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Abstract 

Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia, and 

despite recent introduction of targeted therapies, remains incurable. An important 

hallmark of CLL is severe immune deficiency, including the failure to mount effective 

anti-tumour immune responses. This can partly be explained by insufficient antigen 

presentation, but also by the existence of complex CLL-induced T-cell defects. Based 

on the cancer immuno-editing hypothesis that the immune system not only protects a 

host against tumour formation but can also be compromised to actively provide a pro-

tumour microenvironment, modulating cancer-induced T-cell defects could restore the 

full anti-tumour response and result in more durable clinical responses. 

The immune checkpoint molecules PD-1 (expressed on activated immune effector 

cells) and PD-L1 (expressed on antigen-presenting and microenvironmental cells 

including tumour cells) have emerged as important mediators of T-cell suppression. 

Several studies suggest that PD-L1/PD-1 inhibitory signalling in CLL might be 

overcome by the immune modulatory drug lenalidomide. Furthermore, directly targeting 

PDL-1/PD-1 interactions produces significant responses in solid cancers. However, 

similar studies are notably absent in CLL, and the effect of PDL-1/PD-1 blockade on 

restoring cancer-induced immune dysfunction is not understood.  

Transgenic Eμ-TCL1 mice have been extensively validated as an adequate preclinical 

model of aggressive human CLL, and our group showed their suitability to mirror T-cell 

defects observed in human CLL. Using the Eμ-TCL1 model, this dissertation project 

substantially extends our previous characterization of CLL-induced T-cell dysfunction 

and evaluates the functional impact of PD-L1/PD-1 inhibitory signalling both in parallel 

with disease development and in different microenvironments.  

The findings to be described here demonstrate that developing CLL is associated with 

specific T-cell subset alterations, phenotypic changes, and functional defects that are 

very similar in peripheral blood and secondary lymphoid organs. In addition to PD-L1, 

PD-L2 is identified as a potential mediator of inhibitory signalling in CLL. CD8+ T cells 

in leukaemic mice are characterised as a functionally heterogeneous population, in 

which subsets of cells are able to exert effector functions despite PD-1 expression. In 

vivo lenalidomide treatment repairs selected phenotypic alterations and immune 

synapse formation, and a PD-L1 IgG blocking antibody effectively controls disease and 

reverses global T-cell defects even in cells expressing PD-1. In sum, this work provides 

a strong rationale to explore PD-L1/PD-1 targeting in CLL clinical trials, potentially in 

combination with novel agents. 
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1 Background 

1.1 Chronic lymphocytic leukaemia  

1.1.1 Epidemiology and clinical features of the disease 

Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia in Western 

countries with an age-adjusted incidence rate of about 5 cases per 100,000 men and 

women per year1, 2. With a median age at diagnosis of 72 years, CLL is predominantly 

a disease of the elderly, although ⅓ of patients are diagnosed at or below 65 years of 

age. CLL is characterised by the progressive accumulation of mature B lymphocytes 

within blood, bone marrow, lymph nodes and spleen, leading to lymphocytosis, 

lymphadenopathy and organomegaly. The diagnosis is based on the combination of 

lymphocyte morphology and the presence of at least 5,000 circulating clonal 

CD19+CD20+IgM+IgD+ B lymphocytes/µL blood persisting for more than three 

months; additional characteristics of the CLL immunophenotype are the expression of 

CD5, CD23, and kappa or lambda light chain restriction3, 4. The findings of less than 

5,000 circulating clonal B lymphocytes/µL in the absence of palpable lymphadenopathy 

fulfil the criteria for a diagnosis of monoclonal B-cell lymphocytosis (MBL), whereas 

those patients with lymphadenopathy fulfil the criteria for a diagnosis of small 

lymphocytic lymphoma (SLL)5. Although all cases of CLL appear to be preceded by 

MBL, the majority of individuals with MBL have a low risk of developing a 

haematological malignancy, largely depending on the number of monoclonal B 

lymphocytes detected6, 7. As CLL proceeds, constitutional symptoms and occasionally 

extranodal infiltrates are observed. Another CLL hallmark is immune suppression and 

deficiency, a feature which will be further discussed in Chapter 1.1.4. Clinical features 

are generally highly variable, and while many patients are asymptomatic and never 

require any treatment, the features and course of disease can be very aggressive in 

specific subgroups of patients.  

 

1.1.2 Clinical staging and prognosis 

To identify patients with poorer risk disease, several staging and prognosis systems 

have been developed. Clinically, the two most established prognostic staging systems 

are the Rai8 and Binet9 classifications, which are based on physical examination and 

blood counts (see Table 1). Patients with low-risk disease (i.e. Rai stage 0, Binet stage 

A) generally have a median survival of up to 17 years. This is significantly shortened in 

patients with intermediate-risk (i.e. Rai stage I or II, Binet stage B) and high-risk 
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disease (i.e. Rai stage III or IV, Binet stage C) to 5 to 8 years and to less than 2 years, 

respectively.  

 

Rai Staging System 

stage simplified 3-Stage System clinical features 

0 low risk lymphocytosis in blood and bone marrow only 

I 
intermediate risk 

lymphocytosis + lymphadenopathy 

II lymphocytosis + splenomegaly/hepatomegaly 

III 
high risk 

lymphocytosis + anaemia 

IV lymphocytosis + thrombocytopenia 

Binet Staging System 

group  clinical features 

A 
< 3 involved lymph node areas, no anaemia or  
thrombocytopenia 

B 
≥ 3 involved lymph node areas, no anaemia or 
thrombocytopenia 

C 
haemoglobin <10g/dl and/or platelets <100,000/μl ± 
lymphadenopathy/ organomegaly 

Table 1: Overview of parameters included into the Rai and Binet staging systems. 

 

With the improved understanding of disease biology and mechanisms of pathogenesis, 

a variety of additional prognostic factors have emerged over the last 10 to 15 years. 

These include patient-related characteristics (e.g. age, performance status and co-

morbidities) and disease-related biomarkers. However, only a few biomarkers have 

been prospectively validated. These include immunoglobulin heavy chain variable 

region (IgVH) gene mutation analysis10, 11, CD3810 and ZAP-70 expression12, and 

cytogenetic abnormalities determined by fluorescence in situ hybridisation (FISH)13. 

Among the latter, deletion of the chromosome region 17p13.1 (del17p) is of high 

prognostic importance, as patients with this abnormality typically require therapy within 

one year of diagnosis and have a median overall survival (OS) of just 32 months due to 

poor response to standard immunochemotherapy13. However, selected retrospective 

data indicate that a minority of patients with del17p might experience an indolent 

course despite the mutation14. The general lack of chemosensitivity in this subset is 

biologically explained by the absence of the tumour suppressor protein TP53, the locus 

for which is located on the short arm of chromosome 1715. This deletion is often 

accompanied by inactivating mutations of the second allele of TP53, leading to a 

complete loss of TP53 function16, 17. Other cytogenetic abnormalities commonly 

observed in CLL include deletion of 11q22.3 (del11q), trisomy of chromosome 12, and 

deletion of 13q14 (del13q) as the sole abnormality13; median survival times for patients 

in these groups were found to be 79, 114, 111, and 133 months, respectively. 

Potentially critical genes within the affected regions of these chromosomes include 
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DLEU2/mir15a/miR15-1 for del13q18, NOTCH1 for trisomy 1219, and RDX and ATM for 

del11q20. More recently, SF3B1, BIRC3 and MYD88 have been identified to be 

recurrently mutated in CLL21-23, and several retrospective studies indicate that these 

mutations appear to be enriched in cohorts of patients with high-risk characteristics and 

poor response to conventional therapy24-26.  

As many prognostic markers were identified and validated in small, retrospective, and 

heterogeneously treated cohorts of patients, efforts are now being focused on 

combining individual markers into a more accurate and powerful prognostic score. 

Rossi and colleagues integrated mutational and cytogenetic data from 1,274 CLL 

patients to identify four hierarchical subgroups27. These included high-risk patients with 

TP53 and/or BIRC3 abnormalities with a 10-year survival of 29%; intermediate-risk 

patients with NOTCH1 and/or SF3B1 mutations and/or del11q (10-year survival 37%); 

low-risk patients with trisomy 12 or normal cytogenetics (10-year survival 57%); and 

very low-risk patients with del13q as a sole abnormality (10-year survival 69.3%). A 

recent study developed a more clinically applicable comprehensive prognostic index for 

OS combining disease stage, biological markers, and patient-related factors from 1,948 

CLL patients participating in phase III trials of the German CLL Study Group 

(GCLLSG)28. Using multivariate modelling, they identified 8 factors as being 

independently associated with inferior survival from study entry. These included del17p 

and del11q, elevated serum thymidine kinase and β2 microglobulin, unmutated IgVH, 

ECOG performance status greater than 0, male gender and age over 60 years. While 

such sophisticated and comprehensive prognostic scores contribute significantly to 

increasing the predictive value of currently available biomarkers, their day-to-day 

application in clinical practise is still limited by the lack of availability of specialized 

assays and laboratories, as well as economic constraints.  

 

1.1.3 Current treatment options and unmet needs 

As there is no reliable curative approach, the decision to begin treatment of CLL is 

based on the development of symptoms and disease activity29, 30. Factors guiding the 

choice of treatment include physical fitness, the presence of comorbidities, and 

validated biological prognostic factors such as IgVH mutation status and cytogenetic 

abnormalities. In young patients without significant comorbidities, 

immunochemotherapy approaches (chemotherapy plus a monoclonal antibody) are 

typically used as front-line treatment. The current standard is fludarabine, 

cyclophosphamide and the anti-CD20 antibody rituximab (FCR)31, 32. While this regimen 
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leads to high overall response rates (ORR) and a long progression-free survival (PFS), 

it is unsuitable for certain subgroups of patients including those with TP53 

abnormalities13, 33, 34 and elderly patients with comorbidities who are typically unable to 

tolerate toxicities associated with FCR35. In the latter, chlorambucil is a widely accepted 

therapeutic option, and the combination with rituximab is generally well tolerated and 

improves PFS36, 37. Another option is the combination of rituximab with bendamustine 

(BR); a Phase II trial by the GCLLSG found an ORR of 88%, which translated into an 

event free survival (EFS) of almost 34 months. This combination produced only very 

moderate toxicities, making it particularly suitable for elderly CLL patients38. A direct 

comparison between FCR and BR is currently being conducted in an ongoing Phase III 

trial. A recently published pivotal Phase III trial by the GCLLSG showed that the type 2 

anti-CD20 antibody obinutuzumab (GA101) was superior to rituximab when each was 

combined with chlorambucil39. Another anti-CD20 monoclonal antibody is the fully 

humanized agent ofatumumab, which shows high efficacy in untreated and 

relapsed/refractory patients, and even in patients pre-treated with rituximab40-42. A 

recently published direct preclinical in vitro and in vivo comparison of obinutuzumab 

with rituximab and ofatumumab demonstrated that obinutuzumab was superior to 

rituximab and ofatumumab in the induction of direct cell death and antibody-dependent 

cellular cytotoxicity (ADCC), showed slower internalization rate upon binding to CD20, 

and induced superior in vivo anti-tumour efficacy, but was 10 to 1,000 times less potent 

in mediating complement-dependent cytotoxicity (CDC)43.  

To capitalize on the success of rituximab, a variety of monoclonal antibodies is 

currently being tested in preclinical studies, for example against receptor tyrosine 

kinase-like orphan receptor 1 (ROR-1)44 or CD4445, or has been introduced to the 

treatment of CLL. Among those, the anti-CD52 monoclonal antibody alemtuzumab and 

combinations of this with chlorambucil, high-dose corticosteroids, rituximab, and FCR 

appeared to be able to overcome the negative impact of TP53 abnormalities in the first-

line treatment setting (both in terms of its predictive value and its effect on the 

response to treatment)46-49. However, alemtuzumab-containing approaches are 

associated with severe haematological and non-haematological toxicities and infectious 

complications, making them unsuitable for the majority of CLL patients. In the relapsed 

setting, the management of patients with TP53 abnormalities is even more challenging. 

Several clinical studies demonstrated that FCR and combinations with high-dose 

corticosteroids, alemtuzumab or alternative regimens consisting of rituximab, 

oxaliplatin, cytarabine and fludarabine (OFAR) have only limited and short-term 



Fabienne McClanahan                                                                                                 Background 

Page 29 of 258 

 

efficacy and are associated with high toxicity rates50-56. Thus, identifying new strategies 

for the del17p and TP53 mutated CLL patient subsets remains especially urgent.  

A great deal of work has therefore been focused on identifying agents that can provide 

anti-tumour activity in the absence of functional p53. These efforts led to the 

development of the cyclin dependent kinase (CDK) inhibitor flavopiridol and the 

second-generation CDK inhibitor dinaciclib. In several studies flavopiridol has 

demonstrated potent clinical activity even in the highest risk CLL subsets, and has 

provided benefit to patients lacking other options57, 58. However, due to its rapid 

induction of tumour cell death, this agent carries the risk of acute tumour lysis 

syndrome that can be fatal without proper monitoring and intervention. To reduce this 

risk, CDK inhibitors have been combined with cytoreductive therapies. In a recently 

published phase I study, the combination of flavopiridol with cyclophosphamide and 

rituximab was tolerable and active in high-risk CLL patients, and tumour lysis syndrome 

was not observed59, 60. Regardless, concerns persist, and widespread clinical 

application of CDK inhibitors in CLL appears unlikely at this time.  

After many years without a significant clinical breakthrough, CLL researchers have 

recently been able to capitalize on laboratory data showing the importance of B-cell 

receptor (BCR) signalling in CLL tumour cell survival and proliferation. BCR activation 

is a central stimulus in CLL cells, and promotes their survival by activating multiple 

downstream kinases such as Bruton’s tyrosine kinase (BTK), spleen tyrosine kinase 

(Syk), ZAP-70, Src family kinases, and phosphatidylinositol 3-kinase (PI3K)61, 62. These 

events drive the expression of pro-survival molecules, in part via activation of 

transcription factors such as NF-κB. An overview of BCR signalling pathways and 

targets is provided in Figure 1.  
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Figure 1: BCR signalling pathway and targets for molecular inhibitors: Engagement of the 
BCR by antigen induces phosphorylation of immune receptor tyrosine-based activation motifs 
(ITAMs) within the cytoplasmic domains of immunoglobulins, which is primarily mediated by the 
Src family kinase Lyn. This results in the recruitment and activation of the tyrosine kinase Syk. 
Activated Syk forms a membrane-associated complex with other tyrosine kinases such as Lyn 
and BTK, and adapter molecules such as B-cell linker protein (BLNK). This complex mediates 
the activation of downstream signalling pathways such as PI3K and phospholipase Cγ2 
(PLCγ2). PI3K generates the second messenger phosphatidylinositol-3,4,5-triphosphate (PIP3), 
which recruits molecules such as Akt. PLCγ activation leads to the release of intracellular 
calcium and subsequent activation of protein kinase C (PKC). These events lead in turn to 
activation of mitogen activated protein kinases (MAPKs) including extracellular signal regulated 
kinase (ERK), c-JUN NH2-terminal kinase (JNK) and p38 MAPK. Activation of PKC also 
increases expression of the transcription factor NFĸB, while the rise in intracellular calcium 
causes activation of nuclear factor of activated T cells (NFAT). Figure taken from Hallek 201363. 

 

Recent clinical studies convincingly show that agents inhibiting BCR signalling are well 

tolerated and very active, even in patients with relapsed and fludarabine-refractory CLL 

and/or those with TP53 abnormalities. To date, the most clinically successful BCR 

pathway inhibitor is the BTK inhibitor ibrutinib. In addition to blocking BCR-associated 

anti-apoptosis pathways, ibrutinib interferes with BCR- and chemokine-mediated 

homing and retention of CLL cells in the protective lymph node and bone marrow 

microenvironments64-66. In a phase I/II study of ibrutinib in 85 heavily pre-treated 

patients with relapsed or refractory CLL, the ORR was 71%, with a PFS of 75% and an 

OS of 83% at 26 months. Importantly, these responses were independent of the 

presence of del17p67. Ibrutinib monotherapy is also very well tolerated and effective in 



Fabienne McClanahan                                                                                                 Background 

Page 31 of 258 

 

treatment-naive elderly CLL patients, producing an ORR of 71% in this population68. To 

validate these early encouraging results, a randomized phase III study of 391 

relapsed/refractory CLL patients demonstrated that ibrutinib significantly improved 

ORR (42.6% vs. 4.1%, P<0.001) as well as PFS and OS compared to ofatumumab 

monotherapy, and was able to overcome the adverse effect of del17p69. 

Idelalisib (formerly known as GS-1101 and CAL-101) is an inhibitor of the PI3K 

regulatory subunit p110δ that is involved in CLL cell survival, clonal expansion and 

retention in lymphoid tissues70, 71. In a phase I study of 54 heavily pre-treated patients 

with relapsed/refractory CLL, including patients with del17p, 81% achieved nodal 

responses with an ORR of 72% and a very acceptable safety profile72. A phase III trial 

was then initiated on 220 patients with relapsed CLL that compared idelalisib in 

combination with rituximab to rituximab plus placebo73. Due to overwhelming 

improvement in efficacy in the idelalisib arm, the study was interrupted after the first 

interim analysis. The ORR was 81% and 13% for the idelalisib combination and the 

rituximab monotherapy, respectively; at 12 months, OS was 92% versus 80%, and PFS 

93% versus 46%, respectively.  

The BCL-2 family of proteins controls apoptosis by modulating mitochondrial stability. A 

delicate balance of anti-apoptotic (e.g. BCL-2, BCL-XL, MCL-1) and pro-apoptotic (e.g. 

BAD, BAX, NOXA) family members is essential to normal immune system function. In 

many tumour types including CLL, this balance is disrupted to aberrantly promote cell 

survival. BCL-2 antagonists such as navitoclax (previously ABT-263) and GDC-0199 

(previously ABT-199) have been developed to restore apoptosis by interfering with 

BCL-2 protein-protein interactions, thus blocking its mitochondria-stabilizing activity. In 

a phase I study of navitoclax in 29 patients with relapsed/refractory CLL, lymphocytosis 

was reduced by more than 50% in 19 of 21 patients with baseline lymphocytosis, and 

partial response (PR) or disease stabilization was achieved in almost half of the 

patients, including those with del17p74. The newer agent GDC-0199 is even more 

promising, as it is more specific for BCL-2 and lacks the platelet-depleting activity of 

navitoclax. 

Lenalidomide is an especially unusual drug in CLL due to its ability to modulate 

immune responses75. A derivative of thalidomide, lenalidomide was recently found to 

interact with cereblon, a component of a multiprotein E3 ubiquitin ligase complex. This 

interaction alters the proteasomal degradation of certain proteins, including the 

transcription factors IKZF-1 and 376. However, lenalidomide has very little direct 

cytotoxic activity against CLL cells, and appears to work primarily by enhancing anti-

tumour immunity in effector cells, suggesting pleiotropic effects on immune cells77-81. 
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Several clinical trials have demonstrated that lenalidomide, both as a single agent and 

in combination with rituximab or corticosteroids, has activity in untreated and 

relapsed/refractory CLL, including in patients with del17p82-90. However, lenalidomide 

occasionally produces serious toxicities including immune-mediated tumour flare 

reactions, impeding its clinical development78, 91. 

Combinations of all of these agents are currently being investigated in randomized and 

non-randomized clinical trials with immunochemotherapy and with other novel agents. 

While early results are encouraging, especially in the combination setting, it is yet to be 

seen if these will translate into long-lasting remissions and disease control. Further 

emphasizing the inadequacy of monotherapy even with effective targeted agents, 

recent reports show that a subset of patients develop resistance to ibrutinib therapy 

due to mutations within BCR pathway components, and similar resistance mechanisms 

to other substances are likely to arise as well92.  

The only curative treatment option in CLL to date is allogeneic haematopoietic stem 

cell transplantation (HSCT). HSCT takes advantage of the graft-versus-leukaemia 

(GvL) effect mediated by differentiated transplanted immune effector cells, which are 

able to mount an anti-tumour immune response and induce long-lasting clinical 

remission93. Additional observations supporting GvL activity in CLL include decreased 

relapse rates in patients who develop graft versus host disease (GvHD)94, 95, and 

increased relapse rates in recipients of T-cell depleted allografts96. However, HSCT is 

only applicable to a minority of CLL patients, as patients are typically of advanced age 

at presentation. In addition, it is associated with significant treatment related mortality 

and morbidity, largely due to chronic graft versus host disease (cGvHD)24, 97-99. 

Internationally accepted guidelines suggest that HSCT is indicated in patients who are 

fit enough, have a suitable matched donor, have 17p deletion or TP53 mutations, or 

relapsed quickly after chemo-immunotherapy100. As described above, several new 

agents are in clinical trials or have recently been approved for CLL that demonstrate 

impressive and durable responses in high-risk patients who might be candidates for 

transplant. Thus, HSCT must always be considered in view of other, potentially less 

toxic therapies that could be offered. The choice of HSCT versus a novel agent is one 

that must be gauged on a patient-by-patient basis, and this will change as data mature 

on the use of these novel agents in CLL101. 
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1.1.4 Immune dysfunctions in CLL 

As introduced in Chapter 1.1.1, immune dysfunction is a major hallmark of CLL. This 

can be related both to the disease and to the treatments administered. Clinical 

manifestations include severe and recurrent infections, hypogammaglobulinaemia, 

autoimmune anaemia and thrombocytopenia, and poor responses to vaccination102. 

Infectious complications pose an enormous challenge in the management of CLL 

patients, and retrospective analyses indicate they are the main cause of increased 

morbidity and mortality, accounting for up to 50% of CLL-related deaths103-105. Disease-

related immune suppression is significantly aggravated by treatment with steroids and 

immunochemotherapy; in fact, a main risk factor for infectious complications in CLL 

patients is the number of previous chemotherapeutic regimens106, 107.  

Several quantitative and qualitative immune defects have been described in CLL to 

date, which include both humoral and cellular immunity. Early data implied that an 

impaired complement system might be involved in the pathophysiology of CLL and its 

associated immune defects108. Complement plays a crucial role in the control of some 

bacterial infections, as opsonisation with complement is necessary for clearance by 

neutrophils. Although CLL patients appear to have normal concentrations of 

complement factors, a defect in C3b binding to certain bacteria has been reported108. In 

another study, reduced activity of the classical complement pathway predicted 

shortened survival109. 

Cellular immune defects are observed in nearly all immune subsets. Among B cells, the 

most clinically apparent defect is hypogammaglobulinaemia, the severity of which 

tends to increase with the duration and stage of disease110-112. It has been proposed 

that hypogammaglobulinaemia might be the result of IL-4 mediated abnormal 

CD30/CD30L interactions, leading to impaired isotype switching and increased 

sensitivity of normal B cells to FasL-mediated cell death113. Early studies indicate that 

clonal CLL cells have a limited ability to present antigen to T cells114, 115, largely due to 

an inadequate costimulatory capacity116, 117, leading to the failure of T-cell responses. A 

wide range of immune defects have been described in the T-cell compartment itself. 

Several studies demonstrated that despite reduced relative numbers of CD3+, CD4+ 

and CD8+ T cells because of the relative expansion of CLL cells in lymphocytes, 

absolute T-cell numbers are actually increased in CLL patients, and this increase 

correlates with disease stage118-125. This increase in CD3+ T cells was found to be 

primarily due to a relative expansion of CD3+CD8+ T cells over CD3+CD4+ T cells, 

leading to a reduction of the typical CD4+/CD8+ ratio. It is hypothesized that this might 

be attributed to the higher sensitivity of CD4+ T-cell subtypes to CLL-induced Fas-
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mediated cell death126. Another potential explanation for the “loss” of CD4+ T cells in 

the blood is migration into secondary lymphoid organs towards CLL-secreted 

cytokines. An early study by Pizzolo et al. described that CD4+ T cells are the 

predominant subtype in the bone marrow of CLL patients127. This accumulation might 

be chemokine-mediated, as activated CD40L+CD4+ T cells in bone marrow and lymph 

nodes express CCR4, the receptor for the CLL cell-released chemokine CCL22, and 

are predominantly found in proliferation centres of secondary lymphoid organs (so-

called pseudofollicles), a hallmark histopathology finding in CLL describing the 

microanatomical tissue sites where CLL proliferation occurs128, 129. Chemo-attracted 

CD40L+CD4+ T cells are therefore likely to provide pro-survival and costimulatory 

signals to CLL cells, leading to the progressive accumulation of malignant cells. 

