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Abstract. Electron acceleration by large amplitude electrostatic waves in astro-
physical plasmas is studied using particle-in-cell (PIC) simulations. The waves are
excited initially at the electron plasma frequency ωpe by a Buneman instability
driven by ion beams: the parameters of the ion beams are appropriate for high Mach
number astrophysical shocks, such as those associated with supernova remnants
(SNRs). If ωpe is much higher than the electron cyclotron frequency Ωe, the linear
phase of the instability does not depend on the magnitude of the magnetic field.
However, the subsequent time evolution of particles and waves depends on both
ωpe/Ωe and the size of the simulation box L. If L is equal to one wavelength, λ0, of
the Buneman-unstable mode, electrons trapped by the waves undergo acceleration
via the surfatron mechanism across the wave front. This occurs most efficiently
when ωpe/Ωe � 100: in this case electrons are accelerated to speeds of up c/2 where
c is the speed of light. In a simulation with L = 4λ0 and ωpe/Ωe = 100, it is
found that sideband instabilities give rise to a broad spectrum of wavenumbers,
with a power law tail. Some stochastic electron acceleration is observed in this
case, but not the surfatron process. Direct integration of the electron equations
of motion, using parameters approximating to those of the wave modes observed
in the simulations, suggests that the surfatron is compatible with the presence of
a broad wave spectrum if ωpe/Ωe > 100. It is concluded that a combination of
stochastic and surfatron acceleration could provide an efficient generator of mildly
relativistic electrons at SNR shocks.

1. Introduction
Radio synchrotron emission from supernova remnants (SNRs) indicates the pres-
ence of highly relativistic electrons in such objects (Biermann and Cassinelli 1993).
The diffusive shock mechanism (Bell 1978) provides an efficient means of accelerat-
ing electrons at SNR shocks from a mildly relativistic threshold, but does not solve
the problem of raising electrons to this threshold. A possible solution is provided
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by large amplitude electrostatic waves, whose efficacy in producing energetic elec-
trons has recently been demonstrated in laboratory experiments (see the review by
Bingham et al. 2004). Such waves provide the required free energy for the ‘surfatron’
process, proposed by Katsouleas and Dawson (1983) as a laser-plasma accelerator
that can in principle produce electrons of arbitrarily high energy. It has been diffi-
cult to exploit fully the potential of the surfatron in laboratory experiments, which
are necessarily restricted in size. However, the large spatial scales of astrophysical
plasmas such as those in the vicinity of SNR shocks suggest that the surfatron
should be examined as a possible source of energetic particles in such plasmas. Ions
reflected from SNR shocks can excite large amplitude electrostatic waves, which
are an essential ingredient of the surfatron.
There is increasing interest in the possibility that electrons could be acceler-

ated in astrophysical plasma environments by large amplitude electrostatic waves.
Dieckmann et al. (2000a, b) and McClements et al. (2001) used a particle-in-cell
(PIC) code to study, in one space dimension, wave instabilities excited by ion beams
at SNR shocks. The magnetic field B was set equal to zero in the simulations
described by Dieckmann et al. (2000b): the ion beams in this case were observed to
excite electrostatic, Buneman-type instabilities at frequencies ω close to the electron
plasma frequency ωpe. In earlier magnetized simulations (Dieckmann et al. 2000a),
with the ratio of electron plasma frequency ωpe to electron cyclotron frequency Ωe
set equal to 10 and the ion beams propagating perpendicular to the magnetic field, it
was found that the instability was still Buneman-like if the ion beam drift speed was
at least several times the initial electron thermal speed ve. In the Buneman regime
it was found that the instability invariably saturated because of electron trapping
by the wave. The subsequent evolution of the wave depended on the number of
wavelengths λ0 of the initial Buneman instability contained in the simulation
box, and the initial ratio of bulk ion temperature Ti to electron temperature Te.
Periodic boundary conditions were used, which meant that the only wave modes
that could be represented had wavenumbers k = 2πn/L where L is the box size and
n is an integer. With L = λ0 and Ti/Te = 1, it was found that the initial wave at
ωpe collapsed into low frequency (ion acoustic) waves and back-scattered waves at
ω � ωpe. With the same simulation box size and Ti/Te = 100, the wave at ωpe was
eventually replaced with two other waves in a similar frequency range supported
by trapped electrons: at least one of these appears to have been a Bernstein–
Greene–Kruskal (BGK) mode (Bernstein et al. 1957). When L was set equal to
4λ0 and Ti/Te = 100, on the other hand, it was found that the initial Buneman
wave collapsed soon after reaching its saturation amplitude, apparently because of
sideband instabilities (Kruer et al. 1969). In a real plasma, trapped electron modes
such as those observed in the simulation with L = λ0, Ti/Te = 100 are expected to
exist for a finite time determined principally by the initial wave amplitude (Brunetti
et al. 2000). Simulations that exclude wavevectors other than those of a linearly
unstable mode and multiples thereof are somewhat artificial, but serve two useful
purposes: first, they provide a link between theory and real plasmas; and second,
they make it possible to study individual nonlinear plasma physics processes that
may be difficult to observe otherwise.
Strong electron acceleration was observed by Dieckmann and co-workers in

