11 research outputs found

    Future Atmospheric Rivers and Impacts on Precipitation: Overview of the ARTMIP Tier 2 High‐Resolution Global Warming Experiment

    Get PDF
    Atmospheric rivers (ARs) are long, narrow synoptic scale weather features important for Earth’s hydrological cycle typically transporting water vapor poleward, delivering precipitation important for local climates. Understanding ARs in a warming climate is problematic because the AR response to climate change is tied to how the feature is defined. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) provides insights into this problem by comparing 16 atmospheric river detection tools (ARDTs) to a common data set consisting of high resolution climate change simulations from a global atmospheric general circulation model. ARDTs mostly show increases in frequency and intensity, but the scale of the response is largely dependent on algorithmic criteria. Across ARDTs, bulk characteristics suggest intensity and spatial footprint are inversely correlated, and most focus regions experience increases in precipitation volume coming from extreme ARs. The spread of the AR precipitation response under climate change is large and dependent on ARDT selection

    The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology

    Get PDF
    Atmospheric rivers (ARs) are now widely known for their association with high‐impact weather events and long‐term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR‐related metrics based on 20+ different AR identification and tracking methods applied to Modern‐Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all‐method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR‐related research to consider.Fil: Rutz, Jonathan J.. National Ocean And Atmospheric Administration; Estados UnidosFil: Shields, Christine A.. National Center for Atmospheric Research; Estados UnidosFil: Lora, Juan M.. University of Yale; Estados UnidosFil: Payne, Ashley E.. University of Michigan; Estados UnidosFil: Guan, Bin. California Institute of Technology; Estados UnidosFil: Ullrich, Paul. University of California at Davis; Estados UnidosFil: O'Brien, Travis. Lawrence Berkeley National Laboratory; Estados UnidosFil: Leung, Ruby. Pacific Northwest National Laboratory; Estados UnidosFil: Ralph, F. Martin. Center For Western Weather And Water Extremes; Estados UnidosFil: Wehner, Michael. Lawrence Berkeley National Laboratory; Estados UnidosFil: Brands, Swen. Meteogalicia; EspañaFil: Collow, Allison. Universities Space Research Association; Estados UnidosFil: Goldenson, Naomi. University of California at Los Angeles; Estados UnidosFil: Gorodetskaya, Irina. Universidade de Aveiro; PortugalFil: Griffith, Helen. University of Reading; Reino UnidoFil: Kashinath, Karthik. Lawrence Bekeley National Laboratory; Estados UnidosFil: Kawzenuk, Brian. Center For Western Weather And Water Extremes; Reino UnidoFil: Krishnan, Harinarayan. Lawrence Berkeley National Laboratory; Estados UnidosFil: Kurlin, Vitaliy. University of Liverpool; Reino UnidoFil: Lavers, David. European Centre For Medium-range Weather Forecasts; Estados UnidosFil: Magnusdottir, Gudrun. University of California at Irvine; Estados UnidosFil: Mahoney, Kelly. Universidad de Lisboa; PortugalFil: Mc Clenny, Elizabeth. University of California at Davis; Estados UnidosFil: Muszynski, Grzegorz. University of Liverpool; Reino Unido. Lawrence Bekeley National Laboratory; Estados UnidosFil: Nguyen, Phu Dinh. University of California at Irvine; Estados UnidosFil: Prabhat, Mr.. Lawrence Bekeley National Laboratory; Estados UnidosFil: Qian, Yun. Pacific Northwest National Laboratory; Estados UnidosFil: Ramos, Alexandre M.. Universidade Nova de Lisboa; PortugalFil: Sarangi, Chandan. Pacific Northwest National Laboratory; Estados UnidosFil: Viale, Maximiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentin

    Sensitivity of Atmospheric River Vapor Transport and Precipitation to Uniform Sea Surface Temperature Increases

    No full text
    This is the companion data for the manuscript of the same title, submitted to JGR: Atmospheres on 02/08/2020. modelParameters: this folder contains the scripts I ran on NERSC Cori in 2019 to initialize the CESM2.0/CAM5 model runs. qobs_script_newcase.sh: creates all cases, for the Baseline as well as the +xK SST runs docn_comp_mod.F90: original CAM5 aquaplanet SST distributions; "QOBS" is used for my "Baseline" experiments plusxK_docn_comp_mod.F90: modified SST distributions, for x=(2,4,6); these are simply uniform additions to the QOBS SST distributions Macros.make & env_mach_specific.xml: configuration files to run CESM2.0 on Cori at the time user_nl_cam: namelist for CAM5; specifies some model run parameters as well as output variables. detectionParameters: this folder contains the scripts I ran on NERSC Cori in 2019 to detect tropical cyclones and atmospheric rivers. Use this code for reference purposes only (i.e., to see which parameters were used to detect ARs or TCs). It will not run as-is. All other subfolders provide working examples of code used to generate figures (all in Jupyter notebooks) for the manuscript; folder names are descriptive. Unfortunately, model output was large (~12 TB). Hence, I only provide mean data, used directly to generate figures, in this repository. All model output are archived on tape at NERSC. For more details, refer to the manuscript, or contact me ([email protected])
    corecore