occurring at an

apparent enhanced toughness level during growth cannot be ruled out [114].

Under some conditions material embrittlement could occur during the proof test from strain

ageing, dynamic ageing or other causes [113,115]. The time over which the proof load is

sustained, and the temperature of the test, will be important parameters in determining the

degree of embrittlement, if any is anticipated to occur.

Ductile materials

The effect of ductile tearing at the proof load level on the ductile toughness under service

conditions is little understood, particularly if the two occur at different temperatures. This

observation applies whether the proof test consists of a single cycle or multiple cycles. Two

situations should be considered when assessing the effect of the proof loading on the

subsequent toughness of the material.

First, the methodology of proof testing requires that a postulated defect remains on the point

of incipient instability after the last proof test load cycle. This implies that the defect grew

by tear or tear-fatigue during the proof testing, as shown schematically in Figure 10. Models

of tear-fatigue have now advanced to the stage where the situation shown in Figure 10 can

be predicted (see Section 5.4). These models also enable the effect on subsequent crack

growth at a lower cyclic load (service load) than the proof load to be predicted provided there

is no change in temperature between the two loading sequences. However, the models do not

provide predictions regarding the influence of the proof loading on the subsequent fracture

toughness under service conditions, even if these correspond to the same temperature as the

proof temperature. The problem is illustrated schematically in Figure 10 which shows the

situation under service loading after the proof loading.

It is essential for assessing the integrity of the component at operation that at least a lower

bound initiation toughness is known. At the current time there is no simple way of

quantifying the damage introduced by the proof test without resorting to experimental

measurement. Theoretical predictions of the effects of the damage, based upon the local

damage approach [116], are not practical at the present time: they are expensive as they rely

on three-dimensional elastic-plastic stress analysis of the cracked structure, and they are not

sufficiently validated to be used with confidence on aerospace components.

Second, the effects of proof loading on defects that were too small to grow by tearing during

the test need to be considered. It has been shown that cyclic prestraining may either enhance

or reduce the ductile fracture toughness depending on whether the material cyclically softens

or hardens [117,118]. Significant cyclic plastic prestraining could occur in the crack tip

plastic zone during multiple cycle loading.

6.4.3 Crack Propagation Rates

The proof test could result in retardation of fatigue crack growth during service conditions

[31}. However, this effect is likely to be significant only if the proof load cycles are
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substantially higher than the service cycles [119]. The effect of retardation will be to increase

the calculated remaining life of the component with respect to the life determined with no

retardation.

The situation with regard to tough materials is not so clear. In these cases the calculated

value of the applied Jo during the proof loading may be very large. In fact, as discussed in

Section 5.2, the assessment of failure under the proof test conditions may predict that ductile

instability will occur very near to the plastic collapse load of the component. In this regime,

the applied value of J is very sensitive to the value of the load and the proof loading could

constitute a large overload with respect to service conditions when characterized by the ratio

(Jo/J,,,ax) _2 (see Figure 11).

A more important consideration is the possibility of an enhancement in the growth rate

during service due to combined static and fatigue crack growth mechanisms, as was discussed

for ductile materials undergoing tear-fatigue. In a normal remaining life assessment the

reduction in the total fatigue life due to the interaction of static brittle and fatigue crack

growth mechanisms is not significant, since the predominant part of the life is spent in

propagating small defects with low applied values of J,_x. However, the value of the largest

defect ao that could just survive the proof test loading may be large enough to produce a

significant interaction between static and cyclic failure modes during subsequent operation.

It is known from work on ferritic steels that brittle as well as ductile materials show an

acceleration in the crack propagation rate as the load at the maximum part of the cycle

approaches the load required to cause fracture under monotonic loading conditions. For

brittle materials that do not display any significant resistance to stable crack extension under

a rising load, and where fracture is coincident with crack growth initiation, this effect

becomes significant when J,,,_ exceeds about 0.6 Jlc, where Jm_ is the value of the applied J

at maximum load in the cycle. Theoretical modelling of this acceleration indicates that the

enhancement in the growth rate is inversely proportional to the term JicJm,_ [63,94].