magnetized simulations (Dieckmann et al. 2000a; McClements et al. 2001), but
not in unmagnetized simulations (Dieckmann et al. 2000b). The acceleration of
charged particles in the presence of a large amplitude electrostatic wave (of the type
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excited by a Buneman instability) and a magnetic field can be either regular, as in
the surfatron (Katsouleas and Dawson 1983), or stochastic; an example of the latter
process is provided by lower hybrid wave heating of ions in tokamaks (Karney
1978). There is clear evidence for a surfatron acceleration phase in PIC simulations
of electron injection in the foot region of high Alfvénic Mach number SNR shocks by
Schmitz et al. (2002b). We refer in particular to their Fig. 7: this displays extended
episodes of linear growth in the electron velocity component perpendicular to the
magnetic field and the shock normal, during a time that the electrons are observed
(see Figs 5 and 6 of Schmitz et al. 2002b) to be trapped in nonlinear electrostatic field
structures. In most astrophysical plasma contexts it is likely that interplay between
several physical processes is ultimately responsible for particle energization. In the
present paper, we focus initially on the surfatron mechanism in a well defined wave.
It will be seen that this treatment naturally leads on to the consideration of multiple
transient surfatron acceleration events—an essentially stochastic process.
In the next section we summarize the theory of the surfatron, pointing out its

limitations and the need to model it self-consistently using the PIC approach.
The PIC simulation results are presented in Sec. 3 and interpreted (with the aid of
direct numerical solutions of the electron equations of motion) in Sec. 4. The results
are summarized and their astrophysical implications discussed in Sec. 5.

2. Surfatron mechanism
The surfatron was proposed originally by Katsouleas and Dawson (1983) as a laser-
plasma acceleration scheme. They considered an electrostatic waveE = E0 sin(kx−
ωt), excited, for example, by a pair of short-pulse lasers via the beat wave mech-
anism (Tajima and Dawson 1979), propagating in the x-direction perpendicular
to a steady magnetic field B in the z-direction (see Fig. 1). An electron with vx

approximately equal to the wave phase speed vφ = ω/k can be trapped by the
wave. Transforming to the frame in which the wave has zero phase speed, one
infers an electric field in the y-direction

E ′
y = γφ(Ey − vφB) = −γφvφB, (1)

where γφ = (1 − v2
φ/c2)−1/2, c being the speed of light. We use primes to denote

quantities in the wave frame (Ey = 0, since the wave is purely electrostatic and is
propagating in the x-direction). The x-component of the force on the electron in
the wave frame is

F ′
x = −e[E0 sin(kx′/γφ) + γφv′

yB]. (2)

The first term on the right-hand side has a trapping effect on the electron; the
second (Lorentz force) term has a de-trapping effect. A sufficient condition for the
electron to undergo continuous acceleration in the y-direction is that it remain
trapped. Since v′

y < c, trapping will continue indefinitely if

E0 > γφcB. (3)

