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We present a new machine learning-based Monte Carlo event generator using generative adversarial
networks (GANSs) that can be trained with calibrated detector simulations to construct a vertex-level event
generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-
based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested
and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for
detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our
results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level
event distributions needed to reconstruct physical observables.

DOI: 10.1103/PhysRevD.106.096002

I. INTRODUCTION

Since the early 1970s, Monte Carlo event generators
(MCEGs) have played a vital role in facilitating studies of
quantum chromodynamics (QCD) in high-energy scatter-
ing processes. From the experimental perspective, MCEGs
are a crucial part of the procedure used for modeling the
detector response folded into measured quantities (“detec-
tor-level”) to extract the true energies and momenta of final
state particles as produced at the interaction point (“vertex-
level”). The development of modern MCEGs, such as
PYTHIA [1], HERWIG [2], and SHERPA [3], has been driven by
a combination of high-precision experimental data and
theoretical inputs. The latter have involved a mix of
perturbative QCD methods, describing the dynamics of
quarks and gluons at short distances, and phenomenologi-
cal models that map the transition from quarks and gluons
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to observable hadrons, as well as nonperturbative inputs
such as parton distribution functions for applications
involving hadrons in the initial state [4-9].

While the theoretical assumptions are usually well
justified, an approach that mixes data with a model for
the underlying physical law which we wish to infer can
potentially lead to biased results. Moreover, the need to
correct for detector effects typically becomes increasingly
difficult in higher dimensions and prevents a faithful
reconstruction of vertex-level events in a model indepen-
dent way. In this work we present a novel approach to build
an event-level interpolation tool based on machine learning
(ML) that avoids theoretical assumptions about the fem-
tometer-scale physics, and discuss a strategy to correct for
detector effects at the event level.

An important application where this approach is particu-
larly needed is in the context of spin physics in inclusive,
semi-inclusive and exclusive electron—nucleon scattering.
Here, various spin configurations among the initial state
particles are prepared in order to explore detailed emergent
features of quarks and gluons inside hadrons at modern acce-
lerator facilities, such as COMPASS at CERN, Jefferson
Lab, and the future Electron-Ion Collider. Unfortunately,

Published by the American Physical Society
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Schematic view of the MLEG GAN training framework. The MLEG (dashed box) uses a generator which transforms noise into

event-level features. The generator is concatenated with a detector simulator to mimic synthetic detector-level event features. The deep
neural network based discriminator compares detector-level event features in order to build gradients to update the generator of the MLEG.

existing theory-based MCEGs are still in their infancy, and
at present no MCEG is able to reproduce, even qualitatively,
all possible spin asymmetries in these reactions. The reliance
on the theory-based MCEGs to extract physics information
from these types of measurements inherently introduces
biases, which only new developments in the theory behind
the MCEGs can mitigate.

In this paper we present an alternative strategy to unfold
detector effects by constructing an ML-based event gen-
erator (MLEG) using generative adversarial networks
(GANs) [10], which have been increasingly utilized
recently in high-energy physics applications as a tool for
fast Monte Carlo simulations [11-17]. A detailed survey of
MLEGs for physics event generation can be found in
Ref. [18]. A crucial feature of GANs (and generative
models in general) is their ability to generate synthetic
data by learning from real samples without explicitly
knowing the underlying physical laws of the original
system. We present a case study for inclusive electron—
nucleon deep-inelastic scattering (DIS) with realistic pseu-
dodata generated from phenomenological models. We first
train the MLEG that can faithfully reproduce the phase
space of inclusive DIS, along with uncertainty quantifica-
tion stemming from finite statistics and model architec-
tures. Subsequently, we implement detector effects using an
effective parametrization of detectors and train the MLEG
and folding algorithms to simulated detector-level DIS
events. For the first time a closure test for reconstructing
vertex-level DIS events, free of theoretical assumptions, is
also performed.

The results provide a new opportunity for experimental
data analysis to use the GAN approach to build theory-free
event generators which mitigate biases induced in recon-
structing physical observables from experimental data.
Moreover, the technique provides a new form of data
representation that can be easily distributed, in contrast to

the traditional data representation via histograms that are
limited for processes with high-dimensional phase space.

