5,908 research outputs found

    GaAs monolithic frequency doublers with series connected varactor diodes

    Get PDF
    GaAs monolithic frequency doublers using series connected varactor diodes have been fabricated for the first time. Output powers of 150 mW at 36.9 GHz with 24% efficiency and 300 mW at 24.8 GHz with 18% efficiency have been obtained. Peak efficiencies of 35% at output power levels near 100 mW have been achieved at both frequencies. Both K-band and Ka-band frequency doublers are derived from a lower power, single-diode design by series connection of two diodes and scaling to achieve different power and frequency specifications. Their fabrication was accomplished using the same process sequence

    Performance of alkaline battery cells used in emergency locator transmitters

    Get PDF
    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. Battery cell characteristics that may contribute to ELT malfunctions and limitations were evaluated. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented

    Progress in GaAs/CuInSe2 tandem junction solar cells

    Get PDF
    Much more power is required for spacecraft of the future than current vehicles. To meet this increased demand for power while simultaneously meeting other requirements for launch, deployment, and maneuverability, the development of higher-efficiency, lighter-weight, and more radiation resistant photovoltaic cells is essential. Mechanically stacked tandem junction solar cells based on (AlGaAs)GaAs thin film CLEFT (Cleavage of Lateral Epitaxial Film for Transfer) top cells and CuInSe2(CIS) thin film bottom cells are being developed to meet these power needs. The mechanically stacked tandem configuration is chosen due to its interconnect flexibility allowing more efficient array level performance. It also eliminates cell fabrication processing constraints associated with monolithically integrated multi-junction approaches, thus producing higher cell fabrication yields. The GaAs cell is used as the top cell due to its demonstrated high efficiency, and good radiation resistance. Furthermore, it offers a future potential for bandgap tuning using AlGaAs as the absorber to maximize cell performance. The CuInSe2 cell is used as the bottom cell due to superb radiation resistance, stability, and optimal bandgap value in combination with an AlGaAs top cell. Since both cells are incorporated as thin films, this approach provides a potential for very high specific power. This high specific power (W/kg), combined with high power density (W/sq m) resulting from the high efficiency of this approach, makes these cells ideally suited for various space applications

    Understanding student satisfaction and dissatisfaction: An interpretive study in the UK Higher Education Context

    Get PDF
    This article represents a cross-sectional study of undergraduate students across two North West University Business Schools in the UK. A purposefully designed questionnaire was collected from 350 students. The student experience was described in the form of hand written narratives by first and final year students and had been identified by the respondents themselves as being satisfying or dissatisfying with the areas of teaching and learning and the supporting service environment. The study also assessed whether their experiences were likely to influence their loyalty behaviours with respect to remaining on their chosen course of study; recommending the university; and continuing at a higher level of study. The data was captured and analysed using the qualitative critical incident technique to capture the voice of the student and identified the critical determinants of quality within Higher Education, i.e. those areas that would influence loyalty behaviour, as being Access; Attentiveness; Availability; and Communication. A number of new determinants of quality have been identified out of the research by three independent judges, namely motivation, reward, social inclusion, usefulness, value for money and fellow student behaviour

    Clinical use, challenges, and barriers to implementation of deformable image registration in radiotherapy – the need for guidance and QA tools

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate the current status of the clinical use of deformable image registration (DIR) in radiotherapy and to gain an understanding of the challenges faced by centres in clinical implementation of DIR, including commissioning and quality assurance (QA), and to determine the barriers faced. The goal was to inform whether additional guidance and QA tools were needed. METHODS: A survey focussed on clinical use, metrics used, how centres would like to use DIR in the future and challenges faced, was designed and sent to 71 radiotherapy centres in the UK. Data were gathered specifically on which centres we using DIR clinically, which applications were being used, what commissioning and QA tests were performed, and what barriers were preventing the integration of DIR into the clinical workflow. Centres that did not use DIR clinically were encouraged to fill in the survey and were asked if they have any future plans and in what timescale. RESULTS: 51 out of 71 (70%) radiotherapy centres responded. 47 centres reported access to a commercial software that could perform DIR. 20 centres already used DIR clinically, and 22 centres had plans to implement an application of DIR within 3 years of the survey. The most common clinical application of DIR was to propagate contours from one scan to another (19 centres). In each of the applications, the types of commissioning and QA tests performed varied depending on the type of application and between centres. Some of the key barriers were determining when a DIR was satisfactory including which metrics to use, and lack of resources. CONCLUSION: The survey results highlighted that there is a need for additional guidelines, training, better tools for commissioning DIR software and for the QA of registration results, which should include developing or recommending which quantitative metrics to use. ADVANCES IN KNOWLEDGE: This survey has given a useful picture of the clinical use and lack of use of DIR in UK radiotherapy centres. The survey provided useful insight into how centres commission and QA DIR applications, especially the variability among centres. It was also possible to highlight key barriers to implementation and determine factors that may help overcome this which include the need for additional guidance specific to different applications, better tools and metrics

    Binary Population and Spectral Synthesis Version 2.1: construction, observational verification and new results

    Get PDF
    The Binary Population and Spectral Synthesis (BPASS) suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which BPASS incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest BPASS model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well- constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.Comment: 69 pages, 45 figures. Accepted for publication in PASA. Accompanied by a full, documented data release at http://bpass.auckland.ac.nz and http://warwick.ac.uk/bpas
    corecore