On the assumption that this condition is satisfied, previous authors (Katsouleas
and Dawson 1983; Mendonça 1996) have proceeded to consider the case of deeply-
trapped electrons, which remain close to the bottom of the wave potential well.
In such circumstances vx is approximately equal to vφ at all times. Setting vx = vφ

in the Lorentz force equation, one obtains trivially the following solution for vy
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Figure 1. Geometry of surfatron acceleration. An electron with vx approximately equal to
the phase speed vφ of a large amplitude electrostatic wave is trapped by the wave, and is
subject to a force in the y-direction equal to eγφvφB, where γφ = (1 − v2

φ/c2)−1/2.

(Katsouleas and Dawson 1983):

vy =
vφΩet

γφ

(
1 + Ω2

e t
2v2

φ/c2
)1/2

, (4)

It is straightforward to verify that v = (v2
x + v2

y)1/2 → c as t → ∞, so that
arbitrarily high electron energies can in principle result from this process. For vφ�c,
(4) indicates that an initially non-relativistic electron is accelerated to relativistic
energies in a timescale τacc ∼ c/(vφΩe) ∝ 1/B.
Several factors can limit the effectiveness of surfatron acceleration in practice.

For example, the above analysis assumes that the wave is uniform and of infinite ex-
tent in the y-direction. It also assumes that the wave is not affected by the electron
population. Even without the presence of a magnetic field, large amplitude elec-
trostatic waves undergo Landau damping in the presence of Maxwellian electron
populations, regardless of their initial amplitude. As we noted in Sec. 1, both PIC
(Dieckmann et al. 2000b) and Vlasov (Brunetti et al. 2000) simulations with box
size L greater than one wavelength indicate that the lifetime of a monochromatic
electrostatic wave is limited by the excitation of sideband instabilities. Since sur-
fatron acceleration relies on particle trapping, it is effective only for as long as
the wave amplitude is high enough for a significant number of electrons to remain
trapped by it. For a wave with a given amplitude and lifetime, (3) and (4) imply
that there is an optimum value of the magnetic field for surfatron acceleration
to be effective: B must be low enough that electrons remain trapped, but high
enough that they undergo significant acceleration within the lifetime of the wave.
A further complication is that (4) is only strictly applicable to deeply trapped elec-
trons, for which vx is always close to vφ. In fact, the unmagnetized PIC simulations
of Dieckmann et al. (2000b) indicate that trapped electrons generally lie close to
the separatrix of the trapped-particle island, and that the width of the island in
velocity space is comparable to vφ. In these circumstances, one cannot treat vx as
a constant and (4) is therefore not strictly valid.
The purpose of the simulations described in the following section is to investigate

the surfatron process in as self-consistent a manner as possible. In particular, the
PIC method makes it possible to study the effects of trapped and accelerated
electrons on the evolution of the waves.
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3. Simulations
3.1. Initial parameters

Except for the magnetic field, which we set equal to 3.5 × 10−8 T, the parameters
are identical to those of the unmagnetized simulations described by Dieckmann
et al. (2000b). A realistic ion/electron mass ratio (1836) is used. Periodic boundary
conditions are imposed on the one-dimensional simulation box, which has 90 cells
(each of length 2.04 m) in a simulation with L = λ0, and 360 cells in a simulation
with L = 4λ0. In the case of L = λ0, the electrons are represented by more than
105 particles per cell. The electrons initially have a Maxwellian distribution with
temperature Te � 9 eV, and density ne � 1.2 × 108 m−3. In general, temperatures
and densities upstream of SNR shocks are difficult to estimate. However, observa-
tions of certain regions close to the supernova SN1987A (Blondin and Lundquist
1993), for example, suggest values of Te and ne that are broadly consistent with
those quoted above. Estimates of B at SNRs are even less certain than those of
density and temperature. Achterberg and Ball (1994) have inferred minimum field
values upstream of the shock associated with SN1978K in the range 2.5 × 10−10 T
to 2.5 × 10−8 T. The magnetic field assumed in our simulations is close to the upper
end of this range. It should be stressed, however, that the simulation results appear
to depend specifically on the ratio ωpe/Ωe rather than ne and B individually.
The ion (proton) population in each simulation consists initially of a Maxwellian