Another study linked CD38 expression by CLL cells to interactions with CD4+ T cells 

within pseudofollicles and found that CD38 expression was higher in tissues that 

contain pseudofollicles and was subject to dynamic changes in response to contact 

with activated CD4+ T cells130. Peripheral blood CD4+ cell subsets were later described 

to be skewed towards central memory (CM) and effector memory (EM) cells, which 

was more pronounced in patients with unmutated IgVH compared to mutated IgVH 

status and correlated with shorter treatment-free survival, but not CD38 expression or 

cytogenetic risk groups131. Interestingly, CD4+ memory cells were superior to CD4+ 

naive cells in protecting CLL cells from apoptosis, probably via IL-4 secretion, 

indicating that even outside of pseudofollicles, CLL survival is promoted by CD4+ T 

cells.  

Among CD8+ T cells, subsets were also found to be skewed towards CCR7- effector 

cells compared to healthy controls132-135. Recently, multidimensional scaling (principal 

coordinates analysis) was applied to form a T-cell score integrating 24 circulating T-cell 

subsets to describe the evolution of T-cell phenotypes from MBL to advanced stage 

CLL136. Distinct T-cell scores were found for different stages of CLL development, even 

at the MBL stage, and changes were apparent during disease progression and after 

treatment. This important finding highlights the dynamic alterations of T-cell 

phenotypes as a response to the presence of disease. Consequently, these T-cell 

scores were also of prognostic value; patients with higher scores had significantly 

shorter time to treatment compared to those with low T-cell scores, and scores also 

correlated with established prognostic markers such as IgVH status and cytogenetic 

aberrations. Changes in the score were mainly driven by specific T-cell subsets such 

as CD4+CD25hi regulatory T-cells (TRegs), CD3+CD56+ NKT cells and γδ T cells, 

although terminally differentiated TEMRA CD8+ subsets at the expense of effector-
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memory subsets were confirmed to contribute to high T-cell scores in patients with 

advanced disease.  

In addition to CD4+ and CD8+ subset characteristics, a number of alterations in the 

surface expression of T-cell activation markers have been reported. These include 

increased expression of CD57, CD69, HLA-DR, killer immunoglobulin-like receptors 

(KIRs) and CD94, and decreased expression of CD62L and CD28137-139. CD57+ T cells 

especially appear to represent clonal or oligoclonal populations, probably as a result of 

chronic activation by CLL-associated antigens140-142. Another major factor influencing 

lymphoid subsets in healthy individuals is CMV infection143. Indeed, expanded 

populations of CMV-specific CD4+ and CD8+ T cells have been reported in CMV+ CLL 

patients144-146. Work from our group demonstrated that CD8+ T cells from CMV+ CLL 

patients appeared shifted towards a TEMRA phenotype, while CMV- patients 

predominantly exhibit an EM phenotype (as described above)133. In line with previous 

observations, a similar shift was also observed in CMV+ healthy controls, indicating 

that altered CD8+ subset composition was unrelated to CMV serostatus. Chronic T-cell 

activation has been extensively studied in patients with viral infections, where chronic 

antigenic stimulation leads to failed T-cell immune responses and the ongoing 

replication of virus-specific effector T cells. This is associated with a number of 

progressive phenotypic and functional T-cell changes, such as a hierarchical loss of 

effector CD8+ T-cell function and the expression of inhibitory surface receptors such as 

PD-1 and CTLA-4, which has been termed T-cell exhaustion147. Our group 

demonstrated that T cells from CLL patients actually carry features of T-cell 

exhaustion, such as an increased surface expression of CD244, CD160, and PD-1, 

especially in the expanded population of effector T cells133. In addition, CD8+ T cells 

exhibited proliferative and cytotoxic functional defects, but had an increased production 

of IFN-γ, TNF-α and TBET, and normal IL-2 production. Similar to T-cell subsets, 

impaired T-cell function was unrelated to CMV serostatus. This was also explored from 

a slightly different angle by Kater’s group, who found that although global T-cell defects 

indeed occur in CLL patients, CMV-specific antiviral T-cell responses appear to be 

uncompromised148. 

Overall, these findings highlight the range of functional T-cell defects and imply a high 

degree of heterogeneity of the T-cell population in CLL. In addition, they expand the 

previous notion of cytokine production by T cells in CLL, which was based on a 

dichotomous Th-1 versus Th-2 cytokine skewing. Impaired or aberrant classical Th1 

and Th2 cytokine production, i.e. IFN-γ and IL-2 (Th-1 response), and IL-4, IL-5 and IL-

10 (Th-2 response) and their correlation with clinical course and outcome have been 
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investigated in several clinical and translational studies149-151. Some studies suggested 

that T cells in CLL were skewed towards Th-2 responses, with an increase in IL-4 and 

IL-6 producing T-cell subsets152-155. Both IL-4 and IL-6 have been demonstrated to 

induce CLL cell proliferation and to protect CLL cells from apoptosis in vitro, probably 

via an increase of BCL-2 expression156 as well as enhanced STAT6 levels and 

phosphorylation157. In addition, IL-6 serum levels, along with IL-10, are increased in 

CLL patients and correlate with OS149. Similar to IL-4 and IL-6, IL-10 has anti-apoptotic 

properties in vitro158. In contrast, significant evidence demonstrates that IFN-γ, TNF-α, 

and IL-2 are upregulated in CLL T cells and correlate with disease stage159-164. These 

cytokines have also been demonstrated to induce CLL cell proliferation and to protect 

CLL cells from apoptosis in vitro165, 166. The biological situation is likely to be much 

more complex, and cytokines certainly exert their functions in a dynamic network rather 

than against or from single cells. To account for this complexity, groups of cytokines 

and chemokines have been analysed within the context of networks167. Three clusters 

of highly correlated but differentially expressed cytokines were identified. These 

included cytokines that had previously been implied in CLL, but also new molecules 

relevant to CLL biology such as CCL17, CXCL11, IL-5 and IL-17. However, these were 

evaluated in serum, and not attributed to specific T-cell subsets, therefore also 

accounting for cytokines/chemokines released by CLL and/or other cells. Considering 

the increasing evidence of the complexity of networks of cytokines and chemokines 

between CLL cells and the microenvironment168, determining cytokine secretion by 

specific cell subsets and under in vitro stimulation conditions might therefore no longer 

be sufficient. Indeed, CLL cells were recently described to bear functional and 

phenotypic resemblance to IL-10-producing regulatory B10 cells169. Another study 

found IL-10 secretion by B cells to be linked to surface CD5 expression, controlled by 

transcription factors STAT3 and NFAT2, suggesting a CD5-triggered autocrine 

feedback mechanism to maintain protective cytokine production170.  

A major effort of our group has been to investigate the underlying molecular 

mechanisms of T-cell dysfunction in CLL patients171. We demonstrated that both CD4+ 

and CD8+ T cells from patients with CLL show multiple differentially expressed genes 

when compared to these cells from age-matched healthy donors, indicating that global 

T-cell defects occur on a molecular level. Deregulated genes were enriched in 

pathways of T-cell proliferation, differentiation, vesicle trafficking, and actin 

cytoskeleton formation and included cdc42, PIK4CB, RAB35 and ARPC1B, all of which 

are key regulators of the formation and stabilisation of the immune synapse. Most 

importantly, very similar alterations in gene expression could be induced in normal 
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allogeneic T cells after direct contact with CLL cells in co-culture, indicating that the 

presence of the malignant CLL cell drives the observed T-cell changes. The global 

nature of molecular T-cell defects was confirmed by Di Ianni et al., who demonstrated 

that peripheral blood T cells from CLL patients showed deregulated genes involved 

mainly in cell differentiation, proliferation, survival, apoptosis, cytoskeleton formation, 

vesicle trafficking and T-cell activation172. A recently published study demonstrated by 

gene expression profiling and subsequent gene enrichment analysis that differentially 

expressed genes in CD3+ T cells from CLL patients were enriched in the signature of 

publicly available combined CD8+ EM/CM T cells135.   

Subsequently, our group demonstrated the inappropriate functional response of T cells 

to antigen presenting cells (APCs) due to their inability to effectively regulate actin 

remodelling and to recruit key cytoskeletal signalling molecules such as Lck, Cdc42, 

WASp, filamin-A and dynamin-2, using immune synapse formation assays and 

confocal microscopy77. Consistent with our gene expression studies, these defects 

could be induced in normal allogeneic T cells by co-culturing them in direct cell-cell 

contact with CLL cells. More recently, impaired actin remodelling was found to be 

mediated by activation of the Rho GTPases RhoA, CdC42, and Rac179, which also led 

to impaired LFA-1 mediated T-cell adhesion and migration81.  

Several groups have highlighted the importance of other T-cell subsets as components 

of the CLL microenvironment, such as CD4+CXCR5+ circulating follicular helper T cells 

(Tfh) and IL-17 producing Th17 cells. Tfh cells of a Tfh-th2 and a Tfh-th17 phenotype 

were significantly increased in the peripheral blood of CLL patients compared to 

healthy controls, especially in patients with advanced stage disease173. Moreover, 

higher Th17 and IL-17A values were associated with less advanced clinical stage of 

CLL, and also inversely correlated with numbers of TRegs174, 175. An increase in TRegs 

is implicated in advanced stage disease and correlates with shorter time to 

treatment136, 176, 177. This expansion can be explained by a combination of increased 

formation, facilitated by CD27-CD70 interactions in lymph node proliferation centres, 

and decreased sensitivity to drug-induced apoptosis because of a shifted Noxa:BCL-2 

balance178. In addition, both CD4+ and CD8+ T cells in CLL aberrantly express surface 

and cytoplasmic CTLA4 (CD152)179, which is an essential marker to define TRegs and 

plays an important functional role in limiting T-cell immune responses180, 181.  

Another immune subset with functional and numerical alterations in CLL, especially in 

advanced disease, is natural killer (NK) cells. In earlier work, NK cells were reported to 

have a reduced ability to lyse leukaemia cell lines because of a lack of cytoplasmic 

granules182, 183. This could be restored by IL-2, which also resulted in increased 
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granularity of the large granular lymphocyte subset184. In contrast, a more recent 

publication indicated that peripheral NK cells from CLL patients maintain partial 

functionality and are able to degranulate and exert ADCC, although some variability 

was observed185. Proposed mechanisms by which CLL cells impair NK cell function 

include inhibition via soluble factors186, 187 and cell surface receptors HLA-G188 or 4-1BB 

ligand189. In patients with early stage CLL and in those with mutated IgVH, higher NK-

cell numbers are observed, with a higher NK:CLL cell ratio being predictive of longer 

time to treatment190. Moreover, numbers of CD3+CD16+CD56+ NKT cells appear to be 

important in CLL, as a reduction in numbers was associated with disease progression 

and a higher risk of death191.  

Aberrant numbers and functional defects are also observed in plasmacytoid dendritic 

cells, which were recently found to have markedly reduced IFN-α production via 

decreased expression of FMS-like tyrosine kinase 3 receptor (Flt3) and Toll-like 

receptor 9 (TLR9), as well as in granulocytes, which exhibited impaired phagocytic and 

bactericidal function, migration and chemotaxis through lysozyme and 

myeloperoxidase deficiencies and altered secretion of TNF-superfamily proteins192-195.  

Several studies have focused on monocytes and macrophages in CLL. A recently 

published study found an increased absolute number of monocytes in CLL patients 

compared to healthy controls, which were skewed towards non-classical Tie-2-

expressing monocytes196. Gene expression analysis performed in this study revealed 

an altered composition and deregulation of genes involved in phagocytosis and 

inflammation, such as RAP1GAP, tubulins and CDC42EP3, which resulted functionally 

in inhibited proliferation of T cells in contact with CLL monocytes. Healthy donor 

monocytes increased migration and up-regulated CD16, RAP1GAP, IL-10, IL-8 and 

MMP9 while down-regulating PTGR2 in response to leukemic cells or conditioned 

media. The clinical relevance of peripheral absolute monocyte count (AMC) has been 

demonstrated by the finding that patients with low AMC had a shorter time to treatment 

and evidence of immune dysregulation leading to increased mortality197. In addition, 

patients with high AMC also had a shorter time to treatment compared to intermediate 

AMC patients. In another study on 29 patients with previously untreated early to 

intermediate stage CLL prior to therapy with alemtuzumab, rituximab and G-CSF, 

monocytes were found to have decreased expression of HLA-DR and CD86, 

suggesting decreased antigen-presenting capacity and reduced immune stimulatory 

capacity198. Higher HLA-DRlo/neg monocyte levels were associated with shorter time to 

disease progression, while the number of total monocytes did not influence time to 

progression. This was further extended in a recently published study by Jitschin et 
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al.199. The authors found significantly increased levels of circulating CD14+HLA-DRlo 

cells which express myeloid markers such as CD11c, CD13, CD33, adhesion 

molecules CD11b and CD62L, and receptors associated with promotion and activation 

of myeloid cells such as TNF-receptor type 2/CD120b, and showed phenotypic and 

functional features linking them the myeloid-derived suppressor cells (MDSCs), a 

heterogeneous population that shares certain characteristics including an aberrant 

myeloid phenotype and the ability to suppress T cells.  

Proposed mechanisms by which CLL cells polarize monocytes/macrophages and affect 

their function include the production and release of soluble factors. One such example 

is macrophage migration inhibitory factor (MIF), a proinflammatory and 

immunoregulatory chemokine; patients with advanced stage CLL show a trend toward 

higher MIF levels compared with patients with early-stage CLL200. A second example is 

extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a rate-limiting enzyme 

in NAD biosynthesis with cytokine/adipokine-like properties201. Furthermore, MDSCs 

were found to exert immune regulatory functions on T cells via indoleamine 2,3-

dioxygenase (IDO)199. Early in vitro evidence for a tumour-supporting role of monocytes 

was based on the observation that peripheral blood monocytes from CLL patients could 

be differentiated ex vivo into nurse-like cells (NLC), which protect CLL cells from 

spontaneous or drug-induced apoptosis through multiple interactions regulated by 

soluble or cell-surface molecules such as CXCL12, CXCL13, BAFF, APRIL, CD31, 

plexin-B1 and activation of the BCR signalling cascade168, 202, 203. Gene expression 

analyses suggested that NLC bear resemblance to tumour-associated macrophages 

(TAMs)204, 205, which are alternatively activated M2 macrophages with IL-10highIL-12low 

cytokine secretion, poor antigen-presenting capacity, immunosuppressive effects and 

pro-angiogenic properties. In vivo, a population of CD68+CD14+ cells resembling 

TAMs/NLC can be found in the spleen and lymphoid tissues of CLL patients206, 207.  

 

1.2 Murine models of CLL 

1.2.1 Eμ-TCL1 mouse model 

1.2.1.1 Generation and disease characteristics 

T-cell leukaemia/lymphoma protein (TCL1) expression in humans is restricted to 

subsets of immature cells within the T and B lymphoid lineage (i.e. pre-B cells, 

immature IgM expressing B cells, early triple negative T-cell progenitors), while it 

functions as an oncogene in leukaemic cells carrying a t(14;14)(q11;q32) translocation 

or an inv(14)(q11;q32) inversion208. TCL1 is located on chromosome 14q32.1 and 
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consists of the TCL1A (HGNC ID 11648)209 and the TCL1B (HGNC ID 11649) genes210, 

211. The Eμ-TCL1 (hereafter abbreviated to TCL1) mouse model, one of the most 

established preclinical models for CLL using immune competent mice, was derived by 

placing the entire human TCL1 coding region under the control of a mouse IgVH 

promoter and a IgH-μ enhancer212, which results in specific expression of TCL1 in 

immature and mature B cells213. Originally, two TCL1+/wt founders on the B6C3 

background were obtained and further bred to study the expression of TCL1 and the 

course and characteristics of disease in transgenic TCL1+/wt offspring compared to non-

transgenic litter-mates. At 6 month of age, transgenic mice exhibited an expanded 

B220low+/IgM+ population in the peripheral blood. This population co-expressed CD5 

and Mac-1/CD11b, was also present in bone marrow, peritoneal cavity and spleen, and 

expanded with age (see Table 2). Non-transgenic controls showed a normal 

distribution of B-cell populations, and peripheral T-cell subsets were comparable 

between transgenic mice and controls. After 13 to 18 months, 100% of transgenic mice 

became visibly ill with hepatosplenomegaly, lymphadenopathy and high white blood 

cell (WBC) counts, all of which are hallmarks of human CLL. At the endpoint, spleen 

weights ranged from 1.5 to 2.3 g (normal spleen weight .07 ± .01 g), and the WBC 

count was 1.8x108 per µL of blood (normal value ~2.8x106).  

 

 % IgM+CD5+ B cells 

age bone marrow peritoneal cavity spleen 

2 months 1 45 4 

4 months 2 46 9 

8 months 43 74 69 

control: WT 4 months >1 20 1 

Table 2: Development of expanded IgM+CD5+ B-cell population over time and in different 
organs in TCL1 mice. Adapted from Bichi et al.212; Abbreviations: WT = wild type. 

 

Despite a 100% penetrance, the long latency of TCL1-driven leukaemia is an obvious 

disadvantage of this model. Several groups therefore demonstrated that this obstacle 

can be overcome by adoptive transfer of murine CLL cells from leukaemic TCL1 mice 

into healthy recipients, which leads to faster and less variable disease development214-

216. A similar approach uses a TCL1 leukaemia cell line established from the original 

TCL1 transgenic colony: 2x107 cells from a leukaemic TCL1 mouse with oligoclonal 

autoantigen phosphatidylcholine (PtC) reactive cells were injected into two severe 

combined immunodeficiency (SCID) mice, and serially transferred into other SCID mice 

for a total of 3 transfers217. This led to the outgrowth of cells expressing an autoantigen-
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specific B-cell receptor, superior autoantigen binding, and a more aggressive course of 

disease.  

 

1.2.1.2 Suitability to mirror the biology of human CLL 

Since its creation in 2002, the TCL1 model has been validated by several groups as an 

adequate tool to depict the biology of aggressive human CLL B cells. One of the 

earliest studies demonstrated that it replicates aspects of the molecular B-cell receptor 

V-region rearrangement characteristics of aggressive, unmutated human CLL218. This 

included minimal levels of IgVL and IgVH somatic hypermutation, biased VHDJH and 

VLJL rearrangements and CDR3 characteristics, as well as stereotypical BCR usage 

between sets of leukaemic clones. In addition, immunoglobulins from leukaemic mice 

were found to resemble auto-antibodies and antibodies reactive with microbial 

antigens, suggesting this might be driven by (auto)-antigens. Another study using 

extensive cross-species epigenetic analyses confirmed that epigenetic alterations seen 

in human CLL, such as the aberrant methylation of promoter sequences containing the 

binding sites for the transcription factor FOXD3, were recapitulated in CLL cells from 

TCL1 mice at various stages of disease progression219. More recently, CLL cells from 

TCL1 mice were found to mirror phenotypic and functional aspects of human CLL cells 

competent to produce IL-10, suggesting a similarity of human and murine CLL cells to 

regulatory B10 cells169.  

Work from our group also validated the appropriateness of the TCL1 model to mirror 

CLL-induced T-cell defects in humans216. With the development of CLL, TCL1 

transgenic mice exhibited various functional T-cell defects such as decreased in vivo 

antigen-specific activation, suppressed proliferation, and impaired induction of idiotype-

specific CD8+ cytotoxic T cells. Gene-expression profiling of CD4+ and CD8+ T cells 

from TCL1 mice with CLL, compared to young TCL1 mice without CLL and wild-type 

mice, revealed several differentially expressed genes in both CD4+ and CD8+ cells. 

With increasing tumour burden, the changes in gene-expression profiles in CD4+ and 

CD8+ cells became more evident and correlated well with findings in human CLL cells. 

A causal relationship between CLL and T-cell dysfunction was demonstrated by 

injecting CLL cells from leukaemic TCL1 mice into young transgenic mice without the 

disease. After just 7 days, gene-expression profile changes of CD4+ and CD8+ cells in 

mice receiving the leukaemic cell transfer were comparable to those seen in TCL1 

mice that developed CLL with age. Comparative analysis of gene-expression profiles of 

humans and mice using RESOURCERER, a database for annotating and linking 
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microarray resources within and across species, detected 50 overlapping differentially 

expressed genes, which were mainly involved in pathways of cell proliferation and 

activation, vesicle formation and protein trafficking, and actin cytoskeleton pathways. 

As in human CLL, these defects resulted in an impaired immune synapse formation. 

Another study examined CD4+ and CD8+ T-cell changes and subset compositions in 

lymph nodes and peripheral blood of TCL1 mice220. This work demonstrated that, as in 

human CLL, absolute T-cell numbers were increased in mice with manifest leukaemia 

compared to age-matched wild-type controls, that cells were shifted from naïve to 

antigen-experienced T cells, and that these cells were of a clonal character. The shift 

from naïve to antigen-experienced CD8+ T cells was recently confirmed by another 

study in the peritoneal cavity of 7 month old TCL1 mice with early stage leukaemia135.  

Finally, adoptive transfer studies indicated that the TCL1 model might also be suitable 

to study the tumour-promoting role of the microenvironment in vivo. Protein kinase C 

(PKC)-βII deficient mice were found to be insusceptible to adoptive transfer of CLL 

cells from leukaemic TCL1 mice, indicating that the expression of PKC-βII and the 

subsequent activation of NF-κB in bone marrow stromal cells are prerequisites to 

support the survival of malignant B cells221.  

In summary, a broad body of evidence supports the use of the TCL1 model and 

adoptive transfer of TCL1 leukaemia cells to wild-type mice to investigate the biology of 

CLL. However, immunological studies in mice generally must be interpreted within the 

context of age and genetic background strain, as both ageing222, 223 and genetics224, 225 

have been demonstrated to play a major role in shaping the immune response.  

 

1.2.1.3 Suitability as a preclinical tool to test in vivo efficacy of substances 

Several studies have demonstrated that the TCL1 model is very suitable to mirror 

clinical responses to therapy observed in human CLL patients, thus validating it as a 

preclinical tool to evaluate novel drugs and treatment combinations. An initial study 

confirmed that transformed murine lymphocytes express relevant therapeutic targets 

such as BCL-2, MCL-1, AKT, PDK1, and DNMT1, but have a wild-type p53 status215. In 

this work, treatment with low dose fludarabine led to a modest but significant survival 

advantage and reduced lymphocytosis, but mice became eventually completely 

resistant to fludarabine treatment. More recently, a direct comparison between 

treatment with fludarabine and actinomycin D, a p53-independent inducer of apoptosis 

targeting MCL-1 and BCL-2, indicated that actinomycin D was more effective than 

fludarabine in reducing tumour load and prolonging survival226. Other studies have 
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demonstrated responses of leukaemic mice to a variety of other substances such as 

agents targeting components of the BCR signalling pathway64, 65, 214, 227, 228, as well as 

agents targeting novel pathways or cellular mechanisms229-231. In addition, TCL1 mice 

are a suitable tool to investigate anti-tumour strategies targeted at the repair of the 

immune system. Our group has previously demonstrated that T-cell immune synapse 

deficiencies could be repaired by ex vivo treatment of murine cells with lenalidomide. In 

another study, anti-CD40 antibody and CpG oligonucleotide treatment increased anti-

tumour macrophage responses against T-cell depleted TCL1 donor cells and resulted 

in a significant retardation of tumour growth and prolonged survival of mice232.  

 

1.2.2 Alternative genetically engineered murine models of CLL 

Several alternative genetically engineered mouse models of CLL are described in the 

literature. These include models mimicking genetic lesions in CLL, as well as models 

with over-expression or targeted deletion of oncogenes or microRNAs. The most 

frequent genetic lesion in CLL associated with an indolent course of disease is 

del13q1413. Therefore, transgenic mouse models with targeted deletion of the minimal 

deleted region (MDR) including DLEU1, DLEU2 and the miR-15a/16-1 cluster233 and 

the common deleted region (CDR) of the corresponding murine 14qC3 locus have 

been created234. These mice developed a spectrum of lymphoproliferative disorders, 

including MBL and CD5- non-Hodgkin lymphoma (NHL), with the phenotype and 

severity of the developing disease being dependent on the size of the deleted region. 

