16 research outputs found

    Investigating and reversing T-cell dysfunction in the Eμ-TCL1 mouse model of chronic lymphocytic leukaemia (CLL)

    Get PDF
    PhDChronic lymphocytic leukaemia (CLL) is the most common adult leukaemia, and despite recent introduction of targeted therapies, remains incurable. An important hallmark of CLL is severe immune deficiency, including the failure to mount effective anti-tumour immune responses. This can partly be explained by insufficient antigen presentation, but also by the existence of complex CLL-induced T-cell defects. Based on the cancer immuno-editing hypothesis that the immune system not only protects a host against tumour formation but can also be compromised to actively provide a pro-tumour microenvironment, modulating cancer-induced T-cell defects could restore the full anti-tumour response and result in more durable clinical responses. The immune checkpoint molecules PD-1 (expressed on activated immune effector cells) and PD-L1 (expressed on antigen-presenting and microenvironmental cells including tumour cells) have emerged as important mediators of T-cell suppression. Several studies suggest that PD-L1/PD-1 inhibitory signalling in CLL might be overcome by the immune modulatory drug lenalidomide. Furthermore, directly targeting PDL-1/PD-1 interactions produces significant responses in solid cancers. However, similar studies are notably absent in CLL, and the effect of PDL-1/PD-1 blockade on restoring cancer-induced immune dysfunction is not understood. Transgenic Eμ-TCL1 mice have been extensively validated as an adequate preclinical model of aggressive human CLL, and our group showed their suitability to mirror T-cell defects observed in human CLL. Using the Eμ-TCL1 model, this dissertation project substantially extends our previous characterization of CLL-induced T-cell dysfunction and evaluates the functional impact of PD-L1/PD-1 inhibitory signalling both in parallel with disease development and in different microenvironments. The findings to be described here demonstrate that developing CLL is associated with specific T-cell subset alterations, phenotypic changes, and functional defects that are very similar in peripheral blood and secondary lymphoid organs. In addition to PD-L1, PD-L2 is identified as a potential mediator of inhibitory signalling in CLL. CD8+ T cells in leukaemic mice are characterised as a functionally heterogeneous population, in which subsets of cells are able to exert effector functions despite PD-1 expression. In vivo lenalidomide treatment repairs selected phenotypic alterations and immune synapse formation, and a PD-L1 IgG blocking antibody effectively controls disease and reverses global T-cell defects even in cells expressing PD-1. In sum, this work provides a strong rationale to explore PD-L1/PD-1 targeting in CLL clinical trials, potentially in combination with novel agents.Mildred-Scheel Postdoctoral Fellowship awarded by Deutsche Krebshilfe (salary 2011-2013), by the Virtual Helmholtz Institute “VH404 - Resistance in Leukaemia” (salary and consumables, 2013-2015), and by the Kenneth Street Endowment Fund (consumables, 2011-2015)

    Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKC subversion induces up-regulation of PKC II expression in B lymphocytes

    Get PDF
    Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs. Reduced function of PKCα leads to an up-regulation of PKCβII expression, which is also associated with a poor prognostic subset of human chronic lymphocytic leukemia samples. Treatment of chronic lymphocytic leukemia-like cells with the selective PKCβ inhibitor enzastaurin caused cell cycle arrest and apoptosis both in vitro and in vivo, and a reduction in the leukemic burden in vivo. These results demonstrate the importance of PKCβII in chronic lymphocytic leukemia-like disease progression and suggest a role for PKCα subversion in creating permissive conditions for leukemogenesis

    AUTOLOGOUS STEM CELL TRANSPLANTATION FOR CHRONIC LYMPHOCYTIC LEUKEMIA STILL A VALID TREATMENT OPTION, OR IS THE GAME OVER ?

    Get PDF
    <p>Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab (FCR) has been established as the current standard of care for young and fit patients with chronic lymphocytic leukemia (CLL). In the early nineties of the last century, long before the advent of fludarabine or antibody-based strategies, there was realistic hope that myeloablative therapy followed by autologous stem cell transplantation (autoSCT) might be an effective and potentially curative front-line treatment option for suitable patients with CLL. Since then, several prospective trials have disenthralled this hope: although autoSCT can prolong event and progression-free survival if used as part of early front-line treatment, it does not improve overall survival, while it is associated with an increased risk of late adverse events such as secondary malignancies. In addition, autoSCT lacks the potential to overcome the negative impact of biomarkers that confer resistance to chemotherapy or early relapse. The role of autoSCT has also been explored in the context of FCR, and it was demonstrated that its effect is inferior to the currently established optimal treatment regimen. In view of ongoing attempts to improve on FCR, promising clinical activity of new substances even in relapsed/ refractory CLL patients, exciting novel cell therapy approaches and advantages in the understanding of the disease and detection of Minimal Residual Disease (MRD), autoSCT has lost its place as a standard treatment option for CLL.</p&gt

    RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics

    No full text
    RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes

    Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signaling that is modulated by NOTCH1 mutations

    No full text
    The leukocyte adhesion cascade is important in chronic lymphocytic leukemia (CLL), as it controls migration of malignant cells into the pro-survival lymph node microenvironment. Circulating trisomy 12 CLL cells have increased expression of the integrins CD11a and CD49d, as well as CD38, but the tissue expression of these and other molecules, and the functional and clinical sequelae of these changes have not been described. Here, we demonstrate that circulating trisomy 12 CLL cells also have increased expression of the integrins CD11b, CD18, CD29, and ITGB7, and the adhesion molecule CD323. Notably, there was reduced expression of CD11a, CD11b, and CD18 in trisomy 12 cases with NOTCH1 mutations compared with wild type. Trisomy 12 cells also exhibit upregulation of intracellular integrin signaling molecules CALDAG-GEFI, RAP1B, and Ras-related protein ligand, resulting in enhanced very late antigen-4 [VLA-4] directed adhesion and motility. CD38 expression in CLL has prognostic significance, but the increased CD38 expression in trisomy 12 CLL cells must be taken into account in this subgroup, and the threshold of CD38 positivity should be raised to 40% for this marker to retain its prognostic value. In conclusion, trisomy 12 CLL cells exhibit functional upregulation of integrin signaling, with β2-integrin expression being modulated by NOTCH1 mutation status
    corecore