bulk component, with a temperature of 900 eV, and two beams, propagating in
opposite directions at speeds vb = 0.06c, perpendicular to the magnetic field.
The beams also have Maxwellian distributions, with temperatures equal to 900 eV
and 150 keV. The existence of well-defined ion beams in the immediate upstream
region of high Mach number quasi-perpendicular shocks is clearly indicated by
space plasma observations (Sckopke et al. 1983), hybrid simulations (Quest 1986),
and full particle simulations (Shimada and Hoshino 2000). We choose the beams in
our simulations to havemean velocities equal in magnitude and opposite in direction
in order to ensure zero current; the use of unequal beam temperatures means that
only one beam gives rise to a strong Buneman instability (Dieckmann et al. 2000b).
The number density of each beam is ne/6, giving a total beam concentration that
is comparable to reflected ion fractions observed in hybrid simulations of high
Mach number shocks (Quest 1986). Such simulations indicate that the reflected
ion speed in the upstream plasma frame is of the order of the shock speed, vs.
Thus, our simulations are applicable to shocks with vs ∼ 0.06c: it has been inferred
observationally that efficient electron acceleration only occurs at astrophysical
shocks with vs exceeding a critical value of about 0.03c (Biermann and Cassinelli
1993).
Wavenumbers, k, are normalized to 2π/λ0, where λ0 = 183.6 m is approxim-

ately equal to 2πvb/ωpe, the expected wavelength of the Buneman-unstable mode
(Dieckmann et al. 2000a). The wave amplitude of a mode with dimensionless wave-
number k̃ = kλ0/2π is computed by Fourier transforming the electric field E(x, t)
over the space variable x:

E0(k̃, t) =
2
N

∣∣∣∣∣
N−1∑
n=0

E(xn, t) exp

[
−2πik̃xn

L

]∣∣∣∣∣ , (5)

where N is the number of cells and xn is the position of the nth cell. It is easily
verified that the summation in (5) gives the true amplitude of a sinusoidal wave.
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Figure 2. Amplitude of waves with wavelength λ equal to the predicted Buneman wavelength
λ0 � 2πvb/ωpe in (a) unmagnetized and (b) magnetized simulations with box size L = λ0

(after Dieckmann et al. 2000b and McClements et al. 2001).

3.2. Simulation with L = λ0

As in the unmagnetized simulations (Dieckmann et al. 2000b), it was found that
the ion beam propagating in the positive x-direction excited a Buneman instability
at ω � ωpe, k̃ = 1. We begin by comparing, in Fig. 2, the time evolution of
the Buneman-unstable mode (a) without and (b) with the magnetic field present.
The linear phase of the instability is identical in the two cases: the wave undergoes
a phase of exponential growth up to about 45 V m−1. After some large amplitude
oscillations, the two waves start to evolve in different ways. In the unmagnetized
case, the wave falls to about 20 Vm−1, where it remains for about 80 plasma periods,
before declining further. In the magnetized case, the wave fluctuates around a
somewhat higher amplitude (about 30 V m−1), but then collapses to about 10 V m−1

at ωpet/2π � 95. Thereafter it remains at a similar amplitude before collapsing
again at ωpet/2π � 160. It is clear from these plots that the magnetic field has a
significant influence on the nonlinear evolution of the wave.
Snapshots of the electron distribution in (vx, vy) space during the magnetized