While both MDR and CDR deleted mice first exhibited a leukaemic population at the 

age of 6 to 18 months and succumbed to disease after 12 to 18 months, similar to 

TCL1 mice, the percentage of CLL-like disease in relation to MBL or NHL was higher in 

CDR deleted mice.  

Additional genetically engineered models are based on the targeted deletion of TNF-

receptor family components, and include BCL-2/TRAF2DN235, APRIL236 and Myc/BAFF 

transgenic mice237. To provide insights into the in vivo biology of microRNAs, a plethora 

of mouse models based on the over-expression or targeted deletion of microRNAs 

have been described. This was pioneered by studies in the New Zealand Black strain, 

a model of sporadic late-onset CLL-like disease linked to a genetic abnormality in the 

microRNA miR-15a/16-1 locus238-240. The role of miR-15a/16-1 in CLL was further 

elucidated in the context of studies targeting murine 14qC3 described above233. 

Compared to MDR deleted mice, miR-15a/16-1 deleted mice had a longer time to CLL 

development and longer disease latency, with mice developing a similar spectrum of 
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lymphoproliferative disorders. In another model, miR-29a over-expression led to a 

markedly expanded CD5+ population detectable at 2 month of age in 85% of 

transgenic mice, but only 20% of mice developed frank leukaemia and died of disease 

at about 2 years of age241. Other microRNA-based models using miR-155242, the miR-

17-19 cluster243, 244, or miR-125b245 largely fail to mirror the course of disease or 

immunophenotype of CLL. A recently described murine model of CLL is based on the 

over-expression of ROR1, an oncoembryonic antigen found on CLL cells, but not on 

normal adult tissues246. However, only 5% of transgenic mice developed CLL. In 

contrast, CLL penetrance was significantly improved and reached 100% in models of 

IRF4-/-Vh11 deletion247 and simian virus 40 (SV40) T antigen transgenic mice248. Key 

characteristics of these models are summarized in Table 3.  

Most of these genetically engineered murine models of CLL are inferior to the TCL1 

model with regards to disease penetrance. This can likely be attributed to the strong 

oncogenic function of TCL1 on multiple cellular targets such as the serine/threonine 

kinase AKT pathway249, the NF-κB pathway250, 251, and the DNA methyltransferases 

DNMT3A and DNMT3B252. The high disease penetrance in IRF4-/-Vh11247 and Eµ-

SV40 T248 is most likely related to the presence of exogenous factors accelerating B-

cell transformation, but this leads to skewing of the IgVH repertoire, which is not 

representative of human CLL.  

 

model based on: 
time to 

leukaemia 
(months) 

age of death 
(months) 

% disease 
penetrance 

comments 

genetic lesions 

MDR 14qC3233 6-18 12-18 ~22 mice also developed 
MBL and NHL CDR 14qC3234 6-18 12-18 ~50 

TNFR family signalling 

Bcl-2xTRAF2 DN mice235 9-15 ~14 80  

APRIL Tg mice236 >9 12-15 40  

Myc/Baff Tg mice237 3 10 ~80 male gender bias 

microRNA 

miR15a/16-233 12-18 15-18 ~20 see above 

IgH-Eµ-miR-29241 12-24 24-26 20  

other 

Eµ-ROR1246 >15 >15 5  

IRF4-/-Vh11247 5-10 >9 100  

Eµ-SV40 T248 <5 <10 100  

Table 3: Summary of disease characteristics in alternative genetically engineered murine 
models of CLL.  
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1.2.3 TCL1 model-based crosses with other murine models 

To study the mechanisms of putative targets involved in CLL pathobiology and 

progression, the TCL1 model has been crossed with a variety of other genetically 

modified models. For examples, crosses between TCL1 and XID228, pkcβ-/- or pkcβ+/-

253, dnrag1 transgenic254, TIR8-/-255, IRE-1 XBP1256, TP53-/-257, ID4-/-258 and ROR1246 

mice have highlighted the effects of receptor signalling and tumour suppressors or 

oncogenes on disease onset and progression. Other crosses with transgenic APRIL259, 

BAFF260, MIF-/-200, CD44-/-261, fzd6-/-262, rhoH-/-263 and hs1-/- mice264 have significantly 

contributed to the understanding of microenvironmental interactions and cytoskeleton 

formation and cell trafficking. Figure 2 provides an overview of mouse models crossed 

with TCL1 mice.  

 

 

Figure 2: Summary of genetically engineered mouse models crossed with TCL1 mice to 
investigate effects of putative targets on disease development and progression. Adapted 
from Simonetti et al.265; Abbreviations: tg – transgenic. 
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1.2.4 Xenograft models of CLL 

A variety of xenograft models using primary CLL cells or CLL-like cell lines have been 

described266. In general, xenograft models using primary mature CLLs from peripheral 

blood are hampered by the observations that circulating CLL cells do not engraft well, 

that they are rejected by the host if recipients are immune competent mice, and that 

immune compromised mice such as SCID mice can develop CD5- EBV-driven B-cell 

tumours unrelated to human CLL267, 268. In addition, engraftment of human CLL cells 

appears to be influenced by T cells; early studies demonstrated that intraperitoneal 

(i.p.) injection of CLL cells into lethally irradiated BALB/c or beige/nude/Xid (BNX) mice 

which were radioprotected with bone marrow from NOD/SCID mice led to generally 

enhanced engraftment of CLL in the peritoneal cavity in the absence of T cells269, 270. 

Further studies improved the engraftment of human CLL cells by combinations of i.p. 

and intravenous (i.v.) injections, but confirmed that the expansion of CLL cells was 

influenced by T cells, suggesting a role for T cells in controlling the expansion of 

leukaemic B cells in vivo271, 272. In contrast, another study using completely lymphocyte 

deficient NSG mice (NOD/SCID x IL2rg-/-) observed engraftment and proliferation of 

CLL after co-transfer with autologous T cells and allogeneic antigen presenting cells. 

However, CLL disappeared after approximately 3 months, coincident with the onset of 

lethal T-cell mediated GvHD, indicating a dual functional role of T cells in this 

context273. Another study injected newborn NSG mice with immature CD34+CD38- 

stem cells from bone marrow from CLL patients274. CD34+ cells gave rise to a high 

number of polyclonal B-cell progenitors, but their maturation into B cells was restricted 

to monoclonal or oligoclonal CLL-like cells, which were independent from the original 

CLL clones as evidenced by different IGVH-DJ rearrangements. This indicates that the 

propensity to generate clonal B cells has already been acquired at the stem cell stage 

and is independent of oncogenic events. The NSG xenograft model has also been 

used for the preclinical testing of drug efficacy in vivo275. After i.v. transplantation of 

CLL peripheral blood mononuclear cells into NSG recipients pre-treated with busulfan, 

mice were treated with ibrutinib. This reduced CLL tumour burden by promoting the 

emigration of CLL cells from solid tissues and by blocking CLL cell proliferation.  

Altogether, xenograft models are appropriate tools to identify the genetic basis, 

development and evolution of CLL and to conduct rapid drug testing, while mostly 

falling short of depicting the complex associations and interactions between CLL cells 

and the microenvironment. The NSG xenograft model might be an exception to this, as 

a recently published study indicated that spleens from NSG xenografted mice are 

suitable to mirror the role of human lymph nodes in activating B-cell receptor and NFĸB 
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pathways in CLL cells, which leads to increased CLL cell proliferation and activation275. 

However, the complexity of long-term host immune responses in the context of 

developing disease can only be adequately modelled in immune competent mice. This 

makes the TCL1 model, along with the reasons discussed above (i.e. 100% 

penetrance of the disease and great biological similarity to human CLL) the most 

suitable model system currently available to investigate and explore potential strategies 

targeted at restoring anti-tumour immune responses. 

 

1.3 PD-L1/PD-1 immune checkpoint interactions 

1.3.1 PD-L1/ PD-1 in physiological immune responses 

The primary signal in T cells is generated after presentation of antigen by major 

histocompatibility complex molecules (MHC) and recognition by the T-cell receptor. In 

addition, accessory receptors are required during T-cell priming, activation, expansion, 

effector function and contraction to modulate T-cell signalling pathways and to prevent 

destructive autoimmune responses to self-tissues. Accessory T-cell molecules mostly 

belong to the immunoglobulin superfamily and include CD28 and CTLA-4, which are 

both receptors for CD80 and CD86276. CD28 is constitutively expressed by T cells and 

is essential for T-cell activation. Following co-ligation of CD28, the Src kinases Lck and 

Fyn phosphorylate a tyrosine within an ITAM in the cytoplasmic domain of CD28, 

allowing the latter to bind and to activate PI3K via its Src homology 2 (SH-2) domain. 

CD28 signalling also facilitates GTP/GDP exchange on Ras, resulting in activation of 

the MAP kinase pathway, activation of Akt kinase, and activation of the adapter protein 

Vav and the associated Rac pathway. These signals enhance the transcription of IL-2 

and the stability of IL-2 transcripts, thereby stimulating T-cell proliferation277. In 

contrast, CTLA-4 is only expressed by most T-cell types after activation, and transmits 

a negative signal276. Instead of an ITAM, CTLA-4 possesses an immunoreceptor 

tyrosine inhibitory motif (ITIM) in its cytoplasmic domain. Ligation of CTLA-4 induces 

tyrosine phosphorylation of the ITIM, which, in turn, recruits the tyrosine phosphatase 

SHP-2 that can deactivate the phosphorylated ITAMs of the ζ chains of the T-cell 

receptor complex. CTLA-4-/- mice develop a fatal lymphoproliferative disorder that is 

characterized by massive cell activation and infiltration into tissues, indicating that 

CTLA-4 serves as an essential brake on T-cell activation278. 

An important member of the CD28 family is CD279 (Programmed Death-1, PD-1). PD-

1 was first described in 1992 in apoptosis-induced murine cells279. The human PD-1 

gene was soon after mapped to chromosome 2q37.3 and was demonstrated to share 
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70% homology at the nucleotide level and 60% homology at the amino acid level with 

the murine PD-1 gene, translating into a 288 amino acid type I transmembrane protein 

containing an intracellular tyrosine domain280, 281. After expression of PD-1 mRNA was 

found to be restricted to thymus in adult mice, several studies examined the expression 

of PD-1 protein in lymphoid tissues. In thymus and normal murine lymphoid tissues PD-

1 was expressed at very low levels, while CD4-CD8- cells were enriched for PD-1-

expressing γδ T cells as well as PD-1-negative γδ T cells which upregulated PD-1 after 

stimulation with CD3 antibody. These observations indicate that PD-1 expression is 

restricted during T cell differentiation and can be induced at stages preceding clonal 

selection282. The notion of PD-1 as a marker of activated T cells was confirmed by 

further studies demonstrating increased PD-1 expression on mature T cells after in vivo 

stimulation with CD3 and in vitro stimulation with CD3, PHA and PMA/Ionomycin283. 

Moreover, PD-1 expression could also be induced on B cells by anti-IgM stimulation.  

The functional relevance of PD-1 was subsequently discovered in a number of studies 

using PD-1-/- mice. Initial studies indicated a role of PD-1 in increasing proliferative 

responses of B cells after anti-IgM stimulation in vitro284. In addition, PD-1-/- mice 

showed increased serum levels of IgG2b, IgA and IgG3, while IgM and IgG1 were 

comparable with control mice, indicating a role of PD-1 in B-cell differentiation and 

isotype class switching. The involvement of PD-1 in the maintenance of peripheral self-

tolerance as a negative regulator of immune responses was first suggested by the 

observation that aged C57BL/6 PD-1-/- mice spontaneously developed auto-immune 

diseases such as lupus-like proliferative arthritis and glomerulonephritis, and exhibited 

strong and ongoing T-cell receptor mediated proliferative responses to the stimulation 

with specific antigen-presenting cells285. The same group demonstrated autoimmune 

dilated cardiomyopathy in BALB/c PD-1-/- mice286.   

The PD-1 ligand PD-L1 (CD247, B7-H1) was first discovered as a member of the B7 

family with T-cell stimulatory effects after T-cell receptor engagement in the presence 

of IL-2287. In contrast, Freeman and colleagues found that engagement of PD-1 by PD-

L1 led to a dose-dependent inhibition of T-cell receptor-mediated proliferation and IFN-

γ and IL-10 cytokine secretion, which was not observed in T cells from PD-1-/- mice288. 

Interestingly, the outcome of PD-L1/PD-1 interactions was demonstrated to be 

dependent on the strength of the T-cell receptor and CD28 costimulation signals: under 

conditions of suboptimal T-cell receptor engagement, minimal proliferation was 

observed in the absence of costimulation, while the addition of increasing 

concentrations of soluble anti-CD28 antibody led to an up to 30-fold increase in 

proliferation. Under these conditions, activation of T cells in the presence of PD-L1 
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resulted in an 80% reduction in proliferation, and a maximal level of CD28 

costimulation was required to rescue the inhibition of proliferation mediated by PD-L1 

stimulation. In contrast, under saturating conditions of T-cell receptor activation, PD-

L1–mediated inhibition of T-cell proliferation was only observed in the absence of CD28 

costimulation, indicating that increasing levels of T-cell receptor or CD28 signalling can 

circumvent the inhibitory effects of PD-1 ligation at the activation stage. The same 

group later compared T-cell activation and cytokine production of PD-1-deficient versus 

PD-1/B7-1 (CD80) double-deficient T cells to PD-L1 ligation and of CD28/CTLA-4 

double-deficient versus CD28/CTLA-4/PD-L1 triple-deficient T cells to B7-1 (CD80) 

ligation289. These studies revealed a specific functionally relevant interaction between 

the two B7 family members CD80 and PD-L1, resulting in inhibitory signals, diminished 

expression of cell-surface activation markers, decreased T-cell proliferation and 

reduced cytokine production, therefore adding a new dimension to the 

immunoregulatory interactions within the B7:CD28 family of costimulatory molecules.  

PD-L1 mRNA expression follows very distinct patterns: in contrast to CD80 and CD86, 

PD-L1 mRNA was found to be constitutively expressed by non-lymphoid, parenchymal 

organs such as the heart, placenta, skeletal muscle, and lung, while mRNA expression 

could be induced in APCs, including human peripheral blood CD14+ monocytes, 

dendritic cells, activated B cells and to a certain extent by CD3+ T cells themselves 

after stimulation with IFN-γ287, 288. On a protein level, PD-L1 was detected in a variety of 

haematopoietic cell types, including a minor proportion of splenic T and B cells, the 

majority of pre-B cells and myeloid cells in bone marrow, and subsets of thymocytes290. 

In addition, a significant proportion of immature lineage-marker-negative and c-Kit-

positive bone marrow cells containing stem cells were found to express PD-L1. 

Following two-day mitogenic concanavalin A or LPS stimulation, PD-L1 surface 

expression could be detected in all lymphocyte subsets. Another study confirmed 

constitutive PD-L1 expression on freshly isolated murine splenic T cells, B cells, 

macrophages, and dendritic cells, and upregulation on T cells by anti-CD3 stimulation, 

on macrophages by LPS, IFN-γ, GM-CSF, or IL-4, and on dendritic cells by IFN-γ, GM-

CSF, or IL-4291.  

The second ligand for PD-1 is PD-L2 (CD273, B7-DC). Similar to PD-L1/PD-1, 

engagement of PD-1 by PD-L2 inhibited T-cell receptor mediated proliferation and 

cytokine production of CD4+ T cells292. At low antigen concentrations, PD-L2/PD-1 

interactions counteracted costimulatory CD28 signals, but reduced cytokine production 

only without inhibiting T-cell proliferation at high antigen concentrations. Compared with 

PD-L1, PD-L2 protein expression was found to be more restricted to subsets of 
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macrophages and dendritic cells stimulated with IFN-γ, GM-CSF, or IL-4291, whereas 

another study found PD-L2 expression to be absent in haematopoietic cells290. Early 

murine studies using PD-L1-/- and PD-L2-/-mice confirmed that PD-L1 and PD-L2 have 

largely overlapping functions in inhibiting IL-2 and IFN-γ production during T-cell 

activation, but that PD-L1 expression on parenchymal cells appears to be a more 

important mediator of tissue tolerance293. Other studies using PD-L1-/- mice observed a 

spontaneous accumulation of CD8+ T cells in the liver, leading to accelerated 

hepatocyte damage in experimental autoimmune hepatitis294, and confirmed the role of 

PD-L1 in negatively regulating both CD4+ and CD8+ T cells295. In a murine model of 

asthma, the severity of airway hyperreactivity and airway inflammation was significantly 

greater in PD-L2-/- mice compared with wild-type mice and increased IL-4 production 

by NKT cells, while PD-L1-/- mice showed significantly reduced airway hyperreactivity 

and enhanced production of IFN-γ by NKT cells, reflecting the expression of PD-L2 on 

lung dendritic cells296. In contrast, diminished IFN-γ immune responses suggesting a 

positive costimulatory function of PD-L2 were observed in another line of PD-L2-/- 

mice297.   

Several studies have contributed to elucidating the molecular mechanisms by which 

PD-L1/PD-L2/ PD-1 influence T-cell activation. Karwacz et al. demonstrated that PD-1 

ligation facilitates the down-modulation of the T-cell receptor by increasing expression 

of the E3 ubiquitin ligase Cbl-b, which is essential to downmodulate T-cell receptors as 

part of a normal immune response298. As early intracellular signalling pathways, PD-1 

ligation was found to attenuate T-cell receptor induced CD3ζ chain and ZAP-70 

phosphorylation, leading to impaired IL-2 production and T-cell proliferation via PKCθ 

signalling299. A key element in the mediation of PD-1 inhibition of T-cell receptor 

signalling is the binding and consecutive phosphorylation of SHP-2 to the cytoplasmic 

tail of PD-1, which contains both an ITIM and an immunoreceptor tyrosine-based 

switch motif (ITSM)292: SHP-2 phosphorylation after PD-1 engagement inactivates 

PI3K, which in turns inactivates Akt, a serine/threonine kinase that promotes T-cell 

activation, proliferation, and survival and induces IL-2 expression300. Mutation studies 

have demonstrated that this is mediated by binding of SHP-2 to ITSM301, and while 

either SHP-1or SHP-2 can function as mediators when artificially co-localized to T-cell 

receptor microclusters, only SHP-2 is recruited physiologically302. In addition, there are 

several mechanisms by which PD-1 engagement leads to impaired immune synapse 

formation. Firstly, SHP-2 can also inhibit integrin signalling, which may partially account 

for the destabilization of the immune synapse303. In addition, Src family kinases Csk 

and Lck can be recruited to ITSM and ITIM, which leads to PI3K/ Akt deactivation. As 
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LFA-1 mediated T cell/ B cell conjugation requires signalling through Lck304, Lck 

dephosphorylation after PD-1 ligation interferes with the formation of the immunological 

synapse. Planar bilayer systems demonstrated that physical co-localization of PD-1 to 

T-cell receptor microclusters was sufficient for destabilization of the immune synapse 

and efficient at inhibiting T-cell receptor signalling independent of PD-1 ITSM 

phosphorylation302: Following engagement of both T-cell receptor and PD-1, 98% of 

activated T-cell receptor microclusters contained PD-1, while in the absence of PD-L1 

ligation, PD-1 localized away from microclusters and allowed T-cell activation.  

Mechanisms of PD-1 concentration at the immunological synapse with dendritic cells 

were elucidated by another study305. Similarly to CD28 and CTLA-4, ligand binding led 

to the recruitment of PD-1 to the synapse of CD4+ T cells forming conjugates with 

peptide-pulsed activated splenic dendritic cells. It was suggested that PD-L2 was the 

preferred ligand for PD-1 recruitment to the immunological synapse in this context, but 

it is likely that this finding solely reflects the expression pattern of PD-L1 and PD-L2 on 

this cell type. However, another study describing the kinetics and relative affinities of 

the interactions between PD-L1, PD-L2 and PD-1 found a 2-6-fold higher affinity and 

different association/ dissociation kinetics for interaction of PD-L2 and PD-1 compared 

to interactions of PD-L1 and PD-1306.  

Both PD-L2/PD-1 and PD-L1/PD-1 signals inhibit T-cell proliferation by blocking cell 

cycle progression, as evidenced by an increased number of cells in the G0/G1 phase 

and a corresponding decrease in those in S/G2 phase292. This was more pronounced 

by the engagement of PD-1 by PD-L1 than by PD-L2. As the underlying molecular 

mechanism for PD-1 mediated cell cycle arrest, the suppression of SKP2 transcription 

via PI3K/Akt inhibition and impaired RAS/MEK/ERK signalling was identified307. SKP2 

encodes for a recognition component of the ubiquitin E3-ligase complex Skp, Cullin, F-

box containing complex (SCF), and PD-1 induced down-regulation of Skp2 prevents 

the ubiquitination and degradation of p27 (kip1) during the induction of cell cycle 

allowing cell cycle progression. In addition, PD-1 ligation prevented Smad3 

transcription factor phosphorylation, which increased the abundance of the G1 phase 

cell cycle inhibitor p15 (INK4) and repressed the CDK-activating phosphatase Cdc25A, 

resulting in inhibition of CDK2, CDK4, and CDK6 essential for progression through the 

G1 and S phases of the cell cycle308. Interestingly, exposure of cells to IL-2 restored 

activation of MEK/ERK signalling, but not Akt signalling, and only partially restored 

SKP2 expression307. In addition, p38 and JNK activation remained unaffected, 

indicating that PD-1 signalling selectively targets T-cell receptor signalling pathways 

rather than representing a global abrogation.  
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PD-1 was also described as having an effect on T-cell survival by impacting apoptotic 

genes. This is primarily mediated via PI3K inhibition, which attenuates expression of 

the antiapoptotic gene BCL-xL
309. Another study found lower levels of the pro-apoptotic 

molecule Bim in antigen-primed CD8+ T cells in PD-L1 deficient mice, while the 

engagement of activated CD8+ T cells by a plate-bound PD-L1 fusion protein led to the 

upregulation of Bim and increased cell death310. As the Bim/Bcl-2 balance is critical for 

maintaining naive and memory T-cell homeostasis, PD-1 engagement might negatively 

regulate T-cell memory by enhancing the depletion of effector T cells through the 

upregulation of Bim. A simplified overview of intracellular targets in T cells affected by 

PD-1 ligation is depicted in Figure 3.  

 

 

Figure 3: Effect of PD-1 ligation on intracellular targets in T cells: The role of PD-1 is to 
guarantee T-cell homeostasis by limiting T-cell activation and proliferation. PD-1 co-localizes 
with the T-cell receptor (TCR) to microclusters following its ligation with PD-L1. PD-1 mediated 
Cbl-b activation increases the internalization of the TCR. PD-1 ligation directly inhibits proximal 
TCR signalling by blocking phosphorylation of the ZAP70/CD3ζ signallosome. As a key 
molecule, SHP-2 is recruited to the PD-1 intracytoplasmic ITSM domain, leading to the 
inactivation of PI3K, Akt and integrin, which results in impaired IL-2 production and T-cell 
proliferation. ITSM and ITIM also recruit the tyrosine kinases Csk and Lck, affecting PI3K/Akt 
signalling and destabilizing the immune synapse. Cell cycle arrest is mediated via Akt signalling, 
promoting accumulation of Smad3, and by SCF complex-mediated impaired degradation of p27. 
Apoptosis and impaired cell homeostasis is mediated via PI3K and Bcl-2 family proteins.  
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1.3.2 PD-L1 and PD-1 inhibitory signalling and adaptive immune resistance in 

cancer 

While the physiological role of PD-1 is to guarantee T-cell homeostasis and to prevent 

autoimmunity by limiting T-cell activation and proliferation, aberrant PD-L1 expression 

is often used by tumour cells to provide a pro-tumour microenvironment by suppressing 

T-cell effector functions. Soon after the discovery of PD-L1, several studies described 

aberrant PD-L1 expression on tumour cell lines and primary tumour cells. One of the 

earliest studies characterizing the protein expression found that a variety of murine 

leukaemic lines of T-, B-, and myeloid lineages expressed PD-L1290. Another study 

detected surface PD-L1 expression on human lung and ovarian carcinoma cell lines311. 

PD-L1 expression was also observed in both the cytoplasm and on the plasma 

membrane of a variety of primary solid tumours using immunohistochemistry311-314. Of 

note, considerable intra-tumour heterogeneity was found, and not all cells within a 

tumour expressed PD-L1.  