We begin the discussion in Sec. II with a schematic
overview of the MLEG training with our GAN-based
event-level interpolator. This is followed in Sec. III by a
description of the ML detector surrogate that we use in
order to simulate the effects of real particle detectors. The
application to inclusive electron-proton DIS is discussed in
Sec. IV, where we examine GAN training both with and
without detector effects. Finally, in Sec. V we summarize
our findings and discuss future extensions and applications.

II. GAN-BASED EVENT-LEVEL INTERPOLATOR

A schematic view of the training workflow of our MLEG
GAN is illustrated in Fig. 1, where, as usual, the GAN
model is composed of a generator and a discriminator. The
generator converts noise through a deep neural network
into event-level features, which is customized by a given
reaction. The generated event features are then passed into a
detector simulator to convert them as “trial” detector-level
events. The discriminator learns through another deep
neural network to differentiate the true detector-level event
samples from ones produced by the generator and the
detector simulator. The GAN training evolves as the
generator and discriminator compete adversarially, each
updating their parameters during the training process.
Eventually, the generator is able to produce synthetic
samples that the discriminator can no longer distinguish
from the real samples, at which point the training of the
MLEG is complete.

Although GANs have demonstrated impressive results in
various applications, including generating near-realistic
images [19], music [20], and videos [21], training a
successful GAN model is known to be notoriously difficult.
Many GAN models suffer from major problems, such as
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FIG. 2. Schematic view of the ML detector surrogate, where a generator converts input vertex-level event features and noise to
detector-level event features. The training samples are obtained from guess vertex-level samples and the corresponding detector-level
samples using a detector simulator. The discriminator (right hand side of the figure) is trained simultaneously with vertex-level and
detector-level event features in order to minimize the dependence of the generator on the input vertex-level guess samples.

mode collapse, nonconvergence, model parameter oscilla-
tion, destabilization, vanishing gradient, and overfitting due
to unbalanced training of the generator and discriminator.
Approaches and techniques to address these general prob-
lems have been proposed and discussed recently in the
literature [22-26].

Unlike common GAN applications, such as the gener-
ation of realistic high resolution images, the success of our
GAN application as nuclear and high-energy physics event
generators relies on its ability to faithfully reproduce
correlations among the particles’ momenta, which are
increasingly difficult in higher (greater than one or two)
dimensions. At the same time, the corresponding multidi-
mensional momentum distributions or histograms display
rapid changes in the phase space that span several orders of
magnitude. The challenge is then to design suitable GAN
architectures capable of reproducing all of the correlations
among the particles, along with a faithful reproduction of
the multidimensional histograms across the phase space. In
Sec. IV we will discuss in detail about how to customize
this for the specific application of inclusive DIS.

III. ML DETECTOR SURROGATE

Experimental data, provided in the form of final state
particle momenta, are affected by distortions introduced by
experimental detectors. A correction procedure is usually
necessary to extract the true information from the measured
cross sections and provide the vertex-level distributions
used in physics analysis. Such detector effects have
multiple causes, including limited acceptance, finite reso-
lution, efficiency distortion, and bin migrations due to
radiation and rescattering. Corrections are commonly taken

into account using unfolding procedures that attempt to
correct for the detector effects at the histogram level, which
require ad hoc corrections for each type of observable.

In order to demonstrate that our framework is realizable
in a real experimental analysis, such detector effects must
be incorporated. For this purpose, we use the open source
eic-smear software package [27], which was developed at
Brookhaven National Laboratory as a fast simulation tool
for the future Electron-lon Collider [28], with smearing
capability for quantities such as momentum, energy, polar
and azimuthal angles, and provides a simplified para-
metrization of the response of the detectors. This was used
to simulate a simplified version of the H1 and ZEUS
detectors with unsegmented 4z acceptance, which made it
suitable for our proof of concept problem.

We develop ML-based detector surrogates using a
secondary conditional GAN, as illustrated in Fig. 2. The
idea is to train a conditional generator simulating the
smearing effect of the detector by converting input ver-
tex-level event features and noise into detector-level event
features, as dictated by eic-smear. To do this we build
training samples using trial vertex-level guess event sam-
ples and the associated eic-smear detector-level samples to
train the conditional GAN. Once the conditional GAN is
trained, the ML detector surrogate (represented by the
dashed box in Fig. 2) can be integrated as the detector
simulator in Fig. 1. It is worth noting that for a more
realistic description of detector effects, the eic-smear
parametrization should be replaced by a full GEANT-based
detector model [29]. However, its integration within our
MLEG models using standard ML libraries is beyond the
scope of the present analysis, and will be the subject of
future work.
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IV. APPLICATION TO INCLUSIVE
ELECTRON-PROTON SCATTERING

In this section we describe the application of our MLEG
strategy to the inclusive unpolarized DIS of electrons (with
four-momentum k) from protons (four-momentum P). Our
goal is solely to produce the scattered electron phase space,
labeled by the four-momentum k. As a surrogate for real
experimental data, we use pseudodata generated from the
Jefferson Lab Angular Momentum (JAM) Collaboration’s
global QCD analysis framework [30] that has been tuned to
describe world data on inclusive DIS and other high-energy
scattering processes.