simulation are shown in Fig. 3. The three time frames are (a) just before the wave
collapse at ωpet/2π � 95, (b) just after the wave collapse, and (c) at the end of the
simulation. The most distinctive feature in Fig. 3(a) is a sharp-edged, approximately
rectangular-shaped structure at vx � 0, vy > 0. Electrons in this region of velocity
space are trapped by the wave, whose phase speed vφ � vb = 0.06c defines a
line through the centre of the rectangle parallel to the vy axis. The fact that the
rectangle extends along the vy axis is due to surfatron acceleration: the maximum
value of vy is about c/4, which is consistent with (4) when vφ = 0.06c and ωpet/2π
is set equal to the lifetime of the wave at that point of the simulation (cf. Fig. 2(b)).
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Figure 3.Electron velocity distribution perpendicular to the magnetic field in the magnetized
simulation with L = λ0: (a) just before the collapse in wave amplitude at ωpet/2π � 95 in
Fig. 2(b); (b) just after the wave collapse; and (c) at the end of the simulation.
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The width of the rectangle in vx is determined by the wave amplitude E0, since all
electrons with |vφ − vx| less than a critical value proportional to E

1/2
0 are trapped,

and can thus undergo surfatron acceleration. These electrons oscillate in vx, with
an amplitude which tends to zero as v approaches c. In the sub-relativistic regime
of Fig. 3(a), the amplitude is only weakly dependent on vy.
When the wave collapses at ωpet/2π � 95, the trapped region of velocity space

greatly diminishes in size. Electrons close to the original trapped-particle island sep-
aratrix that cease to be trapped gyrate in the magnetic field, and stop accelerating.
This can be seen in Fig. 3(b). Part of the rectangular structure noted in Fig. 3(a) has
broken away, and is beginning a slow anti-clockwise rotation in the (vx, vy) plane.
A significant number of electrons remain trapped, and undergo further surfatron
acceleration, although the long-term fall in wave amplitude means that the trapped
electron population continues to decline. By the end of the simulation [Fig. 3(c)],
the combination of a gradual diminution of the trapping electric field, gyration in
the magnetic field and stochastic acceleration (cf. Dieckmann et al. 2000a) gives
rise to a velocity space distribution resembling a spiral galaxy.
Plots of the electron (x, vx) phase space (not shown here) show results similar

to those obtained in the unmagnetized simulations reported by Dieckmann et al.
(2000b): as the wave grows exponentially, a trapped-particle island can be seen
forming. Most of the trapped electrons remain close to the island separatrix, with
only a few particles migrating towards the centre. The proximity of trapped elec-
trons to the separatrix means that they are detrapped by relatively small reductions
in the wave amplitude.

3.3. Simulation with L = 4λ0

In this simulation the linear phase of the instability, up to ωpet/2π � 40, is similar
to that shown in Fig. 2. As the amplitude of the initial Buneman wave at k̃ = 1
builds up, harmonics of this wave appear, with wavenumbers up to k̃ = 19. After
ωpet/2π � 40, the initial wave and its harmonics are replaced with a continuum:
waves appear at every k̃ permitted by the finite size of the simulation box. A similar
phenomenon has been observed in both PIC (Dieckmann et al. 2000b) and Vlasov
(Brunetti et al. 2000) simulations: it can be attributed to the excitation of sideband
instabilities, initially at k̃ = 0.75, 1.25, and subsequently at other wavenumbers.
A snapshot of the continuous spectrum is shown in Fig. 4. Approximating the
high wavenumber tail of the distribution by a power law, with E0 ∝ k̃−α, we
obtain α � 2.3. At 0.25 � k̃ � 1, where the spectrum departs from a power law,
there are several modes of comparable amplitude, at or slightly below 10 V m−1.
These modes have ω ∼ ωpe, and therefore the phase speed of the longest wavelength
mode (k̃ = 0.25) is vφ ∼ 4ωpeλ0/2π � 0.24c.
The electron (x, vx) phase space at ωpet/2π � 43, shortly after the appearance

of the continuous k̃ spectrum, is shown in Fig. 5. In contrast to the single trapped-
particle island found in the simulation with L = λ0, there is a complex interaction
between several such islands, resulting in the formation of irregularly-shaped phase
space structures. Strong surfatron acceleration was not observed, but it is signific-
ant that the vx distribution in Fig. 5 extends approximately up to the phase speed
of the fastest-propagating mode in the system, with k̃ = 0.25. Figure 5 indicates
acceleration of electrons in vx (rather than vy, as in the surfatron) due to what
appears to be an essentially random interaction with several high amplitude wave
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Figure 4. Snapshot of wave spectrum in simulation with L = 4λ0, after ωpet/2π � 40. The
straight line indicates a power law fit to the high k̃ tail of the spectrum, with index α � 2.3.

