130 research outputs found

    LIRA: Lifelong Image Restoration from Unknown Blended Distortions

    Full text link
    Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise the novel lifelong image restoration problem for blended distortions. We first design a base fork-join model in which multiple pre-trained expert models specializing in individual distortion removal task work cooperatively and adaptively to handle blended distortions. When the input is degraded by a new distortion, inspired by adult neurogenesis in human memory system, we develop a neural growing strategy where the previously trained model can incorporate a new expert branch and continually accumulate new knowledge without interfering with learned knowledge. Experimental results show that the proposed approach can not only achieve state-of-the-art performance on blended distortions removal tasks in both PSNR/SSIM metrics, but also maintain old expertise while learning new restoration tasks.Comment: ECCV2020 accepte

    Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity

    Get PDF
    Epidermal growth factor receptor is a potential target for cancer treatment and new small-molecule tyrosine kinase inhibitor drugs have been designed to inhibit its activity. In this work we identify potential surrogate markers of drug activity using a proteomic analysis. Two-dimensional electrophoresis was optimised to compare expression patterns of proteins secreted from the cancer cell lines A431 and A549 treated with Gefitinib (Iressa) vs untreated or vehicle-only-treated samples. Upregulated or downregulated proteins were detected using Phoretix 2D image analysis software. Several proteins were then identified using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. In one case, upregulation of Protein Disulphide Isomerase in response to Gefitinib was confirmed by Western blot analysis, and the response was shown to be concentration dependent. The identification of surrogate markers may be of use for the evaluation of new drugs, in preclinical models, in clinical trials and in the therapy of individual patients to give optimal biological drug doses

    Allelic Exchange of Pheromones and Their Receptors Reprograms Sexual Identity in Cryptococcus neoformans

    Get PDF
    Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining “sexes” known as mating types and is controlled by components of mating type (MAT) loci. MAT–encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and α) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (α). We discovered that these “αa” cells effectively adopt a new mating type (that of a cells); they sense and respond to α factor, they elicit a mating response from α cells, and they fuse with α cells. In addition, αa cells lose the α cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between α and αa strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT–encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen

    Organizational Support and Contract Fulfillment as Moderators of the Relationship Between Preferred Work Status and Performance

    Get PDF
    Purpose The purpose of this study was to examine organizational context variables as moderators of the relationship between preferred work status and job performance. The moderators were perceived organizational support (POS) and psychological contract fulfillment. Design/Methodology/Approach Survey data was collected from 164 participants working in a health and fitness organization. These participants ranged in age from 18 to 79 years old (M = 40, SD = 12.5) and held various positions including middle managers, clerical workers, maintenance workers, and sports trainers. Findings The relationship between preferred work status and extra-role performance was negative when POS was higher but not when POS was lower. Also, the relationship between preferred work status and extra-role performance was positive when contract fulfillment was lower but not when it was higher. No moderating effects were found when examining in-role performance. Implications Given the large and growing use of part-time workers it is important to understand differences across various subgroups of them in order to better inform human resource policies and practices. Specifically, the results highlight a key role for the management of reciprocity perceptions. Originality/Value The literature on part-time workers suggests there are important differences between employees who work part-time because they prefer it and those who work part-time but prefer to work full-time. Research regarding the relationship between preferred work status and performance has produced mixed results. This study helps reconcile conflicting results regarding the relationship between preferred work status and performance by examining the moderating effects of theoretically relevant variables

    Diversity of 23S rRNA Genes within Individual Prokaryotic Genomes

    Get PDF
    The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes.These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy

    A behavioral database for masked form priming

    Get PDF
    Reading involves a process of matching an orthographic input with stored representations in lexical memory. The masked priming paradigm has become a standard tool for investigating this process. Use of existing results from this paradigm can be limited by the precision of the data and the need for cross-experiment comparisons that lack normal experimental controls. Here, we present a single, large, high-precision, multicondition experiment to address these problems. Over 1,000 participants from 14 sites responded to 840 trials involving 28 different types of orthographically related primes (e.g., castfe–CASTLE) in a lexical decision task, as well as completing measures of spelling and vocabulary. The data were indeed highly sensitive to differences between conditions: After correction for multiple comparisons, prime type condition differences of 2.90 ms and above reached significance at the 5% level. This article presents the method of data collection and preliminary findings from these data, which included replications of the most widely agreed-upon differences between prime types, further evidence for systematic individual differences in susceptibility to priming, and new evidence regarding lexical properties associated with a target word’s susceptibility to priming. These analyses will form a basis for the use of these data in quantitative model fitting and evaluation and for future exploration of these data that will inform and motivate new experiments

    The Mating Type Locus (MAT) and Sexual Reproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi

    Get PDF
    Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals

    Pleiotropic Effects of Deubiquitinating Enzyme Ubp5 on Growth and Pathogenesis of Cryptococcus neoformans

    Get PDF
    Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host
    corecore