271 research outputs found
A perspective on the Healthgrid initiative
This paper presents a perspective on the Healthgrid initiative which involves
European projects deploying pioneering applications of grid technology in the
health sector. In the last couple of years, several grid projects have been
funded on health related issues at national and European levels. A crucial
issue is to maximize their cross fertilization in the context of an environment
where data of medical interest can be stored and made easily available to the
different actors in healthcare, physicians, healthcare centres and
administrations, and of course the citizens. The Healthgrid initiative,
represented by the Healthgrid association (http://www.healthgrid.org), was
initiated to bring the necessary long term continuity, to reinforce and promote
awareness of the possibilities and advantages linked to the deployment of GRID
technologies in health. Technologies to address the specific requirements for
medical applications are under development. Results from the DataGrid and other
projects are given as examples of early applications.Comment: 6 pages, 1 figure. Accepted by the Second International Workshop on
Biomedical Computations on the Grid, at the 4th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2004). Chicago USA, April
200
Mobile Computing in Physics Analysis - An Indicator for eScience
This paper presents the design and implementation of a Grid-enabled physics
analysis environment for handheld and other resource-limited computing devices
as one example of the use of mobile devices in eScience. Handheld devices offer
great potential because they provide ubiquitous access to data and
round-the-clock connectivity over wireless links. Our solution aims to provide
users of handheld devices the capability to launch heavy computational tasks on
computational and data Grids, monitor the jobs status during execution, and
retrieve results after job completion. Users carry their jobs on their handheld
devices in the form of executables (and associated libraries). Users can
transparently view the status of their jobs and get back their outputs without
having to know where they are being executed. In this way, our system is able
to act as a high-throughput computing environment where devices ranging from
powerful desktop machines to small handhelds can employ the power of the Grid.
The results shown in this paper are readily applicable to the wider eScience
community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing
& Ubiquitous Networking (ICMU06. London October 200
DIANA Scheduling Hierarchies for Optimizing Bulk Job Scheduling
The use of meta-schedulers for resource management in large-scale distributed
systems often leads to a hierarchy of schedulers. In this paper, we discuss why
existing meta-scheduling hierarchies are sometimes not sufficient for Grid
systems due to their inability to re-organise jobs already scheduled locally.
Such a job re-organisation is required to adapt to evolving loads which are
common in heavily used Grid infrastructures. We propose a peer-to-peer
scheduling model and evaluate it using case studies and mathematical modelling.
We detail the DIANA (Data Intensive and Network Aware) scheduling algorithm and
its queue management system for coping with the load distribution and for
supporting bulk job scheduling. We demonstrate that such a system is beneficial
for dynamic, distributed and self-organizing resource management and can assist
in optimizing load or job distribution in complex Grid infrastructures.Comment: 8 pages, 9 figures. Presented at the 2nd IEEE Int Conference on
eScience & Grid Computing. Amsterdam Netherlands, December 200
Object Serialization and Deserialization Using XML
Interoperability of potentially heterogeneous databases has been an ongoing
research issue for a number of years in the database community. With the trend
towards globalization of data location and data access and the consequent
requirement for the coexistence of new data stores with legacy systems, the
cooperation and data interchange between data repositories has become
increasingly important. The emergence of the eXtensible Markup Language (XML)
as a database independent representation for data offers a suitable mechanism
for transporting data between repositories. This paper describes a research
activity within a group at CERN (called CMS) towards identifying and
implementing database serialization and deserialization methods that can be
used to replicate or migrate objects across the network between CERN and
worldwide centres using XML to serialize the contents of multiple objects
resident in object-oriented databases.Comment: 14 pages 7 figure
Predictive use of the Maximum Entropy Production principle for Past and Present Climates
In this paper, we show how the MEP hypothesis may be used to build simple
climate models without representing explicitly the energy transport by the
atmosphere. The purpose is twofold. First, we assess the performance of the MEP
hypothesis by comparing a simple model with minimal input data to a complex,
state-of-the-art General Circulation Model. Next, we show how to improve the
realism of MEP climate models by including climate feedbacks, focusing on the
case of the water-vapour feedback. We also discuss the dependence of the
entropy production rate and predicted surface temperature on the resolution of
the model
A Multi Interface Grid Discovery System
Discovery Systems (DS) can be considered as entry points for global loosely coupled distributed systems. An efficient Discovery System in essence increases the performance, reliability and decision making capability of distributed systems. With the rapid increase in scale of distributed applications, existing solutions for discovery systems are fast becoming either obsolete or incapable of handling such complexity. They are particularly ineffective when handling service lifetimes and providing up-to-date information, poor at enabling dynamic service access and they can also impose unwanted restrictions on interfaces to widely available information repositories. In this paper we present essential the design characteristics, an implementation and a performance analysis for a discovery system capable of overcoming these deficiencies in large, globally distributed environments
Nf2/Merlin: a coordinator of receptor signalling and intercellular contact
This review explores possible mechanisms by which the neurofibromatosis type-2 tumour suppressor Merlin regulates contact-dependent inhibition of proliferation. Starting from an evolutionary perspective, the concurrent emergence of intercellular contacts and proliferation control in multicellular organisms is first considered. Following a brief survey of the molecular and subcellular milieus in which merlin performs its function, the importance of different cellular and biological contexts in defining the function of merlin is discussed. Finally, an integrated model for merlin and the Ezrin, Radixin, and Moesin (ERM) proteins functioning in the regulation of cellular interfaces is proposed
Recommended from our members
The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae)
The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce.In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships.This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds
- …