The inclusive electron DIS samples are generated at a
center of mass energy of 318.2 GeV, compatible with
HERA kinematics, by integrating the 2-dimensional differ-
ential cross section do/dxdQ?, computed at next-to-lead-
ing order in perturbative QCD using importance sampling,
and unweighting events over a very dense binning in
(x, Q%)-space. Each event is transformed into an outgoing
electron momentum in the HERA laboratory frame by
generating an azimuthal angle relative to the beam axis
sampled from a uniform distribution. While our ultimate
goal is to apply this approach to real data, this case study
provides unique insights of our ML workflow and allows us
to identify challenges in formulating a suitable feature
space to be learned by the model.

When training the GAN solely using the electron
momentum in the laboratory frame as event features, the
generator was found to create electron samples that violate
momentum conservation near the edge of the phase space,
and the model was not sensitive enough to prevent the
production of these samples [31]. To alleviate this problem
and aid the training, we use a change of variables that
enhances the discriminator awareness in these difficult
regions. Specifically, we define the scaled variables

vy = In((ky — k.)/1 GeV), (1a)
vy, = In((2E, — ki — k.)/1 GeV), (1b)

where E, is the incident electron energy, and kj, and k’, are
the scattered electron energy and longitudinal momentum,
respectively. In Egs. (1) the energies and momenta in the
arguments of the log are explicitly in units of GeV. These
variables can be easily inverted into the original momentum
space. In particular, the variable v, changes rapidly as the
energy of the outgoing electron approaches its limit,
allowing the discriminator to be aware of such region.

In the following, we present details of our chosen ML
architecture used for the event-level interpolation and the
ML detector surrogate.

(i) MLEG: The input to the generator in Fig. 1 is a 100-
dimensional white noise array centered at 0 with unit
standard deviation. The generator network consists
of 5 hidden dense layers, with 512 neurons per layer,

activated by a leaky rectified linear unit (ReLU)
function. The number of layers and neurons is
optimized to balance execution time and conver-
gence. The last hidden layer is fully connected to a
2-neuron output corresponding to the variables v,
and v,, activated by a linear function representing
the generated features. The corresponding discrimi-
nator also consists of 5 hidden dense layers with 512
neurons per layer, optimized as for the generator,
and activated by a leaky ReLU function. To avoid
overfitting, a 10% dropout rate is applied to each
hidden layer. The last hidden layer is fully connected
to a single-neuron output, where “1” indicates a true
event and “0” a fake event. The discriminator D is
trained to give D(F) = 1 for each training sample F,
and D(F) = 0 for each sample F produced by the
generator.

(i) ML detector surrogate: The detector surrogate model
is based on a conditional GAN architecture [32]. As
shown in Fig. 2, we have a generator that receives
vertex-level input in addition to a 100-dimensional
white noise centered at O with unit standard
deviation. The generator learns to fold the inputs
and produce detector-level events that mimic the
detector response dictated by eic-smear. By con-
ditioning the model on vertex-level event features we
can enforce learning the correlations between vertex-
and detector-level events as opposed to learning a
deterministic mapping between inputs and outputs.
As for the MLEG, the generator will produce a
2-neuron output corresponding to the detector-level
variables vy and v,, activated by a linear function
representing the generated features, and the dis-
criminator will similarly produce “0” or “1” for
training and generated samples, respectively. In both
the generator and discriminator architectures of the
ML detector surrogate, we use the same number of
hidden layers, neurons, dropout rates, and activation
functions as in our MLEG. A similar idea of using a
GAN for detector effects has been proposed by
Bellagente et al. [33], where, in contrast to our
folding procedure, parton-level data are mapped to
detector-level data using a conditional GAN model.