modes. This can be a rapid process: electrons were observed to accelerate from 0.14c
to 0.25c in five plasma periods (i.e. a twentieth of one electron cyclotron period).
The waves in the high k̃ tail of the spectrum do not appear to play a strong role in
the acceleration process: in a simulation with fewer beam ions per cell (512 rather
than 3200), the asymptotic slope of the spectrum was found to be slightly different
(α � 2 rather than 2.3), but the electrons behaved in a similar fashion.

4. Interpretation
In order to understand the phase space plots in Figs 3 and 5 it is instructive to
solve directly the equations of motion for single electrons, using wave parameters
corresponding approximately to the simulation results shown in Figs 2 and 4. In the
case of the simulation with L = λ0, there is essentially only one wave mode in
the system, and the equations of motion are those considered by Katsouleas and
Dawson (1983):

d

dt
(γvx) = −eE0

me
sin(kx − ωt) − Ωevy, (6)

d

dt
(γvy) = Ωevx, (7)

where γ = [1 − (vx/c)2 − (vy/c)2]−1/2 is the electron Lorentz factor.
Numerical solutions of (6) and (7) for parameters corresponding approximately

to those of the simulation with L = λ0 are shown in Fig. 6. The wave amplitude,
assumed to be constant, is taken to be 30 V m−1 [cf. Fig. 2(b)]. The solid curve
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Figure 5. Electron distribution in (x, vx) space at ωpet/2π = 43 in simulation with L = 4λ0

(after McClements et al. 2001).

indicates vy(t) for a trapped electron initially lying close to the separatrix of the
trapped-particle island (x = 0, vx0 = 0.12c); the short dashed curve, which coincides
almost exactly with the solid curve, is the solution for an electron initially at the
centre of the island (x = 0, vx0 = 0.06c); the long dashed curve is the solution for an
untrapped electron, initially just outside the separatrix. The two trapped electrons
are accelerated at an essentially uniform and identical rate: the corresponding
curves in Fig. 6 depart only slightly from straight lines, because of weak relativistic
effects. As vy → 0 the slope of these curves is dvy/dt � 0.06cΩe, consistent with the
nonrelativistic limit of (4). The untrapped electron trajectory in Fig. 6, in contrast
to the two trapped trajectories, is merely a slightly-perturbed Larmor orbit, with
no net energy gain.
Figure 7(a) shows a solution of (6) and (7) for parameters corresponding to those

of the simulation with L = 4λ0. Eight wave modes are included, with amplitudes
and wavenumbers approximately equal to those of the modes in Fig. 4 with k̃ � 8.
The mode amplitudes are again assumed to be constant. The electron initially lies
at the centre of the trapped-particle island corresponding to the first wave excited
in the simulation (x = 0, vx0 = 0.06c). The total integration time is 4π/Ωe, i.e. two
non-relativistic electron cyclotron periods. The electron remains trapped for long
enough to be accelerated in vy (via a modified form of the surfatron process) to
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Figure 6. Numerical solutions of equations of motion for parameters corresponding
approximately to those of simulation with L = λ0. The solid curve indicates vy(t) for a
trapped electron initially lying close to the separatrix of a trapped-particle island; the short
dashed curve is the solution for an electron initially at the centre of the island; the long
dashed curve is the solution for an untrapped electron, initially just outside the separatrix
(after McClements et al. 2001).