For ductile materials, there is evidence from tear-fatigue tests on ductile ferritic steels that,

provided Jm,,, is less than Jo, then although J_ > J1_, the growth rate will return to its value

calculated from the normal growth rate laws in the absence of tearing [95]. This effect is

illustrated in Figure 12. Although this has only been demonstrated for crack propagation at

a constant Jm,_, equal to Jo the effect could be anticipated to occur at J,_ levels less than Jo.

However, it still has to be proven that this is the case. Alternatively, it could be argued that

the fatigue cycling propagates the crack through the ductile fracture process zone

corresponding to Jo, developing a new process zone which corresponds to the instantaneous

value of Jm_ and consequently re-initiating tear-fatigue and an acceleration in the growth
rate.
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7. OTHER ISSUES ASSOCIATED WITH PROOF TESTING

There are other issues associated with proof testing that are not directly related to technical

assessment and analysis. These issues concern how the proof test is carried out and include

personnel training and certification; test fixtures, seals, and fasteners; and test procedure

documentation and safety plans.

7.1 Personnel Training and Certification

It is imperative that a program for personnel training be required for those involved in

pressure test operations. This should consist of an apprenticeship program in which the

mechanic learns basic skills and safety procedures from an experienced technician, relating

to the setup of pressure systems and test conduct. This should be followed by training on

hydraulic and pneumatic pressure systems covering pressure system terminology, applicable

principles of physics, pressure system pretest safety checklists, typical system components

and their theory of operation, metallic pressure tubing and flexible hose, pressure test

fittings, seals and gaskets, calculation of system energy levels and use of blast shields and/or

test cells, codes applicable to pressure testing, and required tools and their proper use.

This initial training should be followed by on-the-job training with a strong emphasis on

system and test safety, including pressure system schematic requirements, pressure system

design, preparation of pressure system safety checkout cards, pressure relieving devices, use

of flexible hose, and ground rules for setting up tests involving pressure. Development of

personal skills relating to pressure testing should be documented on a task familiarization

checklist which tracks the progress of each mechanic and technician in attaining various

on-the-job training skills and class completion.

Personnel training for test engineers should consist of similar course work to that undergone

by mechanics and technicians as well as receiving on-the-job-training from a senior test

engineer. The emphasis in the course work and during on-the-job-training should be placed

on system safety, test data accuracy, and proper documentation for test set up and conduct of
tests.

7.2 Test Fixtures. Seals. and Fasteners

Test fixtures, seals, and fasteners are an integral part of any pressure test because without

their presence on the test item it would be impossible to create the pressure load conditions

necessary for its evaluation. Some of the more important fixture design considerations are as

follows: compartmentization of a test item based on various pressure zones present during

test; simulation of internal pressure loads; application of external mechanical loads;

structural simulation of the actual component or assembly attached to the test item during

service; pressure port size, type, and location; ability of the pressure test assembly to be bled
of air for hydrostatic tests; internal volume reduction by test fixture to limit energy levels;

incorporation of pressure control devices such as burst diaphragms and/or relief valves into
the test fixture to allow control of adverse absolute and/or differential pressures caused by

pressure system input and/or internal seal leakage; corrosion resistance and/or plating of

non-corrosion resistant materials to allow optimum fixture sealing surface conditions and

minimum contamination of test item during test; material handling provisions such as sling

attach points for massive tool details; internal and/or external mechanical restraints to limit

test item and/or fixture displacement; pressure seal-to-test item interface clearance changes

due to differential growth rates experienced during test assembly temperature changes and
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pressureloadings;material property changesofsealsand/ortest fixtures due to temperature;

high strength material availability for very large fixtures; and high strength fastener
availability.

7.3 Test Procedures, Documentation, And Safety Pl_ns

Test procedures are a critical element of the pressure test since they contain the necessary

system setup information and the test parameters needed for successful test completion. The

type of test procedure is usually dictated by the degree of control required during test conduct.

