1,244 research outputs found

    Flight control electronics reliability/maintenance study

    Get PDF
    Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics

    Oxygen Saturation and Suck-Swallow-Breathe Coordination of Term Infants during Breastfeeding and Feeding from a Teat Releasing Milk Only with Vacuum

    Get PDF
    Background. Vacuum is an important factor in milk removal from the breast, yet compression is the predominant component of milk removal from bottle teats. Since bottle-feeding infants have lower oxygen saturation, vacuum levels, and different suck-swallow-breathe (SSwB) coordination to breastfeeding infants, we hypothesised that when infants fed from a teat that required a vacuum threshold of −29 mmHg for milk removal, that oxygen saturation, heart rate, and suck-swallow-breathe (SSwB) patterns would be similar to those of breastfeeding. Study Design. Infants (=16) were monitored during one breastfeed and one feed from the experimental teat. Simultaneous recordings were made of oxygen saturation, heart rate, vacuum, tongue movement, respiration, and swallowing. Results. There were no differences in oxygen saturation and heart rate between the breast and the teat. Infants displayed fewer sucks and breaths per swallow during nutritive sucking (NS) compared to non-nutritive sucking (NNS). The number of sucks per breath was similar for NS and NNS although respiratory rates were slower during NS. These patterns did not differ between the breast and the teat. Conclusion. These results suggest that vacuum may be conducive to safe and coordinated milk removal by the infant during both breast and bottle-feeding

    Positron-molecule interactions: resonant attachment, annihilation, and bound states

    Get PDF
    This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment and annihilation. Annihilation rates measured as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFR) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom. While the details are as yet unclear, intramolecular vibrational energy redistribution to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. Downshifts of the VFR from the vibrational mode energies have provided binding energies for thirty species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (negative ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler-broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed.Comment: 50 pages, 40 figure

    Shadowing in the nuclear photoabsorption above the resonance region

    Get PDF
    A model based on the hadronic fluctuations of the real photon is developed to describe the total photonucleon and photonuclear cross sections in the energy region above the nucleon resonances. The hadronic spectral function of the photon is derived including the finite width of vector-meson resonances and the quark-antiquark continuum. The shadowing effect is evaluated considering the effective interaction of the hadronic component with the bound nucleons within a Glauber-Gribov multiple scattering theory. The low energy onset of the shadowing effect is interpreted as a possible signature of a modification of the hadronic spectral function in the nuclear medium. A decrease of the ρ\rho-meson mass in nuclei is suggested for a better explanation of the experimental data.Comment: 8 pages, 7 figure

    AI-based Monte Carlo event generator for electron-proton scattering

    Get PDF
    We present a new strategy using artificial intelligence (AI) to build the first AI-based Monte Carlo event generator (MCEG) capable of faithfully generating final state particle phase space in lepton-hadron scattering. We show a blueprint for integrating machine learning strategies with calibrated detector simulations to build a vertex-level, AI-based MCEG, free of theoretical assumptions about femtometer scale physics. As the first steps towards this goal, we present a case study for inclusive electron-proton scattering using synthetic data from the PYTHIA MCEG for testing and validation purposes. Our quantitative results validate our proof of concept and demonstrate the predictive power of the trained models. The work suggests new venues for data preservation to enable future QCD studies of hadrons structure, and the developed technology can boost the science output of physics programs at facilities such as Jefferson Lab and the future Electron-Ion Collider.Comment: 4 pages, 4 figures. arXiv admin note: text overlap with arXiv:2001.1110

    Machine Learning-Based Event Generator for Electron-Proton Scattering

    Get PDF
    We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event distributions needed to reconstruct physical observables

    Photoproduction of mesons in nuclei at GeV energies

    Full text link
    In a transport model that combines initial state interactions of the photon with final state interactions of the produced particles we present a calculation of inclusive photoproduction of mesons in nuclei in the energy range from 1 to 7 GeV. We give predictions for the photoproduction cross sections of pions, etas, kaons, antikaons, and π+π\pi^+\pi^- invariant mass spectra in ^{12}C and ^{208}Pb. The effects of nuclear shadowing and final state interaction of the produced particles are discussed in detail.Comment: Text added in summary in general reliability of the method, references updated. Phys. Rev. C (2000) in pres

    ‘Solo datasets’: unexpected behavioural patterns uncovered by acoustic monitoring of single individuals

    Get PDF
    A holistic understanding of the life-history strategies of marine populations is often hindered by complex population dynamics, exacerbated by an intricate movement ecology across their life history (Nathan et al. 2008; Parsons et al. 2008; Jeltsch et al. 2013). Movement patterns and spatial ecology can vary spatially and temporally for different reasons, mainly related to the organism’s life history and environmental variability (Abecasis et al. 2009, 2013; Afonso et al. 2009). Changes in spatial use and movement can occur daily when visiting feeding grounds or avoiding predators, or seasonally, when sexually mature individuals migrate to spawning/breeding grounds (Kozakiewicz 1995; Sundström et al. 2001). However, observed shifts in spatial use and movement patterns, as a result of behavioural plasticity, may also vary greatly from one individual to another of the same species and/or population (Afonso et al. 2009). Further, ontogeny can also play an important role and explain a possible change in individual spatial variation. Noticeable differences in the behaviour and movements of mature and immature individuals have been documented in various marine organisms (Lowe et al. 1996; Lecchini and Galzin 2005). Permanent habitat shifts have been associated with ontogenesis in pigeye sharks (Carcharhinus amboinensis), moving from inshore to offshore areas after reaching maturity (Knip et al. 2011).This research was partially funded by the EU LIFE-BIOMARES Project (LIFE06 NAT/P/000192).info:eu-repo/semantics/publishedVersio

    Liquid methanol Monte Carlo simulations with a refined potential which includes polarizability, nonadditivity, and intramolecular relaxation

    Get PDF
    Monte Carlo simulations of liquid methanol were performed using a refined ab initio derived potential which includes polarizability, nonadditivity, and intramolecular relaxation. The results present good agreement between the energetic and structural properties predicted by the model and those predicted by ab initio calculations of methanol clusters and experimental values of gas and condensed phases. The molecular level picture of methanol shows the existence of both rings and linear polymers in the methanol liquid phase
    corecore