Aberrant PD-L1 expression is also utilized by haematological malignancies. For 

example, our group has demonstrated that PD-L1 is upregulated on primary tumour 

cells in patients with CLL, follicular lymphoma (FL) and diffuse large B cell lymphoma 

(DLBCL)79. Aberrant PD-L1 expression by tumour cells is also observed in mantle cell 

lymphoma315, Hodgkin Lymphoma (HL)316, primary mediastinal B-cell lymphoma 

(PMBL)317 and on CD34+ blasts cells from MDS318, CMML and AML patients319, 

especially patients with AML M5320, and multiple myeloma321. Of note, high PD-L1 

expression on tumour cells, along with increased PD-1 expression on tumour-specific 

CD8+ T cells, has also been described in patients with relapsed leukaemia after 

HSCT322.  

Immunohistochemistry-based studies also observed inverse correlations between PD-

L1 expression by solid tumour cells and tumour-infiltrating lymphocytes, particularly 

CD8+ T cells312, 314. This association, however, appears to be dependent on the tumour 

type, as another study in oesophageal cancer failed to recapitulate this correlation313. 

The functional relevance of PD-L1 expression by tumour cells was first demonstrated 

by the finding that cancer-associated PD-L1 increased the apoptosis of antigen-specific 

human T-cell clones in vitro311. Congruently, immunized PD-L1 deficient mice showed 

an increased expansion of effector CD8+ T cells and a delayed T-cell contraction 

followed by the emergence of a protective CD8+ T-cell memory capable of completely 

rejecting tumour metastases in the lung310. Similar observations have been made in 

haematological malignancies: in a PMBL cell line, both wild-type PD-L1 expression and 

a newly identified fusion product between the MHC class II transactivator CIITA and 
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PD-L1/ PD-L2 genes negatively regulated Jurkat T-cell activation317. In another study, 

the presence of PD-L1 blocking antibody and shRNA knockdown of PD-L1 in SP53 and 

Granta 519 cells significantly increased the proliferation of allogeneic T cells315. The in 

vivo relevance was demonstrated by the finding that in SCID mice with established 

mantle cell lymphoma, the downregulation of PD-L1 on lymphoma cells resulted in 

higher sensitivity to killing by lymphoma-specific cytotoxic effector memory T cells and 

led to improved survival. In HL, culturing bulk tumour cells in the presence of anti-PD-L 

blocking antibodies led to augmented IFN-γ production316. Blocking PD-1/PD-L1 

interactions also restored the proliferative activity of leukaemia-specific CD8+ memory 

T cells in patients who relapsed after HSCT322. 

Using a functional siRNA screening approach in the CLL-like cell line MEC-1, work 

from our group has demonstrated that knockdown of PD-L1, as well as silencing of 

CD200 (OX2), CD276 (B7-H3) and CD270 (TNF receptor, TNFR-superfamily 14), 

reverse impairment of T-cell actin dynamics via regulation of members of the Rho 

family of GTPases, including RhoA, Rac1 and Cdc4279. In primary CLL cells, 

neutralizing antibodies against these targets increased F-actin polymerization, 

measured by immune synapse formation assays, with the combination of antibodies 

against all four ligands yielding the largest effect on immune synapse repair. This 

translated into significantly improved normal donor CD8+ T cell killing function using 

third-party normal donor allogeneic B cells as antigen-presenting cells after primary 

coculture with CLL cells, which could be further improved by addition of lenalidomide to 

the coculture. Antibodies targeting co-receptors on T cells receiving the 

immunosuppressive signal from the tumour, namely against CD200R, CD272 and PD-

1, also improved synapse formation and T-cell effector function. This inhibitory ligand–

induced impairment of T-cell actin dynamics was also observed in FL and DLBCL, as 

well as in solid carcinoma cells, indicating that immunomodulating processes in CLL 

might serve as a model for other malignancies. 

Studies of tumour cell lines or primary tumour cells have also contributed considerably 

to elucidate the mechanisms leading to PD-L1 over-expression. For example, frequent 

cytogenetic alterations in PMBL and HL involve chromosome 9p323. This is also the 

coding region for PD-L1 and PD-L2 along with JAK2, which encodes a tyrosine kinase, 

and SMARCA2, which encodes a putative chromatin regulator. Rosenwald et al. 

demonstrated that elevated transcription of PD-L1 and PD-L2 were a characteristic 

feature of PMBL with chr 9p alterations324. This was confirmed by molecular studies in 

HL, which found PD-L1 and PD-L2 to be key targets at the 9p24.1 amplification peak in 

nodular sclerosing HL cell lines325. In classical HL, the extended 9p24.1 amplification 
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region included the JAK2 locus, leading to increased protein expression and activity, 

induction of PD-L1 transcription and enhanced sensitivity to JAK2 inhibition. In EBV 

positive HL, matrix protein 1 (MP1) and latent membrane protein 2A (LMP2A) 

enhanced the transcriptional activity of PD-L1 and PD-L2, indicating that the 

expression of PD-L genes is possibly caused by latent virus-associated membrane 

proteins316. PD-L1 was also found to be regulated by the oncogenic, chimeric 

nucleophosmin (NPM)/ anaplastic lymphoma kinase (ALK) in NPM+/ALK+ T-cell 

lymphoma via the STAT3 transcription factor, indicating a direct link between an 

oncoprotein and the immunosuppressive cell-surface protein PD-L1326. At the 

translational level, PD-L1 expression appears to be suppressed by the PTEN gene: 

mutated PTEN was found to activate S6K1, which shifts PD-L1 mRNA to polysomes, 

increasing the translation of PD-L1 mRNA and its plasma expression327. As another 

regulator at the translational level, miRNA513 was described, which is complementary 

to the 3’ UTR of PD-L1 and prevents PD-L1 mRNA translation328.  

Interestingly, several of these mechanisms lead to the increased production of IFN-γ. 

On the other hand, cancer-associated PD-L1 expression in response to IFN-γ has been 

described in several malignancies, for example in mantle cell lymphoma315, multiple 

myeloma321, AML329 and MDS blasts318, where this induction was associated with the 

activation of NF-κB and nearly completely blocked by an NF-κB inhibitor. Lee et al. 

demonstrated that interferon regulatory factor-1 (IRF-1) is primarily responsible for the 

constitutive PD-L1 expression as well as for the IFN-γ -mediated PD-L1 upregulation in 

a human lung cancer cell line A549, with AG490, a Janus activated kinase/signal 

transducer and activator of transcription inhibitor, greatly abolishing the responsiveness 

of A549 cells to IFN-γ by reducing the IRF-1 transcription330. However, PD-L1 induction 

on cancer cells was also observed in response to stimulation with IL-10 in mantle cell 

lymphoma315 and to toll-like receptors (TLR) ligands321, 329. In addition, as described in 

chapter 1.3.1, PD-L1 can be induced in various other non-tumour cell types of the 

microenvironment, whereas constitutive aberrant PD-L1 expression is a characteristic 

of certain cells of the tumour microenvironment such as MDSCs199, 331.  

These observations have prompted the formulation of the “adaptive immune 

resistance” hypothesis332 – under the pre-requisite of a tumour being immunogenic, 

immune and bystander cells produce cytokines such as TNF-α and IFN-γ as a result of 

activation by a tumour, which prompts the upregulation of PD-L1 by both the tumour 

and the tumour microenvironment. As a result, immune effector cells are suppressed, 

and the tumour is protected from anti-tumour immune responses and is able to 



Fabienne McClanahan                                                                                                 Background 

Page 56 of 258 

 

promote further immune suppression by additional immune escape mechanisms such 

as the downregulation of surface molecules or evasion into sanctuary and growth-

supporting niches. Moreover, other activated immune cells such as NKT cells333, B 

cells334 or dendritic cells335 also can express PD-1 and can hence be suppressed by 

PD-L1 ligation.  

 

1.4 Generating anticancer immunity harnessing T cell responses  

Hanahan and Weinberg famously proposed six hallmarks of cancer in 2000, which 

comprise biological capabilities acquired during tumour development due to genome 

instability336. Considering the rapidly building evidence of the central role of the immune 

system in tumour formation and progression, the authors since revisited these 

hallmarks337. Most if not all tumour types are now recognized to rely on immune 

suppression and evasion for their survival, and tumour cells in many cases actually 

subvert immune components to support their growth. In view of the cancer 

immunoediting hypothesis whereby an individual is protected from cancer through the 

elimination and immunogenic modification of cancer cells338, cancer immunotherapy is 

a very attractive approach. When properly established, anti-tumour immune 

surveillance is exquisitely capable of eliminating tumour cells, and in fact is probably 

the most likely route to achieving cures or at least long-term control of cancer. The 

ability of HSCT to produce cures in a subset of CLL patients, as described in chapter 

1.1.3, provides one illustration of the remarkable potential of the immune system. 

However, HSCT remains a risky option due to the immune-depleting conditioning 

regimens and GvHD, and thus alternative, safer methods of establishing anti-tumour 

immune responses are being aggressively pursued. 

An especially exciting new and active immunotherapy approach is chimeric antigen 

receptor (CAR) T-cell therapy. CAR technology has recently emerged as a promising 

strategy to specifically target malignant cells using precisely engineered T cells. The 

successful construction of a chimeric T-cell receptor was first described over 20 years 

ago339. Considerable progress has been made since then, to the point that at some 

centres the generation of CAR T-cells is nearly routine. CARs are generally made up of 

an antigen-recognizing receptor coupled to a signalling molecule or molecules that 

activate the T cell expressing the CAR340. The antigen receptors most commonly 

incorporated into CARs are single chain variable region moieties (scFv) that consist of 

the light chain and the heavy chain variable regions of a monoclonal antibody joined by 

a peptide linker. The scFv portion is linked to a transmembrane domain followed by a 
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tyrosine-based activation motif such as that from CD3ζ. In initial studies, CARs were 

designed to contain a single cytoplasmic signalling domain derived most commonly 

from the TCR-derived CD3ζ chain (first generation CARs). Second generation CARs 

contained additional cytoplasmic signalling domains, and third generation CARs now 

include more than one costimulatory signalling domain in addition to the CD3ζ chain to 

enhance T-cell proliferation and survival. As for monoclonal antibodies, attractive CAR 

targets in CLL include CD19, CD20 and ROR1. In part because of the uncertainty 

regarding antigen selection, the optimal clinical approach to treating patients with CAR-

T cells is not yet understood. Several Phase I/II clinical trials of anti-CD19 CAR-T cells 

have been initiated, and clinical activity is promising but not widespread (reviewed in 

341). One of the most impressive results was seen in a heavily pre-treated CLL patient 

with del17p and TP53 mutation, who entered a complete remission after receiving 

second-generation anti-CD19 CAR T cells after conditioning with pentostatin and 

cyclophosphamide, while experiencing no acute side effects342. 

Despite the promise of CAR T cells, there are several obstacles that must be 

overcome. First, as no single tumour-associated antigen is expressed by all tumour 

types, scFv encoded by CAR genes need to be constructed for each potential antigen. 

These target antigens must be carefully selected to avoid “on-target, off-organ” effects 

that can occur when the antigen is also expressed and recognized on non-malignant 

tissues and organs. Other issues include the paucity of such targets, the inability of 

current CARs to target more than one antigen which could promote the preferential 

growth of more aggressive antigen-negative tumour cells, manufacturing complexities 

and costs, and the inability to derive sufficient cells from some patients343, 344. In 

addition, CAR T-cell therapy can be associated with severe complications such as 

cytokine release syndrome, which is potentially lethal, and prolonged loss of normal B-

cells345, 346. It has also become clear that the success of CAR therapy is highly 

dependent on the inclusion of lympho-reducing conditioning chemotherapy as well as 

CAR design346-349.  

 

1.4.1 Potential of novel agents to correct immune defects in CLL 

As highlighted in Chapter 1.1.3, several novel agents have shown very promising 

activity even in high-risk CLL patients. In addition to eliminating malignant cells via 

inhibition of specific targets or tyrosine kinases, they partly appear to have the potential 

to correct CLL-associated immune defects. For example, the BTK inhibitor ibrutinib 

also affects BCR- and chemokine-controlled retention and homing of CLL cells in their 
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growth- and survival-supporting lymph node and bone marrow microenvironment64-66. 

Thus, malignant B cells are driven out of their protective niches and are more 

accessible to cytotoxic therapy and potentially other immune cells. Recently published 

preclinical data indicates that ibrutinib also irreversibly binds the BTK isoform ITK, 

which is expressed in T cells, and can therefore be potentially used to correct T-cell 

based immune responses350.  

Other novel agents that appear to affect signalling pathways involved in cell survival, 

clonal expansion and malignant cell retention in lymphoid tissues include idelalisib, an 

inhibitor of PI3Kδ, CXCR4 antagonists, as well as inhibitors of Syk protein kinase, 

RAF/MEK/ERK, and BCL2.  

A summary of key preclinical studies highlighting the effects of these substances on the 

immune system and the microenvironment in CLL is provided in Table 4. Especially 

lenalidomide has been demonstrated to have pleiotropic effects on several effector cell 

subsets of the immune system, probably accounting for the anti-tumour immune 

responses observed in CLL. This will be described in detail in Chapter 7.1. 
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target 
name of 

compound(s) 
published effects on the immune system/microenvironment in 

preclinical in vitro and in vivo models 

CXCR4/ 
CXCL12 
mediated 
chemotaxis 

T140, 
TC14012, 
TN14003, 
plerixafor 

(AMD3100) 

 antagonize the antiapoptotic effect of CXCL12 and stromal cell-
mediated protection of CLL cells351 

 combination with passive (i.e. monoclonal anti-CD20/CD52 
antibodies) but not active (i.e. activated T cells) immunotherapy as 

a promising potential treatment concept352 

SYK protein 
kinase 

R406, 
PRT318, 
P505-15 

 reduces CLL migration towards CXCL12 and adhesion to     
VCAM-1353 

 antagonizes CLL cell survival in NLC co-cultures, inhibits BCR-
dependent secretion of CCL3 and CCL4 by CLL cells, inhibits CLL 
migration towards CXCL12, CXCL13354 

TEC family 
kinases  
(BTK, ITK) 

ibrutinib  inhibits BCR-controlled signalling and integrin α(4)β(1)-mediated 
adhesion to fibronectin and VCAM-1, inhibits CXCL12-, CXCL13-, 
and CCL19-induced signalling, adhesion, and migration of primary 
CLL cells66  

 inhibits migration in response to tissue homing chemokines 
(CXCL12, CXCL13), down-regulates secretion of BCR-dependent 
chemokines (CCL3, CCL4) by CLL cells both in vitro and in vivo65 

 blocks survival signals provided from the microenvironment 
including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), 
fibronectin engagement, and stromal cell contact64  

 ITK as an irreversible T-cell target of ibrutinib, driving a Th1-
selective pressure350 

PI3Kδ  idelalisib  
(GS-1101, 
CAL-101) 

 abrogates protection from spontaneous apoptosis induced by B 
cell-activating factors CD40L, TNF-α, and fibronectin, decreases 
activated T-cell production of various inflammatory and 
antiapoptotic cytokines355 

 inhibits CLL cell chemotaxis toward CXCL12 and CXCL13 and 
migration beneath stromal cells, down-regulates secretion of 
chemokines in stromal cocultures and after BCR triggering, 
reduces survival signals derived from the BCR or from NLC70 

RAF/MEK/ 
ERK 

sorafenib  inhibits RAF and ERK activation by NLC or stromal cells356 

 blocks migratory and microenvironmental survival signals in CLL 
cells357 

Bcl2 AT-101  induces similar extent of down-regulation of Mcl-1 and apoptosis in 
CLL lymphocytes cultured in suspension or on stroma358  

Table 4: Summary of key preclinical studies highlighting the effects of novel substances 
on the immune system and the microenvironment.  

 

1.4.2 PD-L1 and PD-1 blockade in cancer 

As discussed in Chapter 1.3.2, a variety of tumour types utilizes PD-L1/PD-1 immune 

checkpoints to their advantage to escape anti-tumour immune responses. Therefore, 

several clinical trials using PD-L1 or PD-1 antibody blockade have been initiated or are 

currently ongoing, mostly in heavily pre-treated or advanced disease stage patients. 

Key clinical trials using PD-L1 or PD-1 antibody blockade as a single therapy are 

summarized in Table 5 (PD-L1 blockade) and Table 6 (PD-1 blockade). Collectively, 

these trials have yielded very promising results: PD-L1/PD-1 antibodies were generally 

well tolerated and associated with a low incidence of serious adverse events (SAEs), 

while producing significant and in some cases durable responses in heavily pre-treated 
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patients with advanced stage cancers. Although a direct comparison has not been 

conducted yet, PD-1 blockade appears to be slightly superior to PD-L1 blockade based 

on objective response rates, while potentially being associated with a higher frequency 

of SAEs.  

Although preclinical data strongly suggest that inhibiting PD-L1/PD-1 interactions might 

also be effective in haematological malignancies (see Chapter 1.3.2), few clinical trials 

using PD-L1/PD-1 antibodies as single agents have been conducted. To date, anti-PD-

1 antibodies have been administered to patients with DLBCL after autologous 

haematopoietic stem-cell transplantation359, and to patients with relapsed FL in 

combination with rituximab360. These trials will be further discussed, with a focus on the 

effect of PD-1 blockade on immune effector cells, in Chapter 8.1.  

 

compound 
study 

design 
no of 
pts 

tumour types remarks key findings 

PD-L1 blockade 

BMS-
936559361 

Phase I 207 

 NSCLC 

 melanoma 

 colorectal cancer 

 RCC 

 ovarian cancer 

 pancreatic cancer 

 gastric cancer 

 breast cancer 

application 
until CR or 
confirmed 
disease 
progression 

 SAE grade 3/4 in 9% of 
pts 

 RR melanoma 9/52 pts 

 RR RCC 2/17 pts 

 RR NSCLC 5/49 pts 

 Response duration >1 
year in 8/16 pts with at 
least 1 year  follow-up 

Table 5: Summary of key findings of clinical trials using single agent PD-L1 blockade. 
Abbreviations: pts – patients; NSCLC - non–small-cell lung cancer; RCC - renal cell cancer; CR 
– complete response; SAE – serious adverse events; RR – response rate.  
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compound 
study 

design 
no  
pts 

tumour types remarks key findings 

PD-1 blockade 

CT-011 
(pidilizumab)362 

Phase I 
dose 

escalation 
17 

 AML 

 MDS 

 NHL (incl. 3 
CLL) 

first in-human 
study 

 well tolerated (DLT not 
reached) 

 stabilization of disease 

 cumulative survival at 
21 days 76% (95% CI 
48-90) 

 mean OS 25±27 weeks 
(range 1.7 to >77) 

 SD in ~⅓ of pts 

 1 CR 

MDX-1106 
(BMS-936558/ 

ONO-4538, 
nivolumu-
mab)363 

Phase I 
dose 

escalation 
39 

 metastatic 
melanoma 

 colorectal 
cancer 

 castrate-
resistant 
prostate 
cancer 

 NSCLC 

 RCC 

in n=9 pts, 
tumour PD-L1 
expression ~ 
likelihood of 
response to 
treatment 

 well tolerated (1 SAE: 
inflammatory colitis) 

 1 CR 

 2 PR 

 stabilisation of disease 
in 3 pts 

MDX-1106 
(BMS-936558/ 

ONO-4538, 
nivolumu-
mab)364 

multiple 
dose trial 

296 

 advanced 
melanoma 

 NSCLC 

 castrate-
resistant 
prostate 
cancer 

 RCC 

 colorectal 
cancer 

no objective 
response in pts 

with PD-L1 
negative 
tumours 

(n=17), but 
36% response 
in pts with PD-

L1 positive 
tumours (n=25) 

 SAE grade 3/4 (esp. 
pulmonary toxicity) in 
14% of pts 

 MTD not reached 

 RR NSCLC 18% 

 RR melanoma 28% 

 RR RCC 27% 

MDX-1106 
(BMS-936558/ 

ONO-4538, 
nivolumu-
mab)365 

update 
from364 

107 
 advanced 

melanoma 
 

OS outcomes 
in patients with 

melanoma 

 median OS 16.8 months 

 1-year OS 62% 

 2-year OS 43% 

 among pts with tumour 
regressions: median 
response duration 2 
years 

 71% maintained 
responses off-therapy 
for >16 weeks (range 
16 to >56) 

MK-3475 
(lambrolizu-

mab)366 
Phase I 135 

 advanced 
malignant 
melanoma 

responses 
regardless of 
pretreatment 
with CTLA-4 

antibody 
ipilimumab 

 well tolerated 

 objective clinical RR: 
38% (95% CI 25-44) 

 overall median PFS >7 
months 

MK-3475 
(lambrolizu-

mab, 
pembrolizu-

mab)367 

expansion 
cohort 
from366 

173 

 advanced 
melanoma with 
disease 
progression 
after ≥2 doses 
ipilimumab 

2 mg/kg (n=89) 
or 10 mg/kg 

(n=84) 

 well tolerated at both 
doses 

 overall RR 26% at both 
doses 

Table 6: Summary of key findings of clinical trials using single agent PD-1 blockade. 
Abbreviations: DLT – dose limiting toxicity; CI - confidence interval; OS – overall survival; SD – 
stable disease; CR – complete response; pts – patients; PR – partial response; NSCLC - non–
small-cell lung cancer; RCC - renal cell cancer; CR – complete response; SAE – serious 
adverse events; RR – response rate; MTD – maximum tolerated dose; PFS – progression-free 
survival.  
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1.5 Summary  

CLL is incurable using currently available standard immunochemotherapy approaches, 

but several novel agents show activity even in high-risk CLL patients. However, CLL-

associated immune dysfunction remains a very serious clinical problem. This is caused 

by a variety of humoral and cellular immune defects, the majority of which is 

responsible for providing a pro-tumour and immune-suppressive tumour 

microenvironment. As CLL is now understood as a disease that closely interacts with 

its microenvironment, targeting these interactions is a very attractive treatment 

approach. Novel target molecules in this context are immune checkpoints, which under 

physiological conditions regulate the activation of immune effector cells to maintain 

self-tolerance and prevent autoimmunity. PD-1 and its ligands PD-L1 and potentially 

PD-L2 constitute one of the most prominent immune checkpoint ligand/receptor axes 

mediating CLL-associated immune dysfunction. Establishing anti-tumour immune 

surveillance mechanisms via targeting of PD-L1/PD-1 is a novel and potentially 

powerful strategy to eliminate tumour cells, and in fact might be a route to achieving 

cures or at least long-term control of CLL. 
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2 Hypothesis and aims of the project 

The central hypothesis of this thesis project is that specific T-cell defects result from the 

interaction of malignant CLL cells with the immune system, and that repairing the 

defects in T-cell function will be required to activate an effective T-cell mediated anti-

tumour immune response. Using the TCL1 mouse model, the major aims are: 

1. To further characterize the nature of PD-L1/PD-1 mediated T-cell dysfunctions in 

the context of developing CLL and within different microenvironments 

Initial work on T-cell dysfunction in the TCL1 model has been conducted using TCL1 

mice on the B6C3H-F1 genetic background. As this potentially prevents crosses with 

other transgenic mice, which will be an essential component of future work of the 

group, we have backcrossed TCL1 mice to a pure C57BL/6 genetic background, 

greatly increasing the value of this model for immunological studies. However, the 

effects of CLL on T cells in this new strain require thorough assessment to confirm that 

this model remains valid. My first aim is therefore to compare T-cell dynamics and 

dysfunctions of TCL1 mice on the B6C3H-F1 background to TCL1 mice on the 

backcrossed C57BL/6 background at different stages of CLL to validate both 

backgrounds for the investigation of T-cell dysfunctions and to characterize T-cell 

defects in the direct context of advancing CLL. Additional aims are the characterization 

of T-cell subsets in different CLL-affected compartments to assess the impact of the 

microenvironment, and to explore changes in effector T-cell function alongside 

developing CLL. Considering the growing body of evidence suggesting a central role of 

PD-L1 and PD-1 in mediating immune defects, this will include markers and patterns of 

exhaustion to further characterize PD-L1/PD-1 mediated T-cell impairment in CLL. 