about 0.1c. This is only slightly higher than its initial speed in the x-direction,
and therefore does not represent a very substantial gain in energy. Owing to the
presence of a complex time-evolving electric field (arising from the presence of
several wave modes), the initially trapped electron has a chaotic trajectory, and
for this reason is much more susceptible to detrapping than it would be if only
one mode were present. After being detrapped, the electron executes a Larmor
gyration before interacting again with the waves. This second interaction results
only in a very small energy gain. While individual electrons may remain trapped
for a longer period, and thus be accelerated to higher energies, it would appear that
the trajectory shown in Fig. 7(a) is more typical. Since the total duration of the
simulation with L = 4λ0 is less than one cyclotron period, it is thus not surprising
that strong surfatron acceleration was not observed in that simulation.
In the case of Fig. 7(b) the ratio of wave frequencies to Ωe has been increased by

a factor of 10; the total integration time is again 4π/Ωe. The initial position and
velocity of the electron are the same as in Fig. 7(a) (x = 0, vx0 = 0.06c, vy0 = 0).
Two phases of surfatron acceleration are apparent. The electron is first accelerated
to vy � 0.15c before it is detrapped. After a partial Larmor gyration, the electron
is trapped again and undergoes a second phase of acceleration, up to v � 0.32c,
before being detrapped a second time. The final position of the electron is in the
bottom right-hand quadrant of the figure. It may be noted that by this time it
has not yet completed two complete Larmor orbits. This is partly due to the fact
that it is trapped periodically by the waves, and partly because of relativistic time
dilation. The key point is that a typical electron is trapped for long enough to be
accelerated to energies higher than those found at lower values of ωpe/Ωe. Although
the phase space trajectory of a trapped electron is still chaotic, the electron is less
susceptible to detrapping because the ratio E0/cB has been increased by a factor
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Figure 7. (a) Numerical solution of equations of motion for parameters corresponding to
those of simulation with L = 4λ0. Eight wave modes are included, with amplitudes and
wavenumbers approximately equal to those of the dominant modes in Fig. 4. The electron
initially lies at the centre of the trapped-particle island corresponding to the first wave
excited in the simulation. The total integration time is 4π/Ωe. (b) As (a) except that the
ratio of wave frequencies to Ωe has been increased by a factor of 10. The total integration
time is again 4π/Ωe (after McClements et al. 2001).

of ten (cf. (3)). We have again assumed, of course, that the mode amplitudes are
constant. In the case of Fig. 7(b), this would require the waves to be present for
2×103 electron plasma periods. The actual lifetime of the continuous wave spectrum
in the simulation with L = 4λ0 is not known, since it was still present at the end
of the simulation. We note, however, that a similar continuous spectrum observed
in one of the unmagnetized Vlasov simulations described by Brunetti et al. (2000)
persisted for at least 120 plasma periods, without being driven. In our case, the
waves are being driven continuously by an ion beam and thus, ceteris paribus, would
be expected to have a longer lifetime than the waves considered by Brunetti and
co-workers.
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5. Summary and conclusions
We have used a PIC code to carry out a fully self-consistent study of surfatron and
stochastic acceleration under conditions similar to those prevailing in the vicinity
of SNR shocks. Large amplitude electrostatic waves, required for the surfatron
process, are driven via the Buneman instability by ion beams, which are known
to be associated with high Mach number quasi-perpendicular shocks. At the end
of a simulation with ωpe = 100Ωe, in which wavenumbers k other than that of the
initial instability andmultiples thereof were suppressed, a small number of electrons
trapped by the wave had been accelerated up to about half the speed of light. Direct
integration of the electron equations of motion indicates that the acceleration rate
is essentially independent of the initial position of the electron within the trapped
island region of phase space. However, because most trapped electrons remain close
to the separatrix of the island, the trapped electron fraction is extremely sensitive
to the wave amplitude, which collapses (partly as a result of the surfatron process
itself) after a few tens of plasma periods. A consequence of this is that the efficacy
of the surfatron under these conditions is sensitive also to ωpe/Ωe.
In a more realistic simulation, with the same parameters but a larger simulation

