The Binary Population and Spectral Synthesis (BPASS) suite of binary stellar
evolution models and synthetic stellar populations provides a framework for the
physically motivated analysis of both the integrated light from distant stellar
populations and the detailed properties of those nearby. We present a new
version 2.1 data release of these models, detailing the methodology by which
BPASS incorporates binary mass transfer and its effect on stellar evolution
pathways, as well as the construction of simple stellar populations. We
demonstrate key tests of the latest BPASS model suite demonstrating its ability
to reproduce the colours and derived properties of resolved stellar
populations, including well- constrained eclipsing binaries. We consider
observational constraints on the ratio of massive star types and the
distribution of stellar remnant masses. We describe the identification of
supernova progenitors in our models, and demonstrate a good agreement to the
properties of observed progenitors. We also test our models against photometric
and spectroscopic observations of unresolved stellar populations, both in the
local and distant Universe, finding that binary models provide a
self-consistent explanation for observed galaxy properties across a broad
redshift range. Finally, we carefully describe the limitations of our models,
and areas where we expect to see significant improvement in future versions.Comment: 69 pages, 45 figures. Accepted for publication in PASA. Accompanied
by a full, documented data release at http://bpass.auckland.ac.nz and
http://warwick.ac.uk/bpas