2. To investigate the effect of in vivo immune modulation on CLL/T-cell interactions 

As outlined in Chapters 1.1.3 and 1.3.2, several novel treatments have been shown to 

produce anti-tumour immune responses in preclinical and early clinical studies. Among 

those, lenalidomide probably provides the best evidence in CLL patients of functional 

immune enhancement, introducing the distinct possibility of reactivating the immune 

system to eliminate tumour cells. Although not yet explored clinically in CLL, PD-

L1/PD-1 blockade also holds the promise of restoring anti-tumour immunity. Despite 

the differences in these two strategies, immune modulation may in fact constitute the 

only safe route to long-term disease control or cure. Thus, investigating the in vivo 

potential of lenalidomide and PD-L1/PD-1 blockade using the TCL1 mouse model 

validated in Aim 1, and conducting detailed studies of their impact on effector T-cell 

responses, will be the second aim of this PhD project.   
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3 Materials and Methods 

3.1 Mice and animal procedures 

3.1.1 Ethical considerations relating to animal work 

To ensure the most ethical use of animals, to safeguard animal welfare, and to improve 

scientific quality, in vivo research is guided by the principle of the “Three Rs” (3Rs) – 

replacement, reduction and refinement368. Replacement refers to the preferred use of 

non-animal over animal methods whenever this is equivalent in achieving selected 

scientific aims. Reduction refers to the reduction of numbers of animals used in 

scientific experiments while producing statistically valid results to answer a scientific 

question. Refinement refers to all methods that alleviate or minimize animal pain, 

suffering and distress, and ensure animal welfare during experimental procedures. In 

EU countries and the US, these principles are now officially embraced in legislations 

and guidelines governing animal use369, 370.  

The research conducted in this project was also guided by the principles of the 3Rs. 

First, the lack of suitable CLL cell lines or in vitro model systems that mimic the 

complex dimensions of the natural CLL microenvironment justifies the use of an animal 

model to investigate the role of host immunity in the context of long-term cancer 

development (replacement). The number of animals was reduced by limiting 

experiments and procedures to interventions and repair strategies that have been 

demonstrated to be effective ex vivo. In addition, rigorous statistical calculations were 

performed for each experiment to determine the numbers of mice needed to obtain at 

least 80% power to detect significant changes in a Fisher exact test performed at the 

one-sided 0.05 significance level (reduction). The lymphocytosis, hepatosplenomegaly 

and lymphadenopathy associated with CLL development in mice are, just as in the 

majority of patients, generally painless. Adverse signs, which might present as 

impeded movement or dyspnoea, are generally rare. The interventions tested in this 

project were based on substances and application routes that are generally well-

tolerated or cause only minimal and transient discomfort. In addition, mice were 

inspected daily and underwent regular physical examinations and monitoring of 

disease status or impaired health (e.g. piloerection, sunken eyes, hunched posture, 

inactivity, reduced grip strength, weight loss). The combination of these follow-up 

procedures with the rigorous definition of disease endpoints minimised the probability 

of suffering from the disease or an intervention (refinement).  
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3.1.2 Breeding and standard maintenance of mice 

All animal work was carried out under Project Licence PPL 70/7531, in accordance to 

the Animals (Scientific Procedures) Act 1986. This licence was renewed in November 

2012 and amended in August 2013 to include treatment with additional novel 

substances that had demonstrated great efficacy in early clinical trials. Four TCL1 

breeding pairs on the B6C3H-F1 (abbreviated to C3H hereafter) and the backcrossed 

C57BL/6 (hereafter abbreviated to B6) background were provided by Dr. Carlo Croce, 

The Ohio State University, Columbus Ohio, who is one of our main collaborators within 

the CLL Research Consortium (CRC). Wild-type (WT) mice for breeding and 

experimental procedures were purchased from Charles River laboratories, UK, Harlan 

laboratories, UK, and Cancer Research UK laboratories. Mice were kept in suitable 

barrier systems in the Biological Services Unit (BSU) at Charterhouse Square, and all 

regulated in vivo procedures were carried out under sterile conditions in designated 

procedure rooms in the BSU. 

The colony was maintained and extended by breeding TCL1 transgenic males with a 

harem of WT syngeneic females. Breeders were paired at the age of 6 to 8 weeks and 

kept for a maximum of 10 months or until no new litters were produced for more than 2 

months. Litters were weaned at 3 to 4 weeks of age, ear-marked and genotyped and 

kept with a maximum of 5 littermates.  

Animals were observed daily for general signs of ill health, such as hunched posture, 

ruffled fur, separation from littermates, inactivity or weight loss. Disease status was 

monitored by physical examination of spleens and lymph nodes, and by haematology 

testing using blood smears and if necessary immunophenotyping. Mice were 

euthanized when they showed signs of ill health, or fulfilled one of the following criteria: 

white blood cell (WBC) count in blood smear >100 WBC/high power field (hpf, 40x 

objective), >90% of lymphocytes CD19+CD5+ CLL cells and/or spleen size >3cm in 

diameter compressing other organs. Endpoint definitions for experimental animals were 

in part adapted to the specific research question and are described in the respective 

materials and methods sections. Animals were euthanized using cardiac puncture 

under terminal anaesthesia and/or cervical dislocation.  

 

 



Fabienne McClanahan                                                                                Materials and Methods 

Page 66 of 258 

 

3.1.3 Haematology testing 

The standard method of haematology testing was by blood smears, which routinely 

began at the age of 6 months in transgenic mice. Experimental animals, for which 

larger blood volumes were required, were subjected to repeated tail bleeding. For flow 

cytometry-based analyses, blood was stained in a total volume of 100μl FACS buffer 

[PBS with 2% fetal calf serum (FCS)] with fluorochrome-labelled antibodies at a ratio of 

1:100. Specific antibodies, clones and suppliers are listed in the respective chapters. 

Erythrocytes were then lysed in 5ml 1X ammonium-chloride-based RBC lysis buffer 

(NH4CL 8.3g/l, KHCO3 1g/l, EDTA 0.037g/l). After 10 minutes incubation, 2x volume 

PBS was added, cells were centrifuged at 300 x g for 10 minutes at 4°C and 

resuspended in 350μl FACS buffer. 300μl was transferred to polypropylene flow-

cytometry tubes. Cells were then recorded at a LSRII Fortessa cytometer (BD 

Biosciences, UK) and analysed using FlowJo and FACS Diva Software. Where 

appropriate, the remaining 50μl of cell suspension were analysed at a ViCell counter 

(Beckman-Coulter, UK) in a 1:10 dilution to obtain an automated estimate of total WBC 

count. 

 

3.1.4 Processing of mouse organs into single cell suspension 

Organectomy was performed under sterile conditions in the BSU immediately after the 

death of the animal by cervical dislocation and/or exsanguination. Lymphoid organs 

were kept in ice-cold PBS with 20% FCS and bones in ice-cold RPMI 160 medium 

supplemented with 10% FCS and 1% Penicillin/Streptomycin, and processed quickly 

under a class II biosafety cabinet. Spleen single cell suspensions were prepared using 

an automated tissue dissociator (Miltenyi, UK) following the manufacturer’s 

recommendations for mouse spleen without enzymatic treatment. Lymph nodes were 

dissociated by mashing through a 70μm strainer (Fisher Scientific, UK) with the rubber 

plunge of a 1ml tuberculin syringe (BD, UK). Bones were crushed with a sterile mortar 

and pestle, of flushed with ice-cold FACS buffer. Erythrocytes were lysed using an 

ammonium-chloride-based RBC lysis buffer (NH4CL 8.3g/l, KHCO3 1g/l, EDTA 

0.037g/l), and the reaction was stopped using 1.5-2x volume PBS. All centrifugation 

steps for mouse organs were performed at 300 x g for 10 minutes at 4°C. Cells were 

then either frozen at a maximum density of 200x106cells/ml in FCS/10% DMSO (Fisher 

Scientific, UK) and kept in liquid nitrogen for long-term storage without any further 

manipulation before the freezing process, or used directly in experiments and 

downstream applications.  
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3.1.5 Adoptive transfer of syngeneic mouse cells 

Based on available data in the literature214-216, 220 and previous experiences of the 

group, we adoptively transferred 4x107 previously frozen syngeneic mouse CLL cells 

from spleen by tail vein injection following standard protocols for mice371. Before the 

adoptive transfer, the percentage of CD19+CD5+ CLL cells of viable lymphocytes (CLL 

content) in donor cells was assessed by flow-cytometry. Control mice received an 

equal concentration of healthy mouse B cells from pooled WT donors by tail vein 

injection. Maximum volumes for all i.v. injections were 5ml/kg. Recipient mice were 

between 3 and 5 months of age, and both WT and TCL1 transgenic recipients were 

used. After adoptive transfer, mice were closely monitored, and haematology testing 

using blood smears and flow cytometry was conducted in regular intervals. Mice were 

euthanized when they showed signs of ill health, or fulfilled one of the following criteria: 

WBC count in blood smear >100 WBC/hpf (40x objective), >90% of lymphocytes 

CD19+CD5+ cells and/ or spleen size >3cm in diameter compressing other organs. 

Endpoint definitions for experimental animals were partly adapted to specific research 

questions and are described in the respective materials and methods sections. Animals 

were euthanized using cardiac puncture under terminal anaesthesia and/or cervical 

dislocation. 

 

3.1.6 Application of experimental substances  

Experimental substances tested for their potential to prevent or reverse T-cell defects 

were applied by i.p. injection or by oral gavage. Doses, application routes and 

treatment schedules were selected based on available data in the literature, or followed 

advice of our CRC collaborators who have conducted toxicity studies in WT and TCL1 

mice. Maximum volumes for all i.p. injections were 10ml/kg, and 20ml/kg for oral 

administration. Drugs were dissolved in sterile PBS, and a single stock was prepared 

under sterile conditions at the beginning of the experiment and used to treat all animals 

within one experiment. When indicated, the stability of the drug was confirmed by mass 

spectrometry. Control mice received equal concentrations or amounts of drug vehicle 

or isotype antibodies, and were kept under identical conditions. During treatment, mice 

were monitored daily and sacrificed at predefined endpoints.  
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3.2 Cell thawing procedures 

Cells were re-derived from cryopreservation by thawing them in a water bath set to 

37oC. Before opening the vials under a class II biosafety cabinet, they were disinfected 

with 70% IMS (Fisher Scientific, UK). Cells were carefully added into 10ml pre-warmed 

RPMI 1640 medium supplemented with 10% FCS, 1% Penicillin/Streptomycin (both 

from Sigma, UK), and 50μM β-mercaptoethanol (Gibco, UK). Cells were centrifuged at 

300 x g for 10 minutes at room temperature and resuspended at a volume adequate for 

the size of the cell pellet. Automated cell counting was performed on a Vi-cell XR 

haemocytometer (Beckman Coulter) at a 1:10 dilution.  

 

3.3 Cell separation procedures 

3.3.1 Positive selection of CLL and B cells 

Positive selection of murine CLL and B cells from spleen was performed using 

magnetic activated cell sorting (MACS®, Miltenyi Biotec, UK). Spleens were processed 

into single cell suspension or re-derived from cryopreservation. After cell counting, cells 

were centrifuged at 300 x g for 10 minutes at 4°C, and the supernatant was aspirated 

completely. Cells were resuspended in 90μl ice-cold MACS buffer (PBS, pH 7.2, 0.5% 

bovine serum albumin, 2mM EDTA) per 107 total cells, and 10μl of murine CD19 

conjugated MicroBeads per 107 total cells were added. The cell suspension was mixed 

and incubated for 15 minutes at 4oC, with repeated gentle shaking every 2 to 3 

minutes. Cells were then washed by adding 2ml MACS buffer, centrifuged as above, 

and resuspended in MACS buffer at a concentration of up to 108 cells in 500μl. MACS 

LS columns with a maximum capacity of 2x109 total cells were placed in a 

QuadroMACS magnet (both from Miltenyi) and rinsed with 3ml MACS buffer. The 

CD19 labelled cell suspension was applied to the column and washed through with 3 x 

3ml MACS buffer. The effluent representing the unlabelled cell fraction was collected in 

a 15ml Falcon tube and prepared for negative isolation or cell sorting as described 

below. To obtain the CD19 labelled cell fraction, LS columns were removed from the 

magnetic field and flushed through with 5ml MACS buffer and a provided plunger. 

Eluted cells were collected in a separate 15ml Falcon tube, and cells in both the 

positive and negative fraction were counted. During the whole isolation protocol, cells, 

buffers and reagents were kept on ice to prevent capping of antibodies on the cell 

surface and non-specific cell labelling.  
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3.3.2 Negative selection of T cells 

Negative selection was also performed following protocol developed by Miltenyi Biotec. 

After purification of CLL and B cells as described above, unlabelled cells in the 

negative fraction were counted, centrifuged at 300 x g for 10 minutes at 4°C, and the 

supernatant was aspirated completely. Cells were resuspended in 40μl MACS buffer 

per 107 total cells, and 10μl of biotin antibody cocktail from the murine pan T-cell 

isolation kit II (Miltenyi, UK) per 107 total cells was added. The cell suspension was 

mixed and incubated for 15 minutes at 4oC, with repeated gentle shaking every 2 to 3 

minutes. Subsequently 30μl buffer and 20μl anti-biotin microbeads per 107 total cells 

were added. The cell suspension was mixed and incubated for an additional 20 

minutes at 4oC with repeated gentle shaking every 2 to 3 minutes. Cells were then 

washed by adding 2ml MACS buffer and resuspended at a concentration of up to 1 x 

108 cells in 500μl buffer after centrifugation. MACS LS columns were placed in a 

QuadroMACS magnet and rinsed with 3ml MACS buffer. The labelled cell suspension 

was applied to the column and washed through with 3 x 3ml MACS buffer. The effluent 

representing the unlabelled T-cell fraction was collected in a 15ml Falcon tube, 

counted, and prepared for immune synapse assays or CFSE labelling. During the 

whole isolation protocol, cells, buffers and reagents were kept on ice to prevent 

capping of antibodies on the cell surface and non-specific cell labelling.  

 

3.4 Flow cytometry 

3.4.1 Surface staining 

Staining procedures using single-cell suspensions were generally performed at 2 to 

8oC to avoid antibody capping and internalisation. Surface molecules requiring different 

staining conditions or methods for experiments combining surface staining with 

intracellular/intranuclear staining are described in the specific methods and materials 

sections of the respective chapters. After cell counting, cells were transferred to 5ml 

polystyrene round-bottom tubes (BD, UK) or round-bottom 96-well plates (VWR, UK), 

washed with PBS/2% FCS, centrifuged at 300 x g for 10 minutes at 4oC and 

resuspended in 100μl PBS/2% FCS. Antibodies were generally used at a 1:100 dilution 

and prepared as a master mix to ensure consistency of staining. Cells were incubated 

for 30 minutes at 4oC in the dark, washed with PBS/2% FCS, centrifuged at 300 x g for 

10 minutes at 4oC and resuspended in 200-300μl PBS/2% FCS containing 250ng/ml 

4’6-diamidino-2-phenylindole (DAPI) to allow live/dead discrimination of cells. As the 

integrity of cell membranes is lost during cell death, DAPI enters the nucleus and binds 
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A-T rich regions of DNA, therefore labelling dead cells as DAPI-positive. All samples 

were kept on ice and in the dark until flow cytometry was performed. 

 

3.4.2 Intracytoplasmic and intranuclear staining 

In experiments using intracytoplasmic and intranuclear staining, fixable viability dyes 

instead of DAPI were used for live/dead discrimination, as the preparation of cells 

requires the permeabilisation of the cell membrane. Intracellular and intranuclear 

staining were performed in both 5ml polystyrene round-bottom tubes (BD, UK) and 

round-bottom 96-well plates (VWR, UK). After cell stimulation or short-time cell culture, 

cells were washed twice with 200μl (for 96 well plates) or 2ml (for 5ml tubes) azide-free 

and serum/protein-free PBS. Fixable Viability Dye 505 or 450 (eBioscience, UK) was 

prepared as a working stock solution in azide- and serum/protein-free PBS at a 

concentration of 1μl/ml. Cells were resuspended in 100μl or 1ml PBS/fixable viability 

dye stock solution, and the antibody cocktail for surface staining was added. Cells were 

then mixed well, incubated for 30 minutes at 4ºC in the dark, and washed twice with 

100μl or 1ml PBS/2%FCS. To prepare intracytoplasmic staining, cells were 

resuspended in 200μl or 2ml 1X fixation buffer (eBioscience, UK) and incubated in the 

dark at room temperature for 30 minutes. To prepare intranuclear staining, cells were 

resuspended in 200μl or 2ml Foxp3 fixation/permeabilisation working solution, which 

was prepared by diluting Foxp3 fixation/permeabilisation concentrate (1 part) with 

Foxp3 fixation/permeabilisation diluent (3 parts, eBioscience, UK), and incubated in the 

dark at room temperature for 30 minutes. To cells kept in 5ml tubes, 2ml of 1X 

permeabilisation buffer (eBioscience), which was prepared by diluting the 10X 

concentrate with distilled water prior to use, was added directly before centrifugation. 

Cells kept in 96 well plates were centrifuged first, and then resuspended in 200μl of 1X 

permeabilisation buffer. All cells were centrifuged again, and the washing step with 

200μl or 2ml 1X permeabilisation buffer was repeated. After centrifugation, cells were 

resuspended in 100μl 1X permeabilisation buffer for intracytoplasmic staining. 

Antibodies for intracellular cytokines were added as a cocktail at a 1:100 dilution, and 

cells were incubated for 1h at 4ºC in the dark. Cells were washed with 100μl or 1ml 1X 

permeabilisation buffer, centrifuged, and resuspended in 200-300μl PBS for analysis. 

 

 



Fabienne McClanahan                                                                                Materials and Methods 

Page 71 of 258 

 

3.4.3 Absolute numbers 

Absolute numbers of cell populations were enumerated using CountBright™ absolute 

counting beads (Molecular Probes, UK), which are a calibrated suspension of 

fluorescent microspheres at a known concentration. A specific volume of the 

microsphere suspension is added to a specific volume of sample, so that the ratio of 

sample volume to microsphere volume is known. The volume of sample analysed can 

then be calculated from the number of microsphere events, and can be used with cell 

events to determine cell concentrations of population of interest.  

To enumerate absolute numbers in blood, the volume of sample available was 

recorded, and surface staining was performed in a total volume of 100μl FACS buffer. 

Cells were stained and red blood cells lysed as described in Chapters 3.1.3 and 3.4.1. 

To enumerate absolute numbers in bones and lymph nodes, organs were processed 

into single cell suspension in a standardized fashion (see Chapter 3.1.4) and 

resuspended consistently at a volume of 2ml (for bones) and 200μl (for lymph nodes), 

of which 100μl each were used for surface staining as described in Chapter 3.4.1. To 

enumerate absolute numbers in spleen, organs were processed into single cell 

suspension as described in Chapter 3.1.4, and the total number of cells were counted 

on a ViCell haemocytometer (Beckman-Coulter, UK). Throughout experiments, a 

consistent number of cells were used for surface staining as described in Chapter 

3.4.1. Specific antibodies, clones and suppliers are listed in the respective chapters. 

Counting beads were allowed to adjust to room temperature, gently vortexed for 30 

seconds, and 50μl were immediately added to stained and washed cells resuspended 

at 300μl FACS buffer/DAPI. The sample was then acquired on the flow cytometer, and 

beads were visualized on a plot depicting side scatter on a log scale versus R670/14 

on a linear scale. Gating was then performed as necessary for individual experiments. 

Cell concentrations were calculated by applying the following formula: (number of cell 

events in population of interest/ number of bead events)*(assigned bead count of the 

lot (beads/50μl)/volume of sample (μl)). For blood, this was normalized for the total 

volume used for staining, and reported as absolute number of population of interest per 

μl of blood. For lymph nodes and bone marrow, absolute numbers were reported per μl 

of cell suspension. For spleen, numbers were normalized for spleen weight. As an 

alternative method without counting beads, percentages of populations were multiplied 

by the total number of cells per spleen, which yielded very similar results to counting 

beads and has been reported as the method of choice by other groups195.  
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3.4.4 Flow cytometry based functional T-cell assays 

3.4.4.1 Cell stimulation for functional assays 

All functional assays were performed on fresh cells. For proliferation assays, cells were 

stimulated with Dynabeads® Mouse T-Activator CD3/CD28 beads (Gibco, UK). 

Dynabeads (25µl per 106 T cells) were first washed with full medium (RPMI 1640 with 

10% FCS, 1% Penicillin/Streptomycin, and 50μM β-mercaptoethanol), recovered by 

magnet, and resuspended at the original volume in full medium. T cells were 

resuspended in full medium at a concentration of 1x106/ml, and 200µl aliquots were 

added to 96 well round-bottom plates. Washed Dynabeads were added at a 1:1 

beads:cell ratio, and cells were cultured for 72 hours at 37ºC and 5% CO2. Beads were 

removed prior to staining by placing the tube on a magnet and transferring cells to a 

fresh tube. As controls, unstimulated cells cultured under the same conditions were 

used. For intracellular staining and the CD107a degranulation assay, cells were 

stimulated with 500X cell stimulation cocktail containing 40.5µM PMA (Phorbol 12-

Myristrate 13-Acetate) and 670µM ionomycin (eBioscience, UK) at a 1:500 dilution for 6 

hours at 37ºC/5%CO2. For the last 5 hours of culture, 500X protein transport inhibitor 

cocktail containing brefeldin A (5.3mM) and monensin (1mM), (eBioscience, UK) was 

added at a 1:500 dilution. Unstimulated cells and unstimulated cells cultured in the 

presence of brefeldin/monensin for the last 5 hours were included as controls. 

 

3.4.4.2 Proliferation assays 

3.4.4.2.1 CFSE labelling of lymphocyte for in vitro proliferation assay 

For selected experiments, T cells were labelled with carboxyfluorescein diacetate 

succinimidyl ester (CFSE) to assess ex vivo proliferation upon stimulation with 

CD3/CD28 following a staining protocol modified for mouse lymphocytes372. Up to 

5x107 purified T cells were resuspended in 1ml pre-warmed PBS/5% FCS and 

transferred to a fresh 15ml Falcon tube wrapped in aluminium foil. The tube was then 

inverted almost horizontally, 110µl of PBS was pipetted to a non-wetted portion of 

plastic at the inside top of the tube, and 1.1µl of 5mM CFSE stock (Molecular Probes, 

UK) was diluted into the drop of PBS to give a final concentration of 5µM in the cell 

suspension. After capping the tube, it was immediately inverted quickly several times 

and vortexed at low speed for 20 seconds. Cells were incubated at room temperature 

in the dark for exactly 5 minutes, and washed three times with 10ml pre-warmed 

PBS/5% FCS. Unlabelled cells were included as controls.  
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3.4.4.2.2 Intranuclear ki67 

Intranuclear ki67 was assessed to measure T-cell proliferation ex vivo in selected 

experiments. Ki67 is present during all active phases of the cell cycle (i.e. G1, S, G2 

and M), but is absent from resting cells in G0 phase373. It can therefore be used to 

determine the growth fraction of a given population of cells. Fresh cells were cultured 

for six hours ex vivo alongside cells intended for intracellular cytokine assays, but in the 

absence of any stimulating agents. Cells were processed and prepared for intranuclear 

staining as described above.  

 

3.4.4.2.3 EdU incorporation 

In vivo proliferation was assessed by EdU (5-ethynyl-2´-deoxyuridine) incorporation. 

This is considered one of the most accurate methods to track DNA synthesis, and 

provides a good alternative to radioactive nucleoside based assays using 3H-

thymidine374. Similar to BrdU (bromo-deoxyuridine), EdU is a nucleoside analogue 

which is incorporated into DNA during active DNA synthesis. EdU detection is based 

on a “click” reaction, a copper catalysed, covalent, highly specific and stable reaction 

between an azide and an alkyne375, 376; the alkyne is found in the ethynyl moiety of 

EdU, while the azide is coupled to a fluorescent dye which can be detected by flow 

cytometry. The EdU assay can be multiplexed with additional antibodies against 

surface and intracellular markers, and is considered to be gentler than BrdU assays as 

it does not require the denaturation of DNA. Mice were injected i.p. with 100µg/g body 

weight EdU (Life Technologies, UK) 20 hours before they were sacrificed. EdU powder 

was dissolved in sterile PBS to a concentration of 1mg/100µl and kept at -20ºC. Spleen 

cells (2x106) in a single cell suspension were fixed in 4% paraformaldehyde (PFA) for 

15 minutes, washed once with PBS/1% bovine serum albumin (BSA) and 

permeabilised in PBS/0.1% Triton X-100 (Sigma, UK) for 30 minutes. After washing, 

cells were resuspended in 100µl Click-iT reaction cocktail containing 8.75µl 10X Click-

iT cell reaction buffer, 2µl CuSO4, 0.5µl fluorescent dye Alexa488 azide, 1µl 10X 

reaction buffer additive and 87.75µl H2O per reaction and incubated at room 

temperature in the dark for 30 minutes (all components from LifeTechnologies, UK). 