For both of our GAN architectures we adopt the least

squares GAN (LSGAN) [34], which replaces the cross
entropy loss function in the discriminator of a regular GAN
by a least squares term,

minV (D) = 2 ((D(x) = b)),
FLADGE) = aPsp, ()
minV(G) = 3 (D(G() = cPlp, ()
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where P denotes the distribution of the generated samples
and Py is the distribution of the training samples. As a
result, by setting b —a =2 and b — ¢ = 1, minimizing
the loss function of the LSGAN implies minimizing the
Pearson y° divergence. For the conditional model, the
objective functions can be defined as

minV(D) = (D(x]y) = 5)*)sp, o,

((D(G(xy)) -

4 wl»—

1
B a)2>5c~PG,y~Pv G

minV(G) = 1 {(D(G(x]y)) -

2 c)2>x~PG,y~Pl,’ (5)

where P, denotes the conditioned vertex-level samples that
are fed as inputs to the ML detector surrogate. The main
advantage of the LSGAN is that by penalizing the samples
that are far from the decision boundary, the generator is
prompted to generate samples closer to the manifold of the
true samples.

Our networks are trained adversarially for 100,000
epochs, where an epoch is defined as one pass through
the training dataset. For the optimizer, in both cases we use
Adam [35] with a 10™* learning rate, f, = 0.5, and
p>» =0.9. To balance the generator and discriminator
training, the training ratio is set to 5.

A. GAN training without detector effects

As a first step in our numerical analysis, we train the
MLEG using the DIS pseudodata samples without detector
effects in order to establish the baseline agreement between
training and synthetic data, without the complications
introduced by the detector folding. In Fig. 3 we compare
the training and synthetic normalized inclusive ep phase
space distributions for the scattered electron in the variables
vy and v,. The uncertainty bands are generated by taking
the standard deviation of 10 independently trained GANSs,
where for each case the training samples are prepared using
the bootstrapping procedure (taking random samples with
replacement).

It is useful here to define the “pull” metric between the
training (JAM) and synthetic (GAN) data by

E[P(OJbin)]gan — E[P(Obin)]jam
\/V (Olbin) GAN+V[ (Olbin)]jay

(6)

where E[P(O|bin)] and V[P(O|bin)] are the expectation
values and variances of the discrete probability density P of
an observable O. As expected, the synthetic distributions
for v; and v, match well with the distributions from the
training samples, within the statistical uncertainties, since
for these variables the deviation from the training set is
explicitly disfavored by the discriminator. Also shown in
Fig. 3 are distributions of derived quantities that are

No Detector Effects

) N —
\ MLEG 0.15f
. t JAMdata | | e ”
0.5 .‘,' . pll]l 0.10F ,, qemmee""
..... 0.05F
OU L rrrerecneeee )
5 F
OF:® R LS e )
B =2 0 0.0 25 50
LS V2
-2t .
10-3} """"’"-... w2k T
g ........’..'.,',, et " t','o
5 F
OF-se o
5k, b R E. N L. .
0 500 1000 0.0 0.2 0.4 0.6
Q* (GeV?) x
FIG. 3. Comparison of distributions of training and derived

variables from JAM training samples (black circles) and GAN-
generated synthetic data (yellow bands) for the case of no
detector effects; the band size reflects the uncertainty evaluated
using the bootstrap procedure (see text). The bottom of each
panel shows the pull distributions (red circles) defined in Eq. (6),
with the two horizontal dotted lines corresponding to +1o.

physically relevant for the DIS process, namely, the
four-momentum transfer squared, Q* = —(k — k'), and
the Bjorken scaling variable x = Q?/2P - (k — k'). While
these observables are obtained by nonlinear trans-
formations of the original variables v and v,, the result
accurately reconstructs the matching, within uncer-
tainties, with the corresponding spectra from the train-
ing data.