The level of control should be very high for production-type hardware which requires a precise

set of instructions to be followed in a consistent manner from test to test. In this instance,

test procedures should be reviewed and approved by the user department, test item

manufacturing engineer, system safety engineer, and quality engineer. In addition the

project engineer and/or the structural analysis group should approve the test procedure in
certain special cases involving critical and/or first article hardware program test items. The

procedure should then be formally archived. These archived procedures should be referenced

by a manufacturing operation record that travels with the test item throughout the
manufacturing cycle.

For tests involving development, scrap, and/or incident hardware, a less rigorous approval

cycle should be employed with a similar test procedure format to allow more flexibility during
test operations.

A good pressure test procedure must contain the following elements to insure safety, test data
quality, and overall high efficiency: test system mechanical and electrical/instrumentation

schematics, including detailed component description lists; all test parameters such as final

absolute and/or differential pressure(s), test item temperature, number of pressure cycles,

dwell times at various pressure levels, and pressurization/depressurization rates; reference

to resident facility operating procedures describing facility setup, operation, and

troubleshooting and contingency plans needed in the event the test item and/or facility

experiences an anomalous condition; data collection instrumentation and critical system

component redundancy; and test item/facility cleanliness control. In addition, each procedure

must receive a hazard analysis to assure that all scenarios involving adverse pressure and/or

external load conditions have been addressed by the test procedure and compensated for in
the test system.
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8. DISCUSSION

The main technical issues highlighted by this appraisal of state-of-the-art technology and its

application to proof testing are summarized in Tables 1 through 12. Some topics which are

related to emerging technologies are also included in the appraisal (for example,

quantification of the effects of proof test loading on subsequent material behavior). In these
cases it is considered that there is a reasonable chance these will have matured to have

become state-of-the-art technology within the timescales of the proof test project, or that it

will be possible to make useful recommendations as to how they should be approximately

incorporated in a proof test methodology. In any event, these issues are considered

sufficiently important that they should be discussed, and their ramifications made apparent,

within the context of proof testing.

It is clear from the appraisal that a probability based proof test methodology offers many

advantages over a deterministic one. Its use will remove many of the aspects of the

deterministic approach that erode proof test margins and produce inconsistencies in the

treatment of the component during the proof loading and while it is undergoing service. The

disadvantage of the probabilistic approach is the increase in analysis complexity and the need

for additional data compared to a deterministic analysis. However, since the technical issues

associated with the steps in a deterministic analysis require resolution before a probabilistic

approach can be implemented, the evolution from a deterministic to a probabilistic
methodology can be accomplished in stages, with parts of the deterministic analysis being

replaced by probabilistic routines as, and when, these become available.

It is worth re-emphasizing that failure within the context of proof testing does not necessarily

imply catastrophic failure of the component. There can be many different criteria governing

whether a component can be judged to have survived the proof test. Similarly, there are

many reasons why it could fail it. This includes the loss of the integrity of seals and leakages

caused by through wall crack propagation. In the latter case, although the defect may not

have propagated unstably, this would be classified as a failure of the component if, for

example, the leak would have resulted in the release of volatile substances had it occurred in
service.

One of the greatest advantages of a proof analysis based on the proof load is its capability of

providing a one-parameter characterization of the integrity of the structure as it enters

service with respect to the service loads it will experience. Unfortunately, this simplicity does

not carry over to an assessment based on EPFM. EPFM requires that the proof load be

characterized by an elastic-plastic parameter, such as J, and this could prove both

economically and analytically demanding. There may be many locations in a component

where defects could occur, and each one would need to be characterized by J. Furthermore,

the limitations on the application of J theory, and the problems still outstanding regarding

its determination by simple methods for complex structures, crack shapes and loadings,

would not always warrant such an approach. These problems could be partly overcome by

performing a proof test analysis for the most critical region only, or by using bounding data
which encompass, in some generic sense, all the parts of the component at risk from cracking.