Control cells were incubated with the same cocktail without Alexa488 dye. Cells were 

then washed, and surface stained with for 20 minutes at room temperature, washed 

again and resuspended in 300µl FACS buffer.  
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3.4.4.3 CD107a degranulation assay 

Cell-mediated cytotoxicity was measured by flow-cytometry-based assays assessing 

effector cell degranulation as a non-radioactive alternative to chromium-release 

assays377. CD107a (LAMP-1) is a component of the lipid bilayer surrounding cytotoxic 

granules such as Granyzme B and perforin in T cells. Upon cell stimulation, granules 

are transported towards the immune synapse, their membrane fuses with the cell 

membrane, and the content of the granules is released into the synapse. As a 

consequence of the fusion of lysosomal and cellular membranes during the 

degranulation, CD107a is transiently expressed on the cell surface and can be 

detected with fluorescently labelled antibodies378. In our experiments, 5µg/ml CD107a 

antibody was added per well, and cells were stimulated as described above. Controls 

included wells with CD107a and protein transport inhibitor cocktail, but no cell 

stimulation cocktail.  

 

3.4.5 Flow Sorting 

Flow sorting was performed on a BD Aria II to isolate T-cell populations of interest. 

Frozen samples were debulked of CLL by magnetic separation and surface stained for 

flow cytometry as described above. Specific sorting strategies, gating and purities of 

sorted populations are described in specific methods and materials sections.  

 

3.4.6 Controls 

Unstained controls subjected to the same procedures as described above were 

included in all experiments to set photomultiplier tube (PMT) voltages on the flow 

cytometer. Isotype controls were used for surface staining experiments where a 

significant population of target antigen negative cells was not expected. For 

intracytoplasmic staining, stimulated and unstimulated cells prepared in the same way 

as described above but omitting the intracytoplasmic staining step, and unstimulated 

cells prepared as described above and stained with intracytoplasmic antibodies, were 

used. For intranuclear staining, unstimulated cells prepared in the same way as 

described above, but without the intranuclear staining step, were used. Each 

experiment included multiple internal controls such as healthy samples without 

aberrant expression of markers and Fluorescence-Minus-One (FMO) controls.  
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Compensation controls usually consisted of anti-rat immunoglobulin compensation 

beads (CompBeads; BD, UK). Compensation beads were prepared by adding one drop 

of negative control beads and anti-rat compensation beads to 80µl PBS/2% FCS in a 

5ml polystyrene round-bottom tube for each fluorochrome represented in a panel. 1µl 

Igκ rat anti-mouse fluorochrome-conjugated antibody was added to each tube, and 

incubated at 4oC for 30 minutes in the dark. The beads were then washed with 2ml 

PBS/2% FCS and resuspended in 300μl PBS for analysis. However, beads could not 

be used for fluorescently labelled markers with a hamster isotype and for DAPI. For 

these, single-stained cells were used.  

 

3.4.7 Data acquisition and analysis 

Data was acquired on a LSR Fortessa II (BD, UK) equipped with a four-laser optical 

system, integrated fluidics and the software package BD FACSDivaTM. The red laser 

emits at 640nm wavelength, yellow/green at 561nm, blue at 488nm, and violet at 

405nm. Beam shaping lenses and pinholes focus the combined laser light as a single 

beam into a cuvette, and emitted light is delivered through fibre optics to detector 

arrays arranged to maximise the signal detection using reflecting mirrors. Bandpass 

filters (for red lasers 670+/-14nm, 730+/-45nm, 780+/-60nm, for yellow/green 585+/-

15nm, 675+/-20nm and 780+/-60nm, for blue 695+/-40nm and for violet 525+/-50nm 

and 450+/-50nm) and PMTs improve spectral resolution, and are calibrated on a 

weekly basis using the FACS Comp software and Calibrite Beads (BD, UK) by a 

specialized technician.  

PMT voltages were adjusted for each experiment to ensure maximum signal:noise ratio 

and minimal spectral overlap in competing PMT detectors. Apart from the wavelength-

specific, bandpass-filtered fluorescence intensity arising from each fluorochrome as 

detected at the PMTs, data on light forward scatter (representing particle size) and side 

scatter (representing internal complexity of the particle) were collected. PMT voltages 

required for the amplification of signal from specific fluorescently-labelled antigens 

were determined in optimization experiments. To preserve experimental samples, 

compensation beads coated with antibody recognizing the appropriate isotype for each 

fluorochrome represented in a specific panel in combination with uncoated beads as 

the internal negative control were used. Compensation plots were produced using 

FACSDiva software which plotted the appropriate output channel on the x axis, against 

all other output channels under investigation in turn on the y axis. Compensation was 

adjusted until the ‘positive’ stained beads aligned horizontally with the ‘negative’ 
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stained beads by eye, and confirmed by calculating their Median Fluorescence 

Intensity (MFI). The compensation matrix was then applied to all samples and to 

cytometer setting.  

After compensation, cells were gated on the basis of DAPI/fixable viability dye and side 

scatter (SSC) to exclude dead cells from the analysis. A second gate was applied to 

viable (i.e. DAPI negative) cells, and cells were plotted as SSC-area (SSC-A) and 

SSC-width (SSC-W) to identify single cells. A third gate showing forward scatter (FSC) 

and side scatter (SSC) characteristics was then applied to viable single cells to exclude 

debris from the analysis. Lymphocytes/mononuclear cells (MNC) were identified based 

on specific FSC/SSC characteristics. Specific cell populations were evaluated based 

on whether they were expressing or not expressing a target antigen (i.e. positive or 

negative for a maker), expressed as a percentage of a defined parent population, or 

whether there were degrees to which they expressed an antigen, measured by MFI. 

However, MFI bears a non-linear relationship to the actual number of molecules 

expressed on each cell. Stopping gates and number of recorded events used in 

individual experiments are described in specific methods. Recorded data was exported 

as .FCS files, and analysed with FlowJo (Tree Star Inc.) software.  

 

3.5 Immune synapse formation assay 

3.5.1 Cell conjugation assays 

Up to 1.5x106 T cells were resuspended in 1ml full medium in 1.5ml Eppendorf tubes 

and rested in the incubator. Up to 1.5x106 healthy B or CLL cells were transferred into 

1.5ml Eppendorf tubes, washed twice in serum-free medium and resuspended in 500µl 

serum-free medium. A working stock of serum-free medium containing 2µg/ml 7-amino-

4-chloromethylcoumarin (CMAC) CellTracker Blue (LifeTechnologies, UK) was 

prepared and 500µl were added to the resuspended cells for a final CMAC 

concentration of 1µg/ml. Cells were incubated for 30 minutes at 37°C, centrifuged at 

4000rpm for 1 minute at room temperature in a table-top centrifuge, and resuspended 

in 1ml full medium containing 2μg/ml of staphylococcal superantigen cocktail (Sigma, 

UK). After a further 30 minutes incubation at 37°C, both B and T cells were centrifuged 

and the supernatant was aspirated completely. T cells were then resuspended in 150µl 

full medium, and transferred into the tube containing the activated B cells in a 1:1 ratio. 

After centrifugation at 1500rpm for 5 minutes, which allowed a cell pellet to form, 

resultant B cell/T cell conjugates were incubated at 37°C for 20 minutes, gently 
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resuspended in 150µl full medium, and transferred onto a Poly-l-lysine coated glass 

(Fisher Scientific, UK) slides using a 3-well cell concentrator and a cytofuge (Statspin).  

 

3.5.2 Staining for confocal microscopy 

While still in the cytofuge, cells transferred to slides were fixed in 150µl 3% methanol-

free formaldehyde in PBS (TAAB Laboratories Equipment Ltd., UK) for 15 minutes. 

After 3 washing steps (150µl PBS each), cells were permeabilised in 150µl 0.3% Triton 

X-100 (Sigma, UK) in PBS for 5 minutes. After 3 more PBS washing steps, cells were 

blocked 10 minutes with 0.1% BSA/PBS, again washed 3 times, and stained with 

rhodamine phalloidin in a goat serum buffer (Invitrogen, UK) 20 minutes at 4oC in the 

dark. After 3 final washing steps, the cytofuge unit was disassembled. Coverslips were 

mounted and slides kept at 4°C in the dark until analysis. 

 

3.5.3 Confocal microscopy and image analysis 

Confocal images were captured with a Zeiss 510 confocal laser-scanning microscope 

using a 63x/1.40 oil objective and LSM Version 3.2 SP2 imaging software (Zeiss, UK). 

A minimum of 10 images were acquired per condition. Images were exported as LSM 

files and analysed using AxioVision Version 4.8 image analysis software (Zeiss). The 

AxioVision outline tool was used to draw around each synapse between T cells and B 

cells, and all available interactions were scored in each condition. The synapse area 

was reported as the area of T-cell F-actin immune synapses (μm2) value, and exported 

into Prism Version 5 software (GraphPad) for statistical analysis.  
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3.6 Statistical considerations 

Data sets were subjected to normality testing using the Shapiro-Wilk normality test. 

Where all data sets could be accurately modelled by a Gaussian distribution an 

unpaired t test was used for analysis of differences between groups; where this was 

not the case the 2-sided Mann Whitney U test was used. For survival curves, shown by 

Kaplan-Meier plot, a log-rank (Mantel-Cox) test was performed and differences were 

expressed as Hazard Ratio with 95% confidence interval. Statistical dependence 

between two nonparametric variables was assessed by Spearman's rank correlation 

coefficient modeling. P values of less than.05 were considered statistically significant. 

Analyses were conducted using Prism Version 5 software (GraphPad). P values were 

visualized with the help of heatmap summaries in selected experiments, with blue 

colour indicating relative expansion and red colour indicating relative loss of cell 

subsets. Shades of blue and red were applied to express differences in significance 

(i.e. p<.05, p<.001, p<.0001). Values are reported as median and interquartile range, 

unless indicated otherwise.  

In treatment studies, mouse sample size calculations were based on the required 

number of mice per group needed to detect a 1.25 standard deviation difference in 

means of PD-1 expression on CD8+ T cells between mice without and with intervention 

(as expected from previous in vivo and in vitro experiments) in one-sided testing at a 

significance level α=0.05 with at least 80% power.  
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4 Breeding and maintenance of TCL1 mice and induction of disease by 

adoptive transfer 

4.1 Specific introduction 

The TCL1 model is a well-established murine model of CLL which closely mirrors the 

biology and therapeutic responses of aggressive human CLL212 (see Chapter 1.2.1). In 

general, mice become fully leukaemic after about 12 to 16 months, which makes the 

TCL1 model very time-consuming and cost-intensive. Therefore, it is crucial to 

implement optimized and reproducible standard procedures and protocols for 

genotyping and follow-up of mice in order to avoid ageing false-positive transgenic 

animals or to prematurely sacrifice transgenic mice in which the disease has not yet 

fully developed. We were the first group to demonstrate that this murine CLL is readily 

transplantable to healthy syngeneic mice by adoptive transfer (hereafter abbreviated to 

AT) of spleen cells from leukaemic donor mice. This finding has since been confirmed 

by others214-216, 220, and AT is now widely considered to be a reproducible strategy to 

study the pathomechanistic role of specific molecular targets as well as the efficacy 

and mechanism of action of novel therapies. However, considerable variability exists in 

the timing, dose, and application route of donor cells, which hampers the reproducibility 

of preclinical studies between experiments and different laboratories. It is also unclear 

whether donor cells should originate from individual mice or whether a pool of cells 

from several donors should be used. In addition, the biological course of disease after 

AT in the absence of treatment has not been well characterized. Relevant to this thesis, 

the generation and validation of standardized conditions for AT is particularly important 

to be able to rigorously investigate complex disease-related immune and 

microenvironmental interactions and how these are affected by novel therapeutic 

approaches.   

 

4.2 Goals and objectives 

My first goal for this part of my work was therefore to establish a TCL1 mouse colony in 

our centre from the breeding pairs we had received as a generous gift from our CRC 

collaborators. This included setting up protocols and procedures for breeding, 

genotyping and follow-up of transgenic mice. My second goal was to optimize the 

conditions for our in vivo preclinical studies by validating the AT model and by 

improving the transplantation conditions and the consistency of disease engraftment 

and development.  
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4.3 Specific methods 

4.3.1 Genotyping 

Material for genomic PCR was obtained from ear punches. DNA was extracted using 

alcohol precipitation after digestion at 55°C overnight with buffer consisting of 50mM 

TRIS pH 8.0 (Sigma, UK), 25mM EDTA pH 8.0 (Sigma, UK), 100mM NaCl (Fisher 

Scientific, UK), 1% SDS (Sigma, UK), and Proteinase K 20mg/ml (Roche Diagnostics, 

UK). DNA content was determined using a NanoDrop™ spectrophotometer (Thermo 

Scientific, UK). TCL1 primer sequences are: (TCL1 Forward) 5’-

GCCGAGTGCCCGACACTC-3’; (TCL1 Reverse) 5’-CATCTGGCAGCAGCTCGA-3’. 

The expected amplification product is 350 base pairs (bp). PCR products were 

confirmed by bidirectional sequencing using an ABI 3100 Genetic Analyser (Applied 

Biosystems, UK). Results were compared to the corresponding sequences for human 

TCL1 [accession number TCL1A: NM_001098725, TCL1B: NM_004918.3; National 

Center for Biotechnology Information (NCBI) GenBank database]. The endogenous 

mouse globin gene was used as an internal positive control. Mouse betaglobin (MBG) 

primer sequences are: (MBG Forward) 5’-

CCAATCTGCTCACACAGGATAGAGAGGGCAGG-3’ and (MBG Reverse) 5’-

CCTTGAGGCTGTCCAAGTGATTCAGGCCATCG-3’. The expected amplification 

product is 494 bp. All primers were purchased from Sigma UK. A negative no-template 

control (NTC) containing master mix and primers but no DNA was used for each primer 

pair. PCR conditions for TCL1 are activation at 95°C (5 min), then denaturation at 95°C 

(30 sec), annealing at 58°C (30 sec) and extension at 72°C (30 sec) for 35 cycles, and 

final extension at 72°C (5 min). PCR conditions for MBG are the same except for an 

annealing temperature of 70°C. ReddyMix Master Mix (Thermo Scientific, UK) was 

used for all PCR reactions at a total volume of 10μl. PCR products, controls and a 

100bp DNA ladder (Life Technologies, UK) were separated on a 2% agarose gel 

containing 20µl GelRed nucleic acid gel stain (VWR, UK), and visualized in a 

Transilluminator.  

 

4.3.2 Follow-up by haematology testing 

Mice were pre-warmed under a heat lamp, immobilized in a restrainer, and the lateral 

tail vein was punctured with a regular 19G needle (BD, UK). Blood smears were 

prepared, fixed with methanol, and stained with modified Romanowsky stain (Wright 

stain, Sigma, UK). A WBC count was estimated by counting 5 to 10 high power fields 

(hpf) using a 40x objective of a bright field microscope (Zeiss, UK) in an appropriate 
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area. When larger blood volumes were required, lidocaine-containing local anaesthetic 

ointment was applied to the tip of the tail and mice were warmed for 10 minutes in a 

heating chamber at 37°C. The tip of the tail was then cut with a sterile scalpel and 50μl 

of blood was collected in an EDTA-coated 1.5ml Eppendorf tube. To assess the 

proportion of CD19+CD5+ CLL cells in peripheral blood, whole blood was stained with 

1:100 CD45 APC (clone 30-F11), CD19 FITC or PE (clone eBio1D3) and CD5 PE or 

FITC (clone 53-7.3) (all eBiosciences, UK). CD19+CD5+ cells were gated on CD45+ 

cells after live/dead and singlet/doublet discrimination, and gates were confirmed by 

including samples from healthy controls.  

 

4.3.3 Adoptive transfer experiments 

Procedures for this are described in Section 3.1.5. Initial experiments used 2x107 cells 

in two separate injections three days apart, while later experiments used the same total 

cell number (4x107) in a single injection.  

 

4.4 Results 

4.4.1 Genomic PCR and TCL1 sequence analysis 

All TCL1 mice produced under licence PPL70/7531 were genotyped to confirm the 

presence of the TCL1 transgene. Copy number status and integration site were not 

examined. Sequence analysis carried out on genomic DNA from the first litter produced 

in our colony confirmed that the amplified product was identical with the coding region 

of human TCL1 (Figure 4 A). An example of a genomic PCR for four different litters is 

depicted in Figure 4 B. Bands at 494 bp for MBG as a housekeeping gene confirmed 

the quality of the extracted genomic DNA, while bands at 350 bp confirmed the TCL1 

transgene status of the animal. Breeding a transgenic male with WT females usually 

resulted in 50% TCL1 transgenic offspring, but some variation occurred, with less than 

half of some litters being transgenic. As transgene homozygosity is not lethal in TCL1 

mice, transgenic animals can also be bred with each other. However, we refrained from 

pursuing this breeding strategy to minimize the likelihood of the development of a TCL1 

sub-strain over time and to maintain better control of TCL1 lines derived from specific 

index animals, in accordance with good practise guidelines on the maintenance of 

transgenic mouse strains379. In addition, our breeding strategy allowed us to perform 
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specific experiments in age-matched WT littermates raised and kept in identical 

conditions as experimental animals.  

 

 

Figure 4: Validation of genotyping procedure and protocol to maintain the TCL1 colony. 
(A) TCL1 sequence confirmation was carried out by bidirectional sequencing and compared to 
the corresponding sequence for human TCL1 (accession number TCL1A: NM_001098725, 
TCL1B: NM_004918.3), confirming that the amplified product was identical. (B) Genomic DNA 
was amplified with TCL1 and mouse beta globin (MBG) primer pairs. MBG bands at 494bp 
confirmed the quality of the extracted DNA, while TCL1 bands at 350bp identified transgenic 
TCL1 offspring. No-template controls (NTC) demonstrate absence of PCR contamination.  

 

4.4.2 Haematology testing and anatomic sites of disease 

As seen in human CLL, blood smears from leukaemic mice showed an increase in 

circulating lymphocytes that were enlarged and displayed condensed nuclear 

chromatin. Also similar to the human disease, Gumprecht nuclear shadows (also 

known as smudge cells) as an artefact of the smear preparation were also present (see 

Figure 5 A). The immunophenotype of circulating lymphocytes also resembled human 

CLL, as murine leukaemia cells were CD19+CD5+. This population was absent in 

young transgenic mice and in age-matched WT controls (see Figure 5 B). 
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Figure 5: Results of routine haematology testing in TCL1 and WT mice. (A) Example of a 
blood smear of a leukaemic mouse. Smears were stained with a modified Romanowsky stain, 
and leukocytes were counted in 5-10 hpf using a 40x objective of a bright field microscope in an 
appropriate area. As in human CLL, mouse leukaemia cells were enlarged and had clumped 
nuclear chromatin, and Gumprecht nuclear shadows could be found. (B) Example of flow 
cytometry graphs in ageing TCL1 and age-matched WT mice. Whole blood was stained with 
CD45, CD19 and CD5. Cells were gated on CD45+ lymphocytes after live/dead and 
singlet/doublet discrimination. While young TCL1 and WT mice were free of CD19+CD5+ CLL 
cells, this population was found to consistently expand with ageing in transgenic mice.  

 

The morphology of CLL in TCL1 transgenic mice with fully developed disease is 

depicted in Figure 6 A. Just as is often the case in the human disease, mice with CLL 

exhibit hepatosplenomegaly and lymphadenopathy, which however are generally 

painless and cause only moderate impairment to the animals. Spleens are the major 

organs of disease, and are enlarged up to 5-fold compared to WT spleens (Figure 6 B). 

 

 

Figure 6: Anatomic sites of CLL in TCL1 transgenic mice. (A) Mice with CLL exhibit 
hepatomegaly (broken arrow), splenomegaly (solid arrow) and lymphadenopathy (*). (B) 
Differences in spleen sizes in organs taken from WT and TCL1 mice (m – male, f – female). 
Note differences in scale. 
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4.4.3 Adoptive transfer experiments 

A total of 12 consecutive AT experiments were conducted to optimize conditions for our 

in vivo preclinical studies (Table 7). With the exception of experiment 12, where mice 

were sacrificed at predefined endpoints, a previously determined maximum tolerable 

degree of splenomegaly assessed by physical examination along with predefined 

haematological parameters were used as endpoint definitions (see Chapter 3.1).  

 

aim exp. 
date of 

TPL 
no. 

of inj. 
recipients donors 

failed 
engraft-
ments 

weeks with 
CLL, 

median 
(range) 

spleen weight, 
median 
(range) 

testing i.v. 
TPL 

procedure 

1 17/01/12 2 1 C3H Tg 
several, 

inconsistent 

 
7.86 0.4g 

2 31/01/12 2 1 B6 Tg 
 

11.43 1g 

3 19/03/12 2 
2 C3H Tg 
4 C3H Tg 

several, 
consistent 

for individual 
mice 

1 C3H 
6.1 

(6-20) 
2.35g 

(1.8-5.6) 

establishing 
i.v. TPL 

procedure 
using 

uniform 
conditions 

4 11/05/13 2 
2 B6 Tg 
4 B6 Tg 

single donor 
 

4 
(4-5.6) 

0.8g 
(0.6-1.0) 

5 08/06/12 2 
5 B6 Tg 
4 B6 Tg 

single donor 
 

4.43 
(3.71-11.44) 

1.3g 
(0.7-2.8) 

6 02/07/12 2 
5 C3H Tg 
4 C3H Tg 

single donor 
 

7.71 
(7.71-11.57) 

1.8g 
(1.4-2.5) 

7 12/10/12 2 5 B6 Tg single donor 
 

9  
(no range, 

same 
endpoint for 

all mice) 

2.0g 
(1.6-2.6) 

comparing 
TPL in TCL1 

and WT 
recipients 

8 19/04/13 2 

5 B6 Tg 
5 B6 Tg 
5 B6 WT 
5 B6 WT 

donor pool 

1 B6 WT 
(censored 

day 60 with 
lympho-
cytosis) 

WT: 
5.8 (5-6.7) 

 
Tg: 

5 (4.7-5.9) 

WT: 
1.9g (1.9-2.8) 

 
Tg: 

1.9g (1.6-2.2) 

confirming 
TPL in WT 
recipients 

9 10/06/13 2 
3 B6 WT 
4 B6 WT 

single donor 
 

8.0 
(4.29-10.43) 

not assessed 

comparing 
2x i.v. TPL 
with 1x i.v. 

TPL 

10 01/10/13 1, 2 
10 B6 WT 
10 B6 WT 

donor pool 
 

1: 7.4 
(6.86-10.29) 

 
2: 8.0 

(6.86-10.29) 

1: 1.75g 
(1.3-2.2) 

 
2: 1.8g 

(1.3-2.4) 

confirming 
1x i.v. TPL 

11 11/02/14 1 16 B6 WT donor pool 
 

5.7 
(1.43-9) 

1.7g 
(0.5-2.2) 

confirming 
1x i.v. TPL, 

earlier 
endpoints 

12 07/04/14 1 15 B6 WT donor pool 
 

1.29 
(0.43-2.14) 

0.2g 
(0.1-0.5) 

Table 7: Overview of adoptive transfer experiments to validate and optimize the model for 
preclinical studies. Abbreviations: TPL – transplantation, i.v. – intravenous, inj. – injection(s), g 
– gram, C3H – C3HB6 background, B6 – C57Bl/6 background, Tg – transgenic, WT – wild type. 
Red font represents female recipients and blue font male recipients. 
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In the first three experiments, the aim of the AT was to test the i.v. transplantation 

procedure per se. Both TCL1 C3H and B6 recipients were used. Due to the limited 

availability of donors, cell doses and donors were often inconsistent within and 

between experiments. Therefore, the time between transplantation and culling based 

on previously defined splenomegaly and haematological parameters was quite variable 

in the initial experiments, and engraftment was not successful in one recipient. 