In Fig. 4 we illustrate the reduced inclusive e p DIS cross
section, o/ (in practice the reaction involved positrons
scattering from protons), as a function of Q2 in multiple
bins of x for the HERA data [36] and for the para-
metrization of the data from the JAM global QCD analysis
[30]. These are compared with the reduced cross sections
reconstructed by the GAN. Within the statistical uncer-
tainties, the empirical results are well reproduced by the
MLEG simulation in most of the regions of the phase space.
Note that the agreement between the JAM fit and the
HERA data deteriorates at the largest Q° values for each
fixed-x spectrum due to the vanishing of the phase space.
Nonetheless, the GAN is able to follow the pattern
of the phase space distribution, such as the approximate
scaling behavior, as well as the drop around the edges
of the phase space. This result is quite nontrivial since the
relationship between the variables that are learned (v4, v5)
and the DIS variables (x, Q%) is nonlinear, and it de-
monstrates the ability of the GAN to learn accu-
rately the underlying probability distribution of the phase
space.
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FIG. 4. Comparison of the reduced inclusive ep cross section
o/’ versus Q2 at fixed values of Bjorken-x from the HERA
collider [36] (red circles) with data generated from the JAM
global QCD analysis [30] (black solid lines) and the trained GAN
(yellow bands). No detector effects are included, and for clarity
the cross sections are scaled by a factor 2/, with i ranging from
i = 0 for the highest-x value to i = 17 for the lowest-x value.

B. GAN training with detector effects

Having established a baseline agreement for our MLEG
framework, we proceed to include detector effects, as
would be in actual experimental situations, which inevi-
tably increases the complexity of the analysis. As discussed
above, we train separately an ML detector surrogate using a
detector parametrization provided by the eic-smear soft-
ware. For the trial vertex-level event samples we use
directly the samples from the JAM global QCD analysis
instead of the flat phase space so as to optimize the GAN
training. However, we stress that in principle the model
architecture for the detector surrogate can be trained with
any samples.

In Fig. 5 we show the vertex- and detector-level
distributions for v; and v,, where significant distortions
are observed for the latter. An issue regarding the change of
variables in Egs. (1) is that after smearing the detector-level
k. variable can exceed the physical limit given by the
incident beam energy E,, rendering the transformation
singular for those unphysical cases. However, since the
change of variables, in particular for v,, is solely designed
to increase the detector awareness in the difficult regions,

0.8

0.6

0.4

0.2

0.0

0.8

[ JAM data
[ JAM + eic-smear
0.6 3 MLEG

1
I
1
1
1
]
1
1
]
1
(

0.4

3.95 4.00 4.05 4.10

0.2

0.0

FIG. 5. Comparison of training features at the vertex level
(generated, green histograms) and detector level (smeared, blue
histograms) with the MLEG generated synthetic data (red histo-
grams). The insets illustrate the local smearing effect at the points
indicated by the green vertical dashed lines.

we can replace E, in Egs. (1) by the maximum energy
found for the detector-level samples to achieve the same
goal, and avoid the singularity of the variable transform.
This disparity, however, creates an impression of higher
levels of distortion in the v, variable compared to v.

We also illustrate the smearing effects by focusing on
small intervals in v; and v,, as shown in the Fig. 5 insets, to
indicate the nontrivial distortion that is taking place across
the phase space. Included in Fig. 5 are the corresponding
predictions from the detector-level GAN output, which
shows very good agreement with the training samples. Note
that there are regions where GANs do not match precisely
with eic-smear, namely, the tail regions at small and large
V5, which correspond to the edges of the reaction phase
space. For the scope of this study, the GAN output
represents a reasonable true detector proxy, allowing us
to carry out the vertex-level learning closure test and
validate the proof of principle of our MLEG framework.

With the ML detector surrogate we proceed with training
the MLEG with detector effects. In Fig. 6 we show similar
results as in Fig. 3, but this time with detector effects
included. As expected, the variables v; and v, are well
reproduced, since the discriminator supervises on these
variables during the training. Similarly, the predicted DIS
variables x and Q7 at the detector level are well reproduced
within the uncertainties.

As the final step, we examine the quality of the MLEG at
the vertex level by analysing the direct output of its
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With Detector Effects
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FIG. 6. As in Fig. 3, but with detector effects present.

generator, and plot in Fig. 7 the corresponding vertex-level
distributions. Relative to the detector level, the vertex-level
distributions are observed to have, on average, larger values
for the pull than those in Fig. 6. This is expected since we
do not directly supervise at the vertex level, but instead
these are inferred quantities. A more detailed examination
of this is shown in Fig. 8, where we plot the reduced cross
sections as in Fig. 4, but in the presence of detector effects.
As expected, the uncertainties increase due to the detector
effects.