A reliability for service assessment based on the proof test requires the calculation of ao, as,

and the time for the crack to grow from as to ao. The easiest of these quantities to determine

is ao, because this is evaluated under proof test conditions which are usually well defined and

controlled. In many cases, the calculation of the other two quantities presents a formidable
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task. A prooftest methodologyshouldrecognizeand describethe closerelationshipsbetween
all three of these quantities, but its primary purposeat this time should be detailing the
estimation of ao. This approachis consistentwith the fact that the calculationof asand the
remaining life is an exercisewhich is usually performedindependentlyof the proof test.

There will be caseswhere it can be argued that the proof test is not justified on either
non-technicalor technical grounds. However, if a servicefailure cannot be tolerated, and

reliable NDE methods are not available, then there appears to be no alternative but _o proof
test, irrespective of the cost and the practical difficulties involved.

Some practical circumstances which obviate the possibility of proof testing have already been

mentioned in this report. These include situations where alternative flaw screening and

detection methods are available, and would prove more effective and less expensive to apply,

and where the consequences of failure in service does not pose a significant safety or financial

risk, and where the component could be replaced or repaired at relatively low cost.

Possible technical reasons why a proof test may not be effective include situations where the

component material is very tough; where the walls of the component are very thin; and where

the proof load would be so different from the service loads that a proof test would not exercise

the critical regions of the component. In addition, test conditions may introduce so many
uncertainties that an assessment becomes unreliable. However, this should not exclude the

use of the proof test as a quality assurance method for detecting manufacturing errors and
poor workmanship.

Given these limitations on the use of proof testing, it would be judicious to adopt a pragmatic

approach to the formulation of a proof test methodology, and to accept that although it

includes state-of-the-art technology, the application of these sophisticated analysis tools may

not always be justified. A methodology based on various levels of sophistication suggests

itself as a compromise between not having the technology available when it is needed, and,

alternatively, having the technology but not having the justification or the resource to apply

it to most problems because of its sophistication. The development of this kind of

methodology would allow other factors, besides those previously discussed, to be included in

the proof testing decision making process. One of these is the fact that guaranteeing the

reliability of a structure for service is not always made solely on a proof test argument. The
strengths of these additional factors should be allowed to influence the level of resource

expended on proof testing, and hence the level of sophistication required from a proof test
analysis.

Given the increase in input data and analysis complexity that a state-of-the-art proof test

methodology requires, serious consideration should be given to the development of enabling

technology which allows the methodology to be implemented, and the technology to be

transferred, to the non-expert user. Steps which could be taken to facilitate these aspects are

the extension of material data bases to include EPFM information; probabilistic data, such as

distribution functions and their corresponding constants, as these become available; and the

development of computer software for calculating elastic-plastic fracture mechanics

parameters and performing the proof test analysis. It should be possible to carry out these
developments in a manner that utilizes existing NASA data bases, (e.g., the NASA fracture

mechanics database [126 J) and structural integrity computer software, and that is consistent
with the overall NASA approach to probabilistic methodologies.
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It may sometimes not be clear whether it is more cost effective to replace a piece of equipment

or to re-certify it for further service using the proof test as a method of guaranteeing

remaining life. Such decisions are non-trivial and frequently depend on many factors and are

accompanied by many uncertainties. The probabilistic method allows these issues to be

combined with the probability of a beneficial outcome from proof testing in order to assess the

cost benefits of the proof test. Indeed, probabilistic theory has been proposed as an aid in the

assessment of economic decisions of this nature [47,48]. In the longer term, the development

of a cost benefit analysis which is interfaced with a probability based proof test computer

software package would provide a powerful tool for quantifying the benefits of performing a

proof test and in helping to maximize its effectiveness. This type of technology would also

enable the optimization of proof test intervals for re-certifiable components to be performed.