box size (so that k was not restricted to multiples of the linearly unstable wavenum-
ber), efficient surfatron acceleration was not observed. Shortly after the initial
wave reached its peak amplitude, a sequence of sideband instabilities occurred,
filling up the available k spectrum and giving rise to a continuum with a power
law tail. Electrons were accelerated along the propagation direction of these waves,
up to about the phase velocity of the wave with the minimum k permitted by the
finite box size. Integration of the equations of motion for several sets of initial
conditions, using wave parameters inferred from the simulation results, indicates
that surfatron acceleration is ineffective in this case, essentially because electrons
are rapidly detrapped when several waves are present. However, we have found
that a stochastic version of the surfatron can reappear when ωpe/Ωe is increased
to values greater than 102: if the waves remain in the plasma for at least a few
cyclotron periods, electrons can be trapped by them for long enough to undergo
acceleration to mildly relativistic energies.
Global one-dimensional PIC simulations of perpendicular collisionless shocks,

carried out using artificial mass ratios, largely bear out the results of the local
simulations presented here (Schmitz et al. 2002a,b; Hoshino and Shimada 2002).
In particular, Schmitz and co-workers observed Langmuir solitons and associated
electron phase space holes with different velocities in the shock foot; as in the
local analysis, electrons were observed to be accelerated to the highest energies by
being successively trapped and untrapped in wave potential wells. Noting that the
maximum time available for electron acceleration is of the order of the ion Larmor
period τLi, Hoshino and Shimada (2002) inferred that electrons could be accelerated
to energies of up tomicvs, wheremi is the ion mass: for vs/c 0.06, this suggests that
electrons with energies of several tens of MeV could be produced. In the simulations
of Schmitz et al. (2002a,b) the shock evolves and reforms on a timescale of around
τLi when the plasma beta (β) is less than unity. More recent simulations performed
using realistic mass ratios by Scholer et al. (2003) confirm that shock reformation
occurs at low β. It should be noted however that the surfatron requires only shock-
reflected ions, which are present even for β � 1, and is not contingent on whether the
shock undergoes a process of reformation. Dieckmann et al. (2004a) have carried out
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further studies of electron acceleration at SNR shocks in the local approximation,
comparing the PIC and Vlasov methods of simulation, and finding that there is
a critical ratio of ion beam speed to initial electron thermal speed above which
surfatron acceleration does not occur, due to rapid wave collapse. On the other
hand, the lifetime of the saturated wave was found to be considerably longer in the
Vlasov case, suggesting that the PIC simulations presented here may underestimate
the efficiency of the surfatron. Moreover, the sideband instabilities that potentially
limit the effectiveness of the surfatron have been found to be less virulent when the
ion beam speeds become mildly relativistic (Dieckmann et al. 2004b).
Of the simulations discussed in the present paper, it is clear that the one with

L = 4λ0 is the more realistic of the two, and the results are more applicable to SNR
shocks. Ideally, one would like to carry out simulations with ωpe/Ωe�100, to test the
hypothesis that stochastic surfatron acceleration can occur in this regime. This is
computationally difficult, however, since the surfatron acceleration timescale scales
with 1/Ωe while the maximum time step which can be used in the code is determined
by 1/ωpe. It would also be desirable to be able to increase the simulation box size:
one would then expect to observe high frequency modes with lower k, and hence
higher phase speeds. The phase space plot in Fig. 5 suggests that this in turn would
lead to the appearance of electrons at higher energies, even without the occurrence
of surfatron acceleration. Such a simulation, with a similar or better statistical
representation of the electron population, would again place prohibitive demands
on computing resources. However, the PIC results and direct numerical solutions
of the equations of motion presented in this paper suggest that a combination
of stochastic and surfatron acceleration is likely to play an important role in the
production of mildly relativistic electrons at SNR shocks. Finally, it is important to
note the accumulation, during the past dozen years, of overwhelming experimental
evidence for the effectiveness of various particle acceleration processes that exploit
large amplitude waves in plasmas. Electron energies approaching 1 GeV have now
been achieved using such techniques: for a recent review, we refer to Bingham
et al. (2004). These experimental results have validated the associated theoretical
and modelling effort, so that the entire field has moved from the conjectural to
the concrete. It follows that the scientific basis for invoking such mechanisms in
astrophysical contexts, as here, has greatly strengthened in recent years.
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