One particular region where the deviations from the true
result become larger compared to Fig. 4 are those at low O
and high x (see, for instance, the low-Q? region for the
x =10.01 and 0.02 bins). The difficulty in accurately

Detector Unfolding
L e R ——
MLEG 0.15+ o T
: t JAMdata | | . g
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wob T — .
O i i Y £ A " e LT
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5 : .... e, XY 0. o
0 .................;.....l.-,-....'.ﬂ.....‘.guﬂ,n!?...!..‘ﬂ‘“'. . . " CL
B 500 0.0 0.2 01 0.0

Q (GeV?) x

FIG. 7. As in Fig. 3, but with all the variables inferred by the
unfolding procedure.

Detector Unfolding

- s T =5e-5 MLEG
10° T
e { HERA
“ . x=2e4 _|_ JAM data
101 ‘ , T =3e-4
- ‘ r = be-4
‘\ r = 6e-4
: \ x = 8e-4
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?\1 o x=1e3
X . . o =3e3
% ~ 107 . . ‘ r = 4e-3
b ‘ r = 5e-3
107!
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FIG. 8. As in Fig. 4, but with the synthetic reduced cross

sections generated by the GAN including detector effects and
unfolding.

inferring this region can be traced back to the accuracy
in reproducing v, in Fig. 7 around v, ~ 0. To see this more
clearly, in Fig. 9 we plot v, as a function of Q7 at various
fixed values of x. As x increases, the range of v, increases
covering the negative v, regions for lower values of Q2.
The observed deviations in Fig. 7 around v, ~0 can be
understood by observing the corresponding regions in
Fig. 6 where the detector-level distribution is compatible

z=10"°

z=10"*
=103
r=10"2
4 r=10"!
10! 10° 10° 10
Q*(GeV?)

FIG. 9. Kinematical relation between the v, variable and Q? at
several different values of x.
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with zero. In this case, the inference of the underlying
vertex-level distribution is ill defined.

We can understand such an effect by considering the
extreme scenario where the detector does not observe a
particle at all, or converts the vertex-level samples into flat
noise. Clearly, in such a situation the vertex-level distri-
bution is not recoverable. In the present situation, some
regions of the phase space are subjected to some degree to
such extreme effects, while other regions are not. Other
than those ill-defined regions, one can see that within the
uncertainties the synthetic reduced cross sections are in
agreement with the true vertex-level cross sections. This
can be seen as confirmation that our MLEG training passes
the closure test in the presence of detector effects.

V. SUMMARY AND OUTLOOK

We have presented a new approach based on generative
adversarial networks to extract physics observables from
pseudodata in a physics agnostic manner. To illustrate the
strategy, we developed a GAN-based MLEG capable of
generating synthetic data that mimic inclusive deep-inelas-
tic ep scattering pseudodata generated in the kinematics of
the ZEUS and H1 experiments at HERA. To demonstrate
the veracity of our approach we performed a closure test,
extracting the original phase space distributions from
synthetic particle four-momenta.

To simulate real experimental scenarios, we introduced
distortions into the analysis that would be induced by a real
detector, implementing a resolution smearing function, and
after repeating the test obtained good agreement between
original and extracted phase space distributions. Pulls
quantified the uncertainty associated with the unfolding
procedure, showing not only that we were able to extract
the desired physics observables, but also obtain an uncer-
tainty quantification for the unfolding procedure. To our
knowledge, this is the first time that detector effects have
been unfolded from pseudodata on an event basis.

While our long term goal remains to construct an MLEG
for real experimental events across multiple channels
involving multiple particles in the final state for QCD
studies, the present analysis is a necessary and important
proof of concept that demonstrates the viability of applying
ML techniques to mitigate theoretical bias in experimental
data analysis. Despite the fact that in our analysis we have
effectively utilized only two-dimensional degrees of free-
dom to be reproduced by the MLEG, our main result is that
it is possible to unfold detector effects at the event level.
From the ML point of view, a larger number of particles in
the final state amounts to a larger feature space. It is
expected, therefore, that an extension of our proposed idea
to include additional particles in the final state is feasible,
provided that the number of final state particles remains
moderate. This is the case, for example, in semi-inclusive
and exclusive electron-nucleon scattering.

As an obvious improvement, and in view of its appli-
cation to data analysis, we envision the implementation of a
more realistic detector simulator based on GEANT to further
study this technology. We expect that the use of our
framework in ep scattering will be a valuable comple-
mentary tool for nuclear and particle physics programs at
current and planned facilities, such as Jefferson Lab [37]
and the Electron-Ion Collider [38].
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