10 research outputs found

    Demographic profiles and environmental drivers of variation relate to individual breeding state in a long-lived trans-oceanic migratory seabird, the Manx shearwater.

    Get PDF
    Understanding the points in a species breeding cycle when they are most vulnerable to environmental fluctuations is key to understanding interannual demography and guiding effective conservation and management. Seabirds represent one of the most threatened groups of birds in the world, and climate change and severe weather is a prominent and increasing threat to this group. We used a multi-state capture-recapture model to examine how the demographic rates of a long-lived trans-oceanic migrant seabird, the Manx shearwater Puffinus puffinus, are influenced by environmental conditions experienced at different stages of the annual breeding cycle and whether these relationships vary with an individual's breeding state in the previous year (i.e., successful breeder, failed breeder and non-breeder). Our results imply that populations of Manx shearwaters are comprised of individuals with different demographic profiles, whereby more successful reproduction is associated with higher rates of survival and breeding propensity. However, we found that all birds experienced the same negative relationship between rates of survival and wind force during the breeding season, indicating a cost of reproduction (or central place constraint for non-breeders) during years with severe weather conditions. We also found that environmental effects differentially influence the breeding propensity of individuals in different breeding states. This suggests individual spatio-temporal variation in habitat use during the annual cycle, such that climate change could alter the frequency that individuals with different demographic profiles breed thereby driving a complex and less predictable population response. More broadly, our study highlights the importance of considering individual-level factors when examining population demography and predicting how species may respond to climate change

    Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life

    Get PDF
    Vitamins and minerals play multiple functions within the central nervous system which may help to maintain brain health and optimal cognitive functioning. Supplementation of the diet with various vitamins and minerals has been suggested as a means of maintaining cognitive function, or even of preventing dementia, in later life

    Oil pollution and climate have wide-scale impacts on seabird demographics

    No full text
    Oil spills often spell disaster for marine birds caught in slicks. However, the impact of oil pollution on seabird population parameters is poorly known because oil spills usually occur in wintering areas remote from breeding colonies where birds may be distributed over a wide area, and because it is difficult to separate the effects of oil pollution from the effect of natural environmental variation on seabird populations. Using a long-term data set we show that over-winter survival of adult common guillemots (Uria aalge) is negatively affected by both the incidence of four major oil-spills in their wintering grounds and high values of the North Atlantic Oscillation (NAO) index. After controlling for the effect of the NAO index, we show that winter mortality of adult guillemots is doubled by major oil pollution incidents. Our results demonstrate that oil pollution can have wide-scale impacts on marine ecosystems that can be quantified using populations of marked individuals to estimate survival

    Oil pollution and climate have wide-scale impacts on seabird demographics

    No full text
    Oil spills often spell disaster for marine birds caught in slicks. However, the impact of oil pollution on seabird population parameters is poorly known because oil spills usually occur in wintering areas remote from breeding colonies where birds may be distributed over a wide area, and because it is difficult to separate the effects of oil pollution from the effect of natural environmental variation on seabird populations. Using a long-term data set we show that over-winter survival of adult common guillemots (Uria aalge) is negatively affected by both the incidence of four major oil-spills in their wintering grounds and high values of the North Atlantic Oscillation (NAO) index. After controlling for the effect of the NAO index, we show that winter mortality of adult guillemots is doubled by major oil pollution incidents. Our results demonstrate that oil pollution can have wide-scale impacts on marine ecosystems that can be quantified using populations of marked individuals to estimate survival

    The extended Moran effect and large-scale synchronous fluctuations in the size of great tit and blue tit populations

    No full text
    1. Synchronous fluctuations of geographically separated populations are in general explained by the Moran effect, i.e. a common influence on the local population dynamics of environmental variables that are correlated in space. Empirical support for such a Moran effect has been difficult to provide, mainly due to problems separating out effects of local population dynamics, demographic stochasticity and dispersal that also influence the spatial scaling of population processes. Here we generalize the Moran effect by decomposing the spatial autocorrelation function for fluctuations in the size of great tit Parus major and blue tit Cyanistes caeruleus populations into components due to spatial correlations in the environmental noise, local differences in the strength of density regulation and the effects of demographic stochasticity. 2. Differences between localities in the strength of density dependence and nonlinearity in the density regulation had a small effect on population synchrony, whereas demographic stochasticity reduced the effects of the spatial correlation in environmental noise on the spatial correlations in population size by 21·7% and 23·3% in the great tit and blue tit, respectively. 3. Different environmental variables, such as beech mast and climate, induce a common environmental forcing on the dynamics of central European great and blue tit populations. This generates synchronous fluctuations in the size of populations located several hundred kilometres apart. 4. Although these environmental variables were autocorrelated over large areas, their contribution to the spatial synchrony in the population fluctuations differed, dependent on the spatial scaling of their effects on the local population dynamics. We also demonstrate that this effect can lead to the paradoxical result that a common environmental variable can induce spatial desynchronization of the population fluctuations. 5. This demonstrates that a proper understanding of the ecological consequences of environmental changes, especially those that occur simultaneously over large areas, will require information about the spatial scaling of their effects on local population dynamics

    Climate variation and regional gradients in population dynamics of two hole-nesting passerines.

    Get PDF
    Latitudinal gradients in population dynamics can arise through regional variation in the deterministic components of the population dynamics and the stochastic factors. Here, we demonstrate an increase with latitude in the contribution of a large-scale climate pattern, the North Atlantic Oscillation (NAO), to the fluctuations in size of populations of two European hole-nesting passerine species. However, this influence of climate induced different latitudinal gradients in the population dynamics of the two species. In the great tit the proportion of the variability in the population fluctuations explained by the NAO increased with latitude, showing a larger impact of climate on the population fluctuations of this species at higher latitudes. In contrast, no latitudinal gradient was found in the relative contribution of climate to the variability of the pied flycatcher populations because the total environmental stochasticity increased with latitude. This shows that the population ecological consequences of an expected climate change will depend on how climate affects the environmental stochasticity in the population process. In both species, the effects will be larger in those parts of Europe where large changes in climate are expected
    corecore