77



9. CONCLUSIONS

The technical issues raised in this report have been critically appraised in order to assess

their importance in a proof test analysis to determine the fitness-for-service and remaining
life of aerospace components. Recent technological advances in the field of fracture

mechanics have been included in the appraisal with a view to defining those issues which are

mature enough to be incorporated in a proof test methodology. The following criteria were

used to assess each issue with respect to inclusion in a proof test methodology:

• its importance in a proof test methodology;

* its status and general acceptance;

• the availability of implementing technology;

• further technological requirements;

• the data required to implement the technology;

These criteria were used to select from the issues reviewed a list of parameters and

phenomena that are deemed not only essential to formulating a proof test methodology, but
also well enough understood and validated, or probably could be within the time and

resources of the present project, to be used as a technical basis for underpinning the

methodology. It is concluded that inclusion of the list items in a proof test methodology
would:

• promote proof test practice to a state-of-the-art technology;

• identify those aspects which would aid optimization of proof test design with
respect to maximizing its effectiveness;

• increase awareness and understanding of outstanding issues, like the relative
merits of single and multiple cycle proof loading.

Items included on this list are:

Those related to analysis:

• guidance on how to determine proof test margins and safe remaining life

• guidance on determining proof test intervals for re-certifiable components
• guidance on which applications, materials, and structures are most conducive

to the benefits of proof testing

• elastic-plastic fracture mechanics (EPFM)

• discussion of different fracture regimes and the fracture mechanics parameters
applicable to each

• ductile instability analyses

• simple approximate methods of estimating the EPFM parameter J
• recommended treatment of secondary stresses in EPFM

• comment on the use of EPFM parameters for characterizing proof test loads
with respect to service loading

• elements of probabilistic analyses

• relationship of proof test probabilistic methodology to existing NASA
probabilistic methodologies

• suggested methods of deriving probabilistic distributions from existing but
limited data

• indications of the probability of detecting flaws in aerospace hardware
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• analysis treatment of multiple cycle loading

• guidance on residual stress distributions in typical aerospace hardware

• indications of defect distributions in aerospace components

• discussion on the impact of defect shape on proof test margins

• comments of the significance flaw characterization in proof test analyses
• synergistic relationship of proof testing to NDE

Those related to material behavior

• recommendations for obtaining material data for proof test usage

• description of different types of material fracture behavior and their impact on
proof test analysis

• rules for assessing the interaction of static and cyclic crack extension
mechanisms

• rules for assessing the effect of load history on subsequent fracture behavior
• rules for assessing the effects of environment on material behavior

Those related to test conditions

• guidance on proof test temperature

• guidance on when to perform multiple cycle or single cycle proof tests
• recommendations on the need to simulate service environments

• recommendations on loading rates and hold times
• suggested test media

• use of real-time NDE to enhance flaw screening capability

It is further concluded that:

• a proof test methodology based on probabilistic analysis will be far more

effective than one based solely ona deterministic philosophy.

• the probabilistic approach removes many of the technical problems and logical

inconsistencies which beset deterministic methodology.

• the value of the proof test is greatly enhanced as a flaw screening method when

combined with non-destructive examinations of the component.

It should be recognized that the proof test is not universally applicable as a pre-service

method of guaranteeing structural reliability during service, especially, if reliable and more

effective NDE methods are available. This is because its range of application is limited by

both non-technical and technical factors. Furthermore, the process of guaranteeing the

structural reliability of a component during service is usually not based solely on the results
of a proof test. The strength of these other factors should be allowed to determine the

sophistication of proof test requirements and procedures. These observations lead to the

conclusion that a proof test methodology should be pragmatically based on a series of levels,

the higher the level the greater the technological sophistication. Such a methodology should

include guidance for the users to enable them to select the level most appropriate to their
circumstances.
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In terms of longer term developments,it is concludedthat proof test analysis capabilities
would begreatly increasedby:

• a probabilistic data base consisting of source data, and/or distribution functions

and their respective constants, for all key assessment parameters

• computer software for calculating elastic-plastic fracture mechanics

parameters and performing a proof test analysis

• a methodology for determining the cost benefits of proof testing.
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