However, as the donor pool was greatly expanded after TCL1 mice in our colony had 

been successfully aged, we were able to examine the i.v. AT protocol under more 

uniform conditions. Using young male and female TCL1 recipients on both the C3H 

and the B6 backgrounds, we injected 2x107 cells each on d0 and d3 (total of 4x107 

cells per mouse) from single, syngeneic, leukaemic donors in four consecutive 

experiments (experiments 4 to 7 in Table 7). This led to median survivals of 4 to 9 

weeks after AT. Mice were sacrificed once they met previously defined criteria for 

spleen size and/or lymphocytosis. Examples of the development of lymphocytosis 

assessed by longitudinal blood smears are depicted in Figure 7. Although disease 

development appeared to be more aggressive in females, this difference was not 

statistically significant.  

 

 

Figure 7: Longitudinal follow-up of disease development in recipient mice after AT. 
Progression of lymphocytosis was assessed by blood smears. (A) 3 month old B6 TCL1 
transgenic males (n=5) and females (n=4) were injected with 4x107 cells from a single aged 
donor mouse with CLL, and bled every ten days. Non-transplanted transgenic female littermates 
were bled at the same time intervals as controls. Two males exhibited slower disease 
progression and were found dead on d24 (*) and d72 (**). Post-mortem examination showed 
clear signs of CLL (i.e. splenomegaly), indicating that AT was successful in all recipients. (B) 4 
month old C3H TCL1 transgenic males (n=5) and females (n=4) were injected with 4x107 cells 
from a single aged donor mouse with CLL, and bled in regular time intervals. Longitudinal blood 
smears demonstrated progressive lymphocytosis, indicating that CLL can be engrafted in both 
TCL1 backgrounds.  
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We next wanted to know if AT would lead to similar results in non-leukaemic TCL1 

transgenic and WT recipients. We therefore injected cells from a pool of aged, 

leukaemic B6 TCL1 mice into age- and sex-matched young, non-leukaemic transgenic 

mice and WT littermates, and followed disease development by blood smears and 

regular physical examination of spleen sizes. Control transgenic and WT littermates 

were injected with a pool of normal spleen B cells and sacrificed at identical time 

points. In mice that received CLL cells, there was no significant difference between WT 

and TCL1 recipients in the progression rate of lymphocytosis (Figure 8 A), spleen:body 

weight ratio (Figure 8 C) and percentage of CD19+CD5+ lymphocytes in spleen (Figure 

8 D). One WT recipient of CLL cells, in which the i.v. injection had been very 

challenging and likely led to the application of a lower cell dose, was censored from the 

study on day 60 with developing lymphocytosis, and sacrificed on day 90. Flow 

cytometry demonstrated a CLL content of 25% in the spleen, with beginning CLL-

typical T-cell phenotypic defects, with the healthy control mouse showing normal B- 

and T-cell subset distribution. This confirmed that engraftment had been successful, 

but that the longer latency was most likely related to the application of a suboptimal 

donor cell dose.  

Survival after AT was not statistically different between males and females (data not 

shown), and there was no difference in survival between WT and TCL1 recipients, 

although these comparisons are based on limited numbers of mice (Figure 8 B). After 

we confirmed successful engraftment in a second group of young WT recipients 

(experiment 9, Table 7), we concluded that WT mice can replace TCL1 mice as 

recipients in AT experiments. As B6 WT mice are readily available from commercial 

sources, this eliminates the need to breed and maintain a large stock of younger TCL1 

mice in addition to ageing mice.  
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Figure 8: Comparison of AT into young TCL1 transgenic and WT recipients. AT into 4 
month old transgenic and sex-matched WT littermates reliably induced CLL in all recipients. (A) 
Longitudinal blood smears performed every ten days demonstrated similar progression of 
lymphocytosis in WT and TCL1 recipients. (B) Leukaemic mice were sacrificed after a median 
time of 5.8 (WT recipients) and 5 (TCL1 recipients) weeks, with no difference between groups 
(HR .288, 95%CI .05-1.54, p=.1439). At the endpoint, spleen:body weight ratio (C) and 
%CD19+CD5+ lymphocytes in spleen (D) were comparable between WT and TCL1 recipients.   

 

We then sought to improve the AT procedure further by reducing the number of i.v. 

injections to a single injection, while maintaining the total dose of 4x107 cells. The goals 

were to reduce animal stress by eliminating a second invasive procedure while also 

reducing the likelihood of a potentially failed injection leading to the application of a 

suboptimal dose of cells. Male and female WT recipients were randomized to a single 

injection of 4x107 cells (1x), or to two injections of 2x107 cells each within 3 days of 

each other (2x), using the same donor pool for all recipients. As observed in previous 

experiments, females appeared to have a faster progression of lymphocytosis, but this 
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was not statistically significant. Both 1x and 2x injections produced reliable and similar 

rates of disease development (Figure 9 A). At the endpoint, there was no difference 

between 1x and 2x recipients in spleen:body weight ratio (p=.9705) and relative 

percentage of CD19+CD5+ lymphocytes in spleen (p=.9517) (Figure 9 B), thus 

validating the use of a single injection while maintaining a total dose of 4x107 cells. 

These findings were confirmed in a second group of young WT recipients (experiment 

11, Table 7). 

 

 

Figure 9: Improvement of AT model by reducing the number of i.v. injections to a single 
injection. (A) Longitudinal blood smears performed in regular intervals demonstrated very 
similar progression of lymphocytosis in all recipients. Females appeared to have a shorter time 
to lymphocytosis but this difference did not reach significance. (B) At the endpoint, spleen:body 
weight ratio and spleen CLL load were comparable between 1x and 2x recipients.  
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CLL was extremely reliably induced across all AT experiments, with only two out of 115 

transplanted animals failing engraftment. The median time between AT and fully 

developed CLL meeting predefined endpoint criteria as described in Chapter 3.1 was 7 

weeks (range 3.71-20, Figure 10 A). There were no differences in outcome between 

mice receiving cells from a single donor (n=36) and those receiving cells from a pool of 

donors (n=31) (HR .7842, 95% CI .4561-1.348, Figure 10 B). Splenic CLL load, defined 

as the percentage of CD19+CD5+ lymphocytes among spleen mononuclear cells and 

measured at the endpoint, was highly significantly correlated with spleen weight, 

indicating that the estimation of spleen size by palpation is an adequate parameter to 

determine the disease status of individual mice, with the caveat that inter-examiner 

heterogeneity might exist due to different levels of experience or interpretations 

(spearman r .7936, p<.0001, Figure 10 C). This can however be limited by setting up 

and following rigorous previously defined guidelines. In addition, increasing spleen 

weight and weeks after AT were significantly correlated (spearman r .7196, p<.0001, 

Figure 10 D), indicating that longer time with CLL translates into higher spleen weight 

as a surrogate for disease load. While some variability exists and is likely dependent on 

the biology of the transplanted disease as well as the gender of the recipient animal, 

this correlation allows reasonable estimation of when drug intervention should be 

initiated (i.e. early intervention at an earlier stage of disease versus later intervention at 

fully developed CLL). In sum, these experiments outline a reliable strategy for 

modelling CLL in mice by AT. 
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Figure 10: Reproducibility of and survival after AT: (A) Across consecutive experiments 
using different donors, AT led to consistent disease development in recipient mice (median 
survival 7 weeks, range 3.71-20). (B) Cells from a single donors (n=36 recipients) and cells 
pooled from several donors (n=31 recipients) produced comparable outcomes (HR .7842, 95% 
CI .4561-1.348). (C) The relative frequency of spleen CD19+CD5+ lymphocytes was highly 
significantly correlated with spleen weight. (D) Increasing spleen weight and weeks after AT 
were significantly correlated with each other. 

 

4.5 Discussion 

This fundamental optimization work has led to the establishment of an efficient and 

well-characterized TCL1 mouse colony and has allowed us to implement the necessary 

breeding, genotyping and ageing procedures in our centre. It has consolidated i.v. 

transplantation procedures, which previously were poorly defined, to reliably generate a 

CLL phenotype in previously disease-free transgenic mice on both the original C3H 

and the backcrossed B6 background. Furthermore, this work has optimized and 

standardized AT methodology by validating the use of young WT recipients and by 

reducing the number of required injections in controlled and randomized experiments. 

Together, these studies provide a reproducible and far more feasible approach for 

using the TCL1 mouse model in CLL preclinical research. This work will enormously 

facilitate the in vivo evaluation of novel agents as well as the investigation of immune 

defects in the context of developing disease, and approaches to repair them.  
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In contrast to the majority of published studies using AT in immunocompetent 

recipients, our transplantation strategy consists of higher cell doses and also uses a 

different application route. In initial reports, up to 106 and 107 spleen MNC were applied 

once by intraperitoneal (i.p.) injection214, 215. More recent publications administered 1.5 

to 2x107 MNC in up to 4 i.p. injections220, 227. Successful AT in SCID or TCL1 model 

variations using similar doses and application routes has been demonstrated by 

several other groups65, 231, 260, 261, although the specifics of these experiments vary 

substantially, and comparison of results between laboratories is therefore challenging. 

Similar to our strategy, Woyach et al. injected XID and B6 mice with 5x106 to 5x107 

cells i.v.228.  

In general, higher cell doses led to faster disease development and consequently 

shorter survival of animals. Animals that received 106 MNC had a median survival of 

166 days, while animals transplanted with 107 MNC in the same study survived for a 

median of 121 days214. Previous experiments from our group used a total of 1x108 cells 

injected i.v., which led to CLL-associated molecular T-cell defects after a latency of just 

8 days216. To achieve maximal experimental efficiency while being able to study the 

immune modulating effect of drug treatment, a short latency of disease that still leaves 

enough time for immune defects to develop is valuable. In view of these results, the 

dose and administration route selected and validated in this work balance these 

potentially conflicting experimental requirements and provide a solid basis for 

preclinical testing of immune modulating mechanisms of actions of novel drugs. 

In the current study, we demonstrate that virtually all mice exhibit fully developed CLL 

after a median of 7 weeks following AT. Although some mice had a later onset of 

disease (e.g. two males in experiment 6, and one male in experiment 8), all eventually 

succumbed to disease after showing signs of progressive CLL assessed by spleen size 

and lymphocytosis following previously defined criteria. This latency can most 

reasonably be explained by suboptimal injections leading to application of lower donor 

cell numbers. In general, CLL development was very consistent within single 

experiments. This was even further improved after reducing the number of injections, 

thus reducing the likelihood of suboptimal injections. However, variability between 

different experiments could also be due to the biology of the donor disease. Such 

differences in disease onset are common even within closely related TCL1 transgenic 

mice, suggesting that as-yet unidentified variables within individual animals influence 

the aggressiveness of leukaemia development. These experiments also frequently 

suggested a faster progression of disease in female mice; however, this difference was 

not statistically different even when combining data from all experiments. 
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5 Investigation of T-cell dysfunction in Eµ-TCL1 mice on the B6 background 

5.1 Specific introduction 

As described in Section 1.2.1, our group previously demonstrated that development of 

CLL in TCL1 mice is associated with global T-cell defects similar to those observed in 

human patients216. While expression of the TCL1 transgene in B cells had no effect on 

T cells before the development of CLL, with non-leukaemic mice exhibiting normal T-

cell numbers and function, development of CLL (i.e. expansion of CD5+CD19+ B cells) 

led to various T-cell defects. These included decreased in vivo antigen-specific T-cell 

activation, suppressed T-cell proliferation, and impaired induction of idiotype-specific 

CD8+ cytotoxic T-cells. T-cell lymphokine production was also dysfunctional and 

appeared Th2 preponderant. Gene-expression profiling of T cells from TCL1 mice with 

CLL revealed several differentially expressed genes in both CD4+ and CD8+ cells 

compared to those from WT or non-leukaemic transgenic mice. These were mostly 

involved in pathways of cell proliferation, differentiation, effector function, and actin 

cytoskeleton formation. With increasing tumour burden, these changes became more 

evident, again correlating with findings in human CLL. The causal relationship between 

leukaemia and induction of T-cell defects was demonstrated by the finding that AT of 

CLL cells into young disease-free mice rapidly induced the molecular T-cell changes 

observed in ageing TCL1 mice with CLL.  

In these original experiments, TCL1 mice on the original B6C3H-F1 background were 

used. B6C3H-F1 mice are hybrids produced by crossing mice of the two inbred strains 

C57Bl/6 (B6) and C3H [source: http://research.jax.org/grs/type/hybrid/index.html, 

accessed 17.10.11]. Although F1 hybrid mice are genetically and phenotypically 

uniform and possess great vigour, they are heterozygous at all loci for which their 

parents have different alleles. When mating F1 mice to produce F2 offspring, litters will 

therefore all have a unique random mixture of alleles from both parental strains, which 

will be further mixed in consecutive generations. To obtain a uniform genetic 

background, TCL1 mice on the B6C3H-F1 background were backcrossed over more 

than 10 generations to a pure B6 background. More important than eliminating the 

possibility that such genetic diversity might have an effect on immune responses, mice 

on a pure B6 background can more easily be crossed with other disease models, for 

example PD-L1 knockout mice, which will be an integral component of future 

experiments. Once the backcross was established, only a single study has examined 

T-cell dysfunction in B6 TCL1 mice by looking at T-cell subset composition changes in 

lymph nodes and peripheral blood220. In this report, TCL1 mice with manifest CLL had 

increased absolute T-cell numbers and exhibited a shift from naïve to antigen-
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experienced CD4+ and CD8+ T cells compared to age-matched WT controls, which 

was more pronounced in lymph nodes than in peripheral blood. These preclinical 

observations are largely in line with T-cell subset alterations in peripheral blood in 

human CLL, as described in Chapter 1.1.4. However, peripheral blood and secondary 

lymphoid organs and bone marrow have entirely different and distinct 

microenvironments based on their physiological roles in supporting lymphocyte 

maturation and differentiation. The importance of these tissue microenvironments for 

the interaction with CLL cells was recently explored by Mittal et al.380. The comparison 

of gene expression profiles of purified CLL cells from peripheral blood, bone marrow 

and lymph nodes revealed that gene signatures representing pathways critical for 

survival and activation of B cells were altered in different tissue compartments. Genes 

associated with the BCR, BAFF/APRIL and NF-κB pathway and immune suppression 

were enriched in lymph nodes, suggesting that they might be the primary site for 

tumour growth. In contrast, blood CLL cells overexpressed chemokine receptors, while 

their cognate ligands were enriched in secondary lymphoid organs and bone marrow. 

Bone marrow signatures were also enriched with antiapoptotic, cytoskeleton and 

adhesion molecules, and in TCL1 mice, a high percentage of leukaemic cells from the 

lymphoid compartment expressed key BCR and NF-κB molecules.  

The importance of different microenvironments on T-cell defects is however not well 

understood, and it is not clear to what extent T-cell defects described in the peripheral 

blood of CLL patients or TCL1 mice directly mirror the defects in other 

microenvironments. Moreover, it is possible that T-cell defects might be influenced by 

differences in CLL load in different compartments, or are subjected to dynamic 

changes while CLL develops or progresses. These questions have not been fully 

answered to date; Hofbauer et al.220 focused their characterization of T-cell subsets to 

peripheral blood and lymph nodes, but excluded spleen. However, the spleen is 

considered the major organ of disease in this model, and preclinical characterization 

studies such as the T-cell work from our group216, or studies investigating the effect of 

therapeutic interventions265, are generally done using splenocytes from TCL1 mice. In 

addition, this characterization was only done in a small number of moribund aged TCL1 

mice and in mice that became ill after a very long latency of 3 to 6 months after 

adoptive transfer, resulting in a large biological range of overall CLL disease load which 

might have biased the exploration of their effect on the T-cell compartment. In addition, 

a careful and thorough longitudinal investigation of the development of not only 

phenotypic T-cell subsets, but also functional T-cell defects alongside progressing 

disease has not been conducted.  



Fabienne McClanahan                                                                                                     Chapter 5 

Page 94 of 258 

 

5.2 Goals and objectives 

My next goal was therefore to fully validate the B6 TCL1 model for the investigation of 

global T-cell defects, to further characterize T-cell subsets in the context of advancing 

CLL in all CLL affected compartments, and to explore the impact of developing CLL on 

effector T-cell function. Specifically, I sought to address the following questions:  

 Do leukaemic B6 TCL1 mice recapitulate T-cell dysfunction previously observed in 

leukaemic B6C3H-F1 TCL1 mice? 

 Can AT into young TCL1 transgenic and WT B6 mice be used to model the T-cell 

dysfunction observed in leukaemic TCL1 mice?  

 How do T-cell defects develop in vivo in relation to CLL development? 

 Are T-cell defects observed in spleen representative of T-cell defects in other 

secondary lymphoid organs and in the peripheral blood?   

 

5.3 Specific methods and materials 

5.3.1 Mice and examined organs 

In addition to gene expression profile and effector function, T-cell subset composition 

appears to be quite similar in human patients and mice with CLL. We therefore used T-

cell subsets as a surrogate marker for global T-cell dysfunction to compare ageing 

TCL1 mice on the B6C3H-F1 background to ageing TCL1 B6 mice, and to validate the 

AT model to adequately mirror the defects seen in ageing CLL in both backgrounds. 

Three, 6 and 12 month old TCL1 mice on both backgrounds with confirmed presence 

of the TCL1 transgene by genomic PCR were selected from our colony. The mice 

selected were mostly littermates, with males and females being well balanced. To 

minimize the likelihood of a batch effect, experiments were repeated in a second group 

of 3, 6, and 12 month old B6 TCL1 mice and in 3 month old B6C3H-F1 TCL1 mice. 

Additional 6 and 12 month old B6C3H-F1 TCL1 mice were not examined as the 

breeding of this background was already terminated based on the clear findings of the 

first cohort. In collaboration with our Animal Technician Service (ATS), we 

cryopreserved sperm from young B6C3H-F1 TCL1 males before terminating the line. 

Sperm was confirmed to be viable and fertile after freezing/thawing as demonstrated by 

the ability to induce a two-cell stage embryo development, which will allow us to quickly 

recover the line should the need arise. The disease and T-cell phenotype in AT mice 

was examined using mice from experiments 5, 6, 7 and 11 (as described in Chapter 4). 
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Age- and sex-matched WT mice were purchased from commercial suppliers. Mice 

were sacrificed at the required age under protocol 19b2 of PIL 70/7531, and peripheral 

blood (PB), lymph nodes (LN), bone marrow (BM) and spleens were harvested and 

processed as described in Chapter 3.1.4.  

After optimization of functional T-cell assays, a third round of experiments confirming 

phenotypic changes, expanding the phenotype panel to include further subsets, and 

investigating T-cell function in spleen was conducted using 3, 6 and 12 month old B6 

TCL1 mice, AT mice, and age- and sex-matched WT controls from commercial 

suppliers. An overview of all cohorts of mice including numbers, as well as their usage 

and availability of organs for specific experiments is provided in Table 8.   

 

I. Available mice to assess T-cell phenotype in spleen alongside developing CLL 

 

CLL in spleen T-cell phenotype 

 

3mo 6mo 12mo AT 3mo 6mo 12mo AT 

B6 WT 

1
a
 n=6 2

a
 n=6 3

a
 n=4 4

a 
n=6 1

a
 n=6 2

a
 n=6 3

a
 n=4 4

a 
n=6 

1
b
 n=6 2

b
 n=6 3

b
 n=4 not repeated 1

b
 n=6 2

b
 n=6 3

b
 n=4 not repeated 

B6 TCL1 

5
a
 n=6 6

a
 n=6 7

a 
n=6 8

a 
n=6 5

a
 n=6 6

a
 n=6 7

a 
n=6 8

a 
n=6 

5
b
 n=6 6

b
 n=6 7

b
 n=6 8

b
 n=4 5

b
 n=6 6

b
 n=6 7

b
 n=6 8

b
 n=4 

C3H TCL1 

9
a 

n=6 10
a
 n=6 11 n=6 12 n=5 9

a 
n=6 10

a
 n=6 11 n=6 12 n=5 

9
b
 n=6 not repeated not repeated not repeated 9

b
 n=6 not repeated not repeated not repeated 

II. Available mice to assess T-cell function in spleen alongside developing CLL 

 
CLL in spleen T-cell function 

 

3mo 6mo 12mo AT 3mo 6mo 12mo AT 

B6 WT 1
funct

 n=6 2
funct

 n=6 3
funct

 n=6 4
funct

 n=10 1
funct

 n=6 2
funct

 n=6 3
funct

 n=6 4
funct

 n=10 

B6 TCL1 5
funct

 n=6 6
funct

 n=6 7
funct

 n=6 not done 5
funct

 n=6 6
funct

 n=6 7
funct

 n=6 not done 

III. Available mice to assess T-cell phenotype in organs alongside developing CLL 

 

CLL in BM, PB, LN T-cell phenotype 

 

3mo 6mo 12mo AT 3mo 6mo 12mo AT 

B6 WT 

1
a
 n=6 2

a
 n=6 3

a
 n=4 4

a 
n=5 1

a
 n=6 2

a
 n=6 3

a
 n=4 4

a 
n=5 

1
funct

 n=6 2
funct

 n=6 3
funct

 n=6 4
funct

 n=10 1
funct

 n=6 2
funct

 n=6 3
funct

 n=6 4
funct

 n=10 

B6 TCL1 

5
a
 n=6 6

a
 n=6 7

a 
n=6 8

a 
n=6 5

a
 n=6 6

a
 n=6 7

a 
n=6 8

a 
n=6 

5
funct

 n=6 6
funct

 n=6 7
funct

 n=6 not done 5
funct

 n=6 6
funct

 n=6 7
funct

 n=6 not done 

Table 8: Summary of all cohorts of mice used to validate and further characterize T-cell 
defects in spleen and other organs. Abbreviations: mo – months, AT – adoptive transfer, B6 – 
C57Bl6, WT – wild type, C3H – B6C3H-F1, BM – bone marrow, PB – peripheral blood, LN – 
lymph nodes. 
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5.3.2 Multicolour flow cytometry for cell surface markers 

As in humans, murine CD3ε expression is correlated with T-cell maturation, and the 

CD8+ and CD4+ molecules are used for identification of helper and cytotoxic T cells381. 

Antigen-experienced T-cell markers include CD44, CD62L, and CD45RB. CD62L (L-

selectin) is a peripheral lymph node homing receptor382. As a marker of T-cell 

development it is expressed on naive and memory T cells, while effector cells 

downregulate CD62L and can also express a diverse set of homing receptors to enable 

them to pass through non-lymphoid tissues383, 384. Murine CD44 and CD45RB 

correspond to human CD45RO as markers of antigen-experienced T cells, and are 

highly expressed on memory and effector T cells385-387. The concept of CM and EM 

cells was introduced in in 1999388. Both are functional subsets within CD45RO memory 

cells in humans, but show differences in their anatomical location, expression of cell 

surface markers and functional responses. Mice contain a comparable CD44+ cell 

population after clearance of acute viral infection, fitting the description of CM cells, and 

CD44RB-CD44+CCR7-CD62L- T cells, fitting the description of EM cells389. In our 

experiments, T-cell subsets were characterized based on the surface expression of 

CD3, CD4, CD8, CD62L, CD44 and CCR7, and CLL by CD19 and CD5. Information on 

antigens, fluorochromes, clones, concentrations and suppliers is listed in Table 9.  

 

 mouse antigen fluorochrome clone concentration host/isotype supplier 

T-cell 
phenotype 

CD3e APCCy7 17A2 0.2 mg/ml rat IgG2bκ Biolegend 

CD4 PerCPCy5.5 RM4-5 0.2 mg/ml rat IgG2aκ eBioscience 

CD8a FITC 53-6.7 0.5 mg/ml rat IgG2aκ eBioscience 

CD62L APC MEL-14 0.2 mg/ml rat IgG2aκ eBioscience 

CD44 PE IM7 0.2 mg/ml rat IgG2bκ eBioscience 

extended 
T-cell 

phenotype 

 

CD3e APCCy7 17A2 0.2 mg/ml rat IgG2bκ Biolegend 

CD4 PerCPCy5.5 RM4-5 0.2 mg/ml rat IgG2aκ eBioscience 

CD8a BV605 53-6.7 0.5 mg/ml rat IgG2aκ Biolegend 

CD62L FITC MEL-14 0.2 mg/ml rat IgG2aκ eBioscience 

CD44 AF700 IM7 0.2 mg/ml rat IgG2bκ eBioscience 

CCR7 PeCy7 4B12 0.2 mg/ml rat IgG2aκ eBioscience 

CLL 
CD5 APC 53-7.3 0.2 mg/ml rat IgG2aκ eBioscience 

CD19 FITC eBio1D3 0.5 mg/ml rat IgG2aκ eBioscience 

Table 9: Summary of antigens, fluorochromes, clones, concentrations and suppliers 
used to assess T-cell subsets in relation to CLL. 
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Cells were prepared for flow cytometry as described in Chapter 3.4, with the exception 

of CCR7, which required different conditions due to continuous recycling of chemokine 

receptors: cells were stained at 37ºC at 5% CO2 for 20 minutes, followed by staining 

with the remaining fluorochrome cocktail for 20 minutes at room temperature. Cells 

were then washed and processed as described in Chapter 3.4.1. Optimization 

experiments demonstrated that this resulted in better resolution between positive and 

negative populations, and that this could be achieved by using a 4:100 dilution (see 

Figure 11).  

