1,438 research outputs found

    Full orbit simulations of collisional impurity transport in spherical tokamak plasmas with strongly-sheared electric fields

    Full text link
    The collisional dynamics of test impurity ions in spherical tokamak plasmas with strongly-sheared radial electric fields is investigated by means of a test particle full orbit simulation code. The strength of the shear is such that the standard drift ordering can no longer be assumed and a full orbit approach is required. The effect of radial electric field shear on neoclassical particle transport is quantified for a range of test particle mass and charge numbers and electric field parameters. It is shown that the effect of a sheared electric field is to enhance the confinement of impurity species above the level observed in the absence of such a field. The effect may be explained in terms of a collisional drag force drift, which is proportional to particle charge number but independent of particle mass. This drift acts inwards for negative radial electric fields and outwards for positive fields, implying strongly enhanced confinement of highly ionized impurity ions in the presence of a negative radial electric field.Comment: 16 pages, 6 figures, submitted to Nuclear Fusio

    The quasi-linear relaxation of thick-target electron beams in solar flares

    Get PDF
    The effects of quasi-linear interactions on thick-target electron beams in the solar corona are investigated. Coulomb collisions produce regions of positive gradient in electron distributions which are initially monotonic decreasing functions of energy. In the resulting two-stream instability, energy and momentum are transferred from electrons to Langmuir waves and the region of positive slope in the electron distribution is replaced by a plateau. In the corona, the timescale for this quasi-linear relaxation is very short compared to the collision time. It is therefore possible to model the effects of quasi-linear relaxation by replacing any region of positive slop in the distribution by a plateau at each time step, in such a way as to conserve particle number. The X-ray bremsstrahlung and collisional heating rate produced by a relaxed beam are evaluated. Although the analysis is strictly steady state, it is relevant to the theoretical interpretation of hard X-ray bursts with durations of the order of a few seconds (i.e., the majority of such bursts)

    Surfatron and stochastic acceleration of electrons in astrophysical plasmas

    Get PDF
    Electron acceleration by large amplitude electrostatic waves in astrophysical plasmas is studied using particle-in-cell (PIC) simulations. The waves are excited initially at the electron plasma frequency ωpe\omega_{\rm pe} by a Buneman instability driven by ion beams: the parameters of the ion beams are appropriate for high Mach number astrophysical shocks, such as those associated with supernova remnants (SNRs). If ωpe\omega_{\rm pe} is much higher than the electron cyclotron frequency Ωe\Omega_{\rm e}, the linear phase of the instability does not depend on the magnitude of the magnetic field. However, the subsequent time evolution of particles and waves depends on both ωpe/Ωe\omega_{\rm pe}/\Omega_{\rm e} and the size of the simulation box LL. If LL is equal to one wavelength, λ0\lambda_0, of the Buneman-unstable mode, electrons trapped by the waves undergo acceleration via the surfatron mechanism across the wave front. This occurs most efficiently when ωpe/Ωe≃100\omega_{\rm pe}/\Omega_{\rm e} \simeq 100: in this case electrons are accelerated to speeds of up c/2c/2 where cc is the speed of light. In a simulation with L=4λ0L=4\lambda_0 and ωpe/Ωe=100\omega_{\rm pe}/\Omega_{\rm e} = 100, it is found that sideband instabilities give rise to a broad spectrum of wavenumbers, with a power law tail. Some stochastic electron acceleration is observed in this case, but not the surfatron process. Direct integration of the electron equations of motion, using parameters approximating to those of the wave modes observed in the simulations, suggests that the surfatron is compatible with the presence of a broad wave spectrum if ωpe/Ωe>100\omega_{\rm pe}/\Omega_{\rm e}> 100. It is concluded that a combination of stochastic and surfatron acceleration could provide an efficient generator of mildly relativistic electrons at SNR shocks

    Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime

    Get PDF
    The highly dynamical, complex nature of the solar atmosphere naturally implies the presence of waves in a topologically varied magnetic environment. Here, the interaction of waves with topological features such as null points is inevitable and potentially important for energetics. The low resistivity of the solar coronal plasma implies that non-MHD effects should be considered in studies of magnetic energy release in this environment. This paper investigates the role of the Hall term in the propagation and dissipation of waves, their interaction with 2D magnetic X-points and the nature of the resulting reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Depending on the ratio of ion skin depth to system size, our model demonstrates that Hall effects can play a key role in the wave-null interaction. In particular, the initial fast-wave pulse now consists of whistler and ion-cyclotron components; the dispersive nature of the whistler wave leads to (i) earlier interaction with the null, (ii) the creation of multiple additional, transient nulls and, hence, an increased number of energy release sites. In the Hall regime, the relevant timescales (such as the onset of reconnection and the period of the oscillatory relaxation) of the system are reduced significantly, and the reconnection rate is enhanced.Comment: 13 pages, 10 figure

    Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare

    Full text link
    We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy (\gsim 100 keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms of an electron transport model called {\TPP}. We numerically solved the spatially-homogeneous {\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical Journa

    The psychological impact of a colorectal cancer diagnosis following a negative fecal occult blood test result.

    Get PDF
    - Background: Screening using fecal occult blood testing (FOBt) reduces colorectal cancer (CRC) mortality, but the test has low sensitivity. A 'missed' cancer may cause psychological harms in the screened population that partially counteract the benefits of early detection. - Methods: 311 people diagnosed with CRC: i) after a negative FOBt result (interval cancer), ii) a positive result (screen-detected cancer), or iii) in regions where screening was not offered, completed questions on quality of life (FACT-C), depression (CES-D), perceived diagnostic delay, and trust in the results of FOBt screening. 15 withheld consent to data matching with medical records, leaving a sample size of 296. - Results: Controlling for demographic and clinical variables, patients with an interval cancer reported poorer quality of life (difference in means = 6.16, p = 0.03) and more diagnostic delay (OR: 0.37, p = 0.02) than patients with screen-detected disease, with no differences in depression. No differences were observed between the interval cancer group and the group not offered screening on these measures. Patients with an interval cancer reported the lowest levels of trust in FOB testing. Conclusions: An interval cancer has adverse effects on trust in FOBt but does not result in worse psychological outcomes compared with people diagnosed in areas with no screening programme. People with an interval cancer report poorer quality of life than people with screen-detected disease. - Impact: Improvements in test sensitivity could improve quality of life among people who complete an FOB test over and above any benefits already conferred by earlier detection

    On Collisionless Electron-Ion Temperature Equilibration in the Fast Solar Wind

    Full text link
    We explore a mechanism, entirely new to the fast solar wind, of electron heating by lower hybrid waves to explain the shift to higher charge states observed in various elements in the fast wind at 1 A.U. relative to the original coronal hole plasma. This process is a variation on that previously discussed for two temperature accretion flows by Begelman & Chiueh. Lower hybrid waves are generated by gyrating minor ions (mainly alpha-particles) and become significant once strong ion cyclotron heating sets in beyond 1.5 R_sun. In this way the model avoids conflict with SUMER electron temperature diagnostic measurements between 1 and 1.5 R_sun. The principal requirement for such a process to work is the existence of density gradients in the fast solar wind, with scale length of similar order to the proton inertial length. Similar size structures have previously been inferred by other authors from radio scintillation observations and considerations of ion cyclotron wave generation by global resonant MHD waves.Comment: 32 pages including 11 figures, 4 tables, accepted by Ap

    Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties

    Get PDF
    Microbubbles (MBs), which are used as ultrasonic contrast agents, have distinct acoustic signatures which enable them to significantly enhance visualisation of the vasculature. Research is progressing to develop MBs which act as drug/gene delivery vehicles for site-specific therapeutics. In order to manufacture effective theranostic vehicles, it is imperative to understand the mechanical and nanostructural properties of these agents; this will enrich the understanding of how the structural, biophysical and chemical properties of these bubbles impact their functionality. We produced microfluidic phospholipid-based MBs due to their favourable properties, such as biocompatibility and echogenicity, as well as the ability to modify the shell for targeting applications. We have drawn upon atomic force microscopy to conduct force spectroscopy and tapping-mode imaging investigations. We have, for the first time to our knowledge, been able to accurately quantify the thickness and lipid configuration of phospholipid-shelled MBs - showing a trilayer as opposed to the conventional monolayer structure. Furthermore, we have measured MB stiffness and employed different mechanical theories to quantify the Young’s modulus. We show that the Reissner theory is inappropriate for mechanical characterisation of phospholipid MBs, however, the Hertz model does offer biologically relevant comparisons. Analysis using the Alexander-de Gennes polymer brush theory has allowed us to provide new information regarding how the thickness of the polyethylene glycol brushes, end-grafted to our phospholipid microbubbles, changes with diameter
    • …
    corecore