 

 

Figure 11: Optimization of CCR7 4B.12 antibody. (A) TCL1 spleen cells were stained with a 
cocktail of anti-CD3, 4, 8, 44, 62L and CCR7 antibodies (full stain) for 20 minutes at room 
temperature (RT), at 37ºC, or with CCR7 for 20 minutes at 37ºC followed by 20 minutes staining 
at RT with the remaining cocktail. Fluorescence-minus-one (FMO) controls for CCR7 were 
included for all conditions. Incubation at 37ºC resulted in better resolution of positive and 
negative populations, and could be further improved by consecutive 37ºC/ RT staining. (B) WT 
and TCL1 spleen cells were then stained at 37ºC for 20 minutes followed by 20 minutes RT for 
the remaining cocktail using decreasing concentrations of CCR7. 3 to 5µl resulted in 
comparable resolution of CCR7+ populations, while brightness measured by median 
fluorescence intensity of CCR7-PeCy7 was not enhanced (C). 

 

Samples were acquired on a BD LSRII. Stopping gates were set to record at least 

12,000 CD3+CD8+ events. An example of the gating strategy to identify naive vs. 

antigen-experienced effector and memory, as well as CM and EM CD8 T cells, is 

depicted in Figure 12. Cells were gated on viable (i.e. DAPI-negative) single 

mononuclear cells (MNC) (Figure 12 B). CD4 and CD8 were gated on CD3+ 

lymphocytes (Figure 12 C), and CD8 subsets were gated on CD3+CD8+ MNC. Naïve 
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cells were identified as CD44low+CD62L+ and antigen-experienced cells as CD44+, 

with memory cells being CD62L+CD44high+ and effector cells being 

CD44medium/high+CD62low+. EM and CM cells were characterized based on 

CD62L/CCR7 expression. FMO controls for CD44 and CCR7 were included in all 

experiments (Figure 12 D).  

 

 

Figure 12: Gating strategy to identify naive vs. antigen-experienced effector, memory, 
central memory (CM) and effector memory (EM) CD8 T cells. (A) Summary of expression 
patterns and surface antigens to identify cell subsets. (B) Cells were gated on DAPI-negative 
single mononuclear cells (MNC). (C) CD4 and CD8 were gated on CD3+ MNC. (D) Naïve, 
antigen-experienced (Ag-exp.), EM and CM cells were gated on CD3+CD8+ MNC, and 
fluorescence-minus-one (FMO) controls for CD44 and CCR7 were included in all experiments. 

 

5.3.3 Multicolour flow cytometry for intracellular cytokines and effector 

function 

For these studies, T-cell subsets were characterized based on the surface expression 

of CD3, CD8 and CD44 to allow a basic discrimination between naïve CD44- and 

antigen-experienced CD44+ cells. Cytotoxicity was assessed by measuring CD107a 

effector cell degranulation and intracellular Granzyme B (GrB). Intracellular IFN-γ, IL-2 

and IL-4 were selected as representative Th1/Th2 cytokines and cytokines that our 

group has identified to be aberrantly produced by CD8+ T cells in humans133. Ex vivo 

proliferation was measured by intranuclear ki67. Information on antigens, 
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fluorochromes, clones, concentrations and suppliers is listed in Table 10. Up to 1x106 

fresh spleen cells were kept in 250µl RPMI 1640 with 10% FCS (Sigma), 1% 

Penicillin/Streptomycin, 1% Glutamine (both LifeTechnologies), and 500mM beta-

mercaptoethanol (Gibco) in round-bottom 96-well-plates (VWR). 5µg/ml CD107a was 

added to each well, and cells were stimulated with 500X PMA/Ionomycin cell 

stimulation cocktail (eBioscience, UK) for 6 hours at 37ºC/5% CO2, while 500X 

brefeldin A/monensin protein transport inhibitor cocktail (eBioscience, UK) was added 

for the last 5 hours of culture. Controls included wells with CD107a and protein 

transport inhibitor cocktail, but no cell stimulation cocktail, for each mouse. After the 

incubation, cells were harvested and processed as described in Chapter 3.4.2. Cells 

were then washed, and unstimulated wells were split for cytokine and ki67 stains. After 

fixation and permeabilisation as described in Chapter 3.4.2, cells were stained with 

intracellular and intranuclear antibodies for 1h at 4ºC at a 1:100 dilution. All steps were 

performed in a 96-well plate. 

 

 mouse antigen fluorochrome clone concentration 
host/ 

isotype 
supplier 

surface stain 

CD3e APCCy7 17A2 0.2 mg/ml rat IgG2bκ Biolegend 

CD8a BV605 53-6.7 0.5 mg/ml rat IgG2aκ Biolegend 

CD44 AF700 IM7 0.2 mg/ml rat IgG2bκ eBioscience 

cytotoxicity 
CD107a PE eBio1D4B 0.2 mg/ml rat IgG2aκ eBioscience 

GrB e450 NGZB 0.2 mg/ml rat IgG2aκ eBioscience 

intracellular 
cytokines 

IFN-γ AF488 XMG1.2 0.5 mg/ml rat IgG2aκ eBioscience 

IL-2 PeCy7 
JES6-
5H4 

0.2 mg/ml rat IgG2bκ eBioscience 

IL-4 PerCPefl 710 11B11 0.2 mg/ml rat IgG1κ eBioscience 

proliferation ki67 PeCy7 SolA15 0.2 mg/ml rat IgG2aκ eBioscience 

Table 10: Summary of antigens, fluorochromes, clones, concentrations and suppliers 
used to assess T-cell function in relation to CLL. 

 

IFN-γ, IL-2 and IL-4 were gated on CD3+ viable single MNC and plotted against CD8 

(Figure 13 A). CD107a, GrB and IFN-γ were gated on viable single CD3+CD8+ MNC 

and plotted against CD44 (Figure 13 B). Unstimulated cells were used as internal 

controls to determine correct gate positions. Ki67 was plotted against CD44 and gated 

on CD3+CD8+ viable single MNC, with FMO ki67 as control (Figure 13 C). CD44 was 

included as a marker to discriminate between naïve and antigen-experienced cells. 

Stopping gates were set to CD3+CD8+ cells to record at least 10,000 events, or until 

the sample had been fully aspirated, whichever occurred first. Differences in T-cell 
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function between mice with CLL and age-matched WT mice, and between mice of 

different age groups, were compared by calculating ratios between CD44+ antigen-

experienced cells positive for a cytokine/CD107a/GrB/ki67 and CD44+ antigen-

experienced cells negative for the same marker. Similar comparisons were made, 

where applicable, among CD44- naïve cells (Figure 13 D). Biologically, this describes 

differences and changes in cell subsets that maintain the ability to exert effector cell 

function compared to cells of the same subset that do not have this ability within one 

experimental group. In the context of shifting overall cell subsets with CLL compared to 

WT, direct comparisons of e.g. CD44+CD107a+ cells of leukaemic mice to 

CD44+CD107a+ cells of healthy mice might be less accurate, and are likely to not 

properly reflect the true biological impact of such changes.  

 

 

Figure 13: Gating strategy for functional T-cell assays. (A) Intracellular cytokines were 
gated on CD3+ viable single MNC, plotted against CD8, and compared between unstimulated 
and mitogen-stimulated cells for each animal. (B) Effector cell cytotoxicity was gated on 
CD3+CD8+ viable single MNC, plotted against CD44 and compared between unstimulated and 
mitogen-stimulated cells for each animal. (C) Intranuclear ki67 was gated on CD3+CD8+ viable 
single MNC and plotted against CD44. (D) Because of overall shifting cell subsets with CLL 
development and additional dynamics in the context of ageing (as depicted in the graph), 
changes in T-cell effector function were compared by calculating ratios between cytotoxic cells 
(CD107a+, selected as an example but representative for cytokines, GrB and ki67) and non-
cytotoxic cells (CD107a-) among CD44+ or CD44- subsets within one experimental group. The 
ratios of experimental groups were then compared to each other to describe changes in the 
ability of cells to exert certain effector functions.  
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5.3.4 Multicolour flow cytometry for in vivo proliferation 

In addition to intranuclear ki67, we measured in vivo proliferation by EdU incorporation. 

Preparation of EdU, injection of mice, and processing of samples and cells are 

described in Chapter 3.4.4.2.3. Cells were surface stained with CD19 v450 (clone 1D3, 

BD, UK), CD5 PE (clone 53-7.3, eBioscience, UK), CD8 BV605 (clone 53-6.7, 

Biolegend, UK) and PD-1 APC (clone RMPI1-30, eBioscience, UK) for 20 minutes at 

room temperature, washed again and resuspended in 300µl FACS buffer. Samples 

were acquired on a BD LSRII, cells were gated on single MNC, and stopping gates 

were set to CD5+ cells. CD5 was plotted against CD19 to discriminate between double 

positive CLL cells, CD19+ B cells, and CD5+ T cells. CD8+ and CD8- cells were then 

gated on CD5+ cells. An example of the gating strategy is shown in Figure 14. 

Proliferating cells were identified as Alexa488 positive populations, based on negative 

internal controls without Alexa488 in the Click-iT cocktail.  

 

 

Figure 14: Gating strategy for EdU in vivo proliferation. Fixed and permeabilised spleen 
cells were incubated with a Click-iT reaction cocktail with and without Alexa488 azide dye, 
followed by surface staining for CD5, 19 and 8. Cells were gated on single MNC, and B, T and 
CLL cells were identified based on CD19 and CD5 expression. B-cell and T-cell proliferation, as 
well as CLL proliferation (not shown in these plots as example is taken from 3 month old WT 
mouse without a CLL population) were assessed by Alexa 488 expression. Gates were 
determined based on samples without Alexa488 staining.  
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5.4 Results 

5.4.1 CLL progressively develops in transgenic TCL1 mice but shows 

considerable biological diversity, and can be consistently induced by AT in 

peripheral blood and secondary lymphoid organs 

While young TCL1 mice on both backgrounds were free of CLL, at the age of 6 

months, single cell suspensions from spleen, PB, and BM, but not LN started to be 

enriched for CD19+CD5+ cells. This progressed further with ageing in both the B6 and 

C3H backgrounds as expected, but considerable biological diversity was observed: 

among the 12 month old TCL1 cohorts examined, the median CLL load in spleen was 

16.5% in group 7a (see Table 8), 62.4% in group 7funct and 32.3% in group 11, with 

ranges of 8.4-25.8% (group 7a), 8.2-76.8% (group 7funct) and 9.8-77.8% (group 11). 

Similarly wide ranges were detected in other organs, but spleen and PB appeared to 

be the major compartments/organs of disease, exhibiting the highest median 

percentages of CD19+CD5+ cells. While these observations validate the backcrossed 

B6 background, they also underscore the differences in disease behaviour and indicate 

that even within littermates, some mice can already have late-stage CLL whereas 

others can still be found to have a relatively low burden of disease. In experiments 

using aged-matched WT mice, we routinely confirmed the absence of CLL in all 

examined organs.  

As described in Chapter 4, AT resulted in consistent CLL development in virtually all 

recipient mice. Uniformity of disease load was superior to ageing TCL1 mice, even 

when combining different AT experiments with different donors into the same analysis. 

The only exception were LNs, where the relative frequency of CD19+CD5+ 

lymphocytes was lower than in 12 month old leukaemic TCL1 mice (AT median 2.4%, 

range 0.3-21.9, versus 12 month TCL1 median 7.0%, range 1.6-16.6, p=.0083). 

However, LNs also appeared to have a longer disease latency and lagged behind other 

organs in ageing leukaemic TCL1 transgenic mice, as there was no difference in LN 

disease involvement between 3 month old (median 0.7%, range 0.3-1.8) and 6 month 

old (median 0.6%, range 0.4-4.8) transgenic mice (p=0.4023). Thus, although AT might 

not mirror the rate of leukaemic development in LNs observed in ageing TCL1 

transgenic mice, this model still appears more than adequate to model immune cell 

interactions with the LN microenvironment.  

We conducted all comparisons in individual ageing TCL1 transgenic mice and AT 

mouse cohorts separately. As the overall trend was found to be very similar within 

cohorts, making the existence of a batch effect unlikely, we combined cohorts for 
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statistical analyses to consolidate their statistical power. Figure 15 A depicts a 

summary of CLL development in combined cohorts of different age groups. Data is 

depicted as median with interquartile range. Figure 15 B summarizes statistical 

differences in the relative expansion of the CD19+CD5+ cell subset compared to 3 

month old TCL1 mice as baseline. 

 

 

Figure 15: CLL development in ageing TCL1 mice and after AT in peripheral blood (PB) 
and secondary lymphoid organs. PB and single cell suspensions from bone marrow (BM), 
lymph nodes (LN) and spleen (SP) of 3, 6 and 12 month old TCL1 mice and AT mice were 
stained for CD19 and 5 to determine disease load. (A) CLL progressively developed in TCL1 
mice but showed considerable biological diversity. Disease could be more consistently induced 
by AT, but CLL load in LN was lower than in ageing TCL1 mice. Graph depicts median with 
interquartile range (IQR). (B) Heatmap summary of p-values describing statistical differences in 
the organ CLL load. Groups were compared to the relative percentage of CD19+CD5+ cells in 3 
month old mice. Blue colour indicates relative expansion of cell subsets. ns = not-significant; 
*p<.05, **p<.001, ***p<.0001. Mann-Whitney test was used for non-normally distributed data 
and unpaired t-test for normally distributed data, as determined by Shapiro-Wilk normality test. 

 

5.4.2 Developing CLL is associated with significant changes in relative and 

absolute numbers of T-cell subsets in spleen 

We next examined changes in T-cell phenotype in organs from ageing TCL1 transgenic 

and AT mice. Groups of experimental animals are summarized in Table 8 under “I. 

Available mice to assess T-cell phenotype in spleen alongside developing CLL”. We 

first focused on the spleen in B6 and C3H TCL1 mice, and then compared B6 TCL1 

mice to age- and sex-matched B6 WT mice. C3H WT mice were not examined, as the 

primary focus of these experiments was to validate the B6 TCL1 by direct comparison 

of relative patterns to the C3H TCL1 model, and then compare relative and absolute 

changes between B6 TCL1 to WT mice in a second step. In addition, our colony did not 

produce sufficient numbers of C3H WT littermates to allow us to easily include them as 

controls, as we had received C3H TCL1 mice bred to homozygosity from our 

collaborators. Although we altered the breeding strategy for the B6 background by 
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breeding TCL1 mice with WT mice, as discussed in the previous chapter, we did not 

pursue this for the C3H background due to time and cost considerations. For the same 

reason, we decided against purchasing aged B6C3H-F1 WT mice from commercial 

suppliers, as we believed this would not have added significant information to further 

the project.  

In ageing transgenic mice of both backgrounds, we observed a loss in the percentage 

of CD3+ T cells among all lymphocytes with increasing CLL burden, with the greatest 

range at the age of 12 months (data not shown), which is in line with the biological 

diversity of CLL development described in Chapter 5.4.1. Within CD3+ cells, the 

CD4+/CD8+ ratio decreased with developing CLL (Figure 16 A) as a result of a 

combination between an expansion of CD3+CD8+ cells and a reduction of CD3+CD4+ 

cells (data for percentages of CD3+, CD4+ and CD8+ cells not shown). This was more 

clearly recapitulated in ageing B6 TCL1 than in C3H TCL1 mice, and could be induced 

by AT in young TCL1 mice as well as in young WT mice. In ageing WT mice, the 

relative frequencies of CD3+ and CD4+ cells were constant, but CD8+ cells were lost. 

This led to an increase of the CD4+/CD8+ ratio (Figure 16 A), which is in marked 

contrast to the CLL-driven inversion observed in TCL1 mice. In line with the CLL-

associated organomegaly, absolute numbers of CD3+, CD4+ and CD8+ cells 

increased in ageing B6 TCL1 and after AT in young WT mice, while remaining largely 

constant or being reduced in ageing WT mice (note: analysis of absolute numbers was 

only conducted for B6 TCL1 and WT mice but not for C3H TCL1 mice, Figure 16 B and 

Table 11).  

Within the CD3+CD8+ compartment, naïve T cells were lost (i.e. their percentage 

decreased), and shifted towards antigen-experienced cells (i.e. their percentage 

increased). In 12 month old B6 TCL1 mice, antigen-experienced CD3+CD8+ T cells 

appeared slightly shifted towards a memory phenotype (memory median 54.22% range 

34.16-61.65, effector median 41.56% range 30.88-57.36), but this was not-significant 

(p=.0931), while in 12 month old C3H TCL1 mice and all AT mice these cells were 

more skewed towards an effector phenotype (C3H memory median 23.87% range 

21.22-41.41, effector median 32.49% range 20.75-41.06; AT WT memory median 

10.92% range 7.96-15.69, effector median 54.84% range 51.77-70.88; AT B6 TCL1 

memory median 30.99% range 23.13-40.98, effector median 51.63% range 

29.82=57.94; AT C3H TCL1 memory median 21.99% range 9.08-32.72, effector 

median 53.5% range 51.87-64.46; Figure 16 C). In AT mice, however, the transgene 

status of the recipients (i.e. WT or TCL1) influenced if the relative number of memory 

cells was reduced or expanded. WT recipients appeared to lose memory cells 
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compared to 3 month old WT controls, showing a reduced frequency of 

CD44+CD62L+CD3+CD8+ cells; this population, however, was expanded in young 

TCL1 recipients compared to healthy young TCL1 controls, while 3 month old healthy 

TCL1 (median 17.56%, range 14.6-35.68) and WT (median 19.58%, range 11.58-

32.02) mice showed comparable percentages of memory cells. This observation 

indicates that the expression of the transgene itself might influence memory distribution 

in the context of adoptive transfer. Ageing WT mice also had decreased naïve cells and 

demonstrated a shift towards antigen-experienced cells, with memory and effector 

CD8+ cells being equally distributed (memory median 30.04%, range 15.02-28.35 vs. 

effector median 36.22%, range 27.2-64.66, p=.065, Figure 16 C). 

Similar to absolute numbers of CD3+, CD4+ and CD8+ cells, the absolute numbers of 

effector and memory cells increased in ageing B6 TCL1 and after AT in young WT 

mice, but decreased for naïve CD3+CD8+ T cells in ageing B6 TCL1 mice and 

increased after AT (Figure 16 D and Table 11). Comparing absolute numbers also 

demonstrated that although the relative naïve versus antigen-experienced shift was to 

a certain extent also observed in ageing WT mice, there were clear differences in the 

absolute expansion of effector and memory subsets.  

Statistical differences in the relative expansion of T-cell subsets compared to 3 month 

old mice as baseline are visualized in Figure 16 E. 
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Figure 16: T-cell subset changes in ageing TCL1 mice and after AT in spleen. Cohorts of 3, 
6 and 12 month old TCL1, WT and AT mice were sacrificed and single cell suspensions of 
spleen were stained for CD3, 4, 8, 62L and 44. Dead cells were excluded by DAPI. (A) With 
increasing CLL the CD4+/CD8+ ratio decreased, while age-matched WT mice showed an 
increase of the CD4+/CD8+ ratio. This was more clearly recapitulated in B6 TCL1 than in C3H 
TCL1 mice, but could be induced by AT in both young TCL1 and WT mice. (B) Absolute 
numbers (AN) increased, in line with CLL-associated organomegaly. (C) Within CD3+CD8+ 
cells, naïve cells were lost and shifted towards antigen-experienced cells. Naïve cells were also 
reduced and shifted towards antigen-experienced cells in WT mice. (D) AN of these subsets 
were significantly increased in TCL1 mice. (E) Heatmap summary of p-values describing 
statistical differences in T-cell subsets. Groups were compared to 3 month old mice. Blue colour 
indicates expansion, red colour indicates loss of cell subsets. ns = non-significant, *p<.05, 
**p<.001, ***p<.0001. Mann-Whitney test was used for non-normally distributed data and 
unpaired t-test for normally distributed data, as determined by Shapiro-Wilk normality test. 
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absolute 
numbers of 
cell subset 

B6 WT B6 TCL1 
 

3mo 6mo 12mo 3mo 6mo 12mo AT 

CD3+ 

med 1.56E+07 1.29E+07 9.34E+06 1.49E+07 1.36E+07 5.30E+07 4.31E+07 

min 1.07E+07 7.59E+06 8.01E+06 1.09E+07 1.09E+07 4.44E+07 1.77E+07 

max 1.91E+07 1.43E+07 1.28E+07 1.56E+07 1.83E+07 9.50E+07 5.74E+07 

CD3+ 
CD4+ 

med 3.58E+07 2.89E+07 2.75E+07 3.07E+07 3.00E+07 8.59E+07 3.92E+08 

min 3.30E+07 2.49E+07 2.22E+07 2.39E+07 2.66E+07 6.61E+07 2.92E+08 

max 4.25E+07 3.26E+07 3.52E+07 3.44E+07 4.07E+07 1.33E+08 5.83E+08 

CD3+ 
CD8+ 

med 2.33E+07 1.49E+07 1.29E+07 1.71E+07 2.28E+07 3.17E+08 4.12E+08 

min 1.62E+07 9.56E+06 1.06E+07 1.50E+07 1.91E+07 2.70E+08 3.32E+08 

max 2.88E+07 2.18E+07 1.31E+07 2.14E+07 2.77E+07 5.53E+08 6.86E+08 

CD3+ 
CD8+ 
effector 
cells 

med 6.97E+06 1.28E+07 2.08E+07 1.45E+07 1.97E+07 2.15E+08 5.37E+08 

min 3.58E+06 3.42E+06 1.09E+07 4.99E+06 8.11E+06 1.32E+08 1.40E+08 

max 1.69E+07 3.42E+07 3.10E+07 1.94E+07 3.63E+07 3.92E+08 1.45E+09 

CD3+ 
CD8+ 
memory 
cells 

med 1.65E+07 7.09E+06 1.41E+07 1.08E+07 2.23E+07 2.78E+08 1.96E+08 

min 5.69E+06 1.91E+06 7.21E+06 4.21E+06 1.30E+07 1.71E+08 8.09E+07 

max 3.71E+07 1.21E+07 1.85E+07 1.48E+07 2.95E+07 4.01E+08 9.34E+08 

CD3+ 
CD8+ 
naive 

med 1.74E+07 2.43E+07 7.48E+06 2.65E+07 1.89E+07 1.90E+07 1.19E+08 

min 9.67E+06 2.02E+07 1.11E+06 1.44E+07 9.86E+06 9.61E+06 6.42E+07 

max 3.03E+07 3.19E+07 3.18E+07 3.34E+07 3.70E+07 3.43E+07 1.89E+08 

Table 11: Summary of changes in absolute numbers of T-cell subsets in spleen. 
med=median, min=minimum, max=maximum. 

 

We confirmed that these patterns were recapitulated in an additional round of 

experiments (summarized in Table 8 as “III. Available mice to assess T-cell phenotype 

in organs alongside developing CLL”). As outlined in Chapter 5.3.1, these experiments 

consisted of a substantially larger multicolour panel for spleen, included CM and EM 

cells, used different fluorochromes/antigen conjugates, and were restricted to B6 TCL1 

and B6 WT mice. These experiments confirmed the previously observed changes, i.e. 

the decrease of the CD4+/CD8+ ratio with developing CLL and after AT in young WT 

mice, while this was stable and increased slightly in ageing WT mice (Figure 17 A), the 

increase of absolute numbers of CD3+, CD4+ and CD8+ T cells (Figure 17 B), the 

shifts in naive and antigen-experienced CD3+CD8+ T cells (Figure 17 C) and their 

increases in absolute numbers (Figure 17 D) in mice with CLL. In AT mice, which were 

WT recipients, the previously observed relative loss of CD3+CD8+ memory cells 

compared to age-matched healthy controls was confirmed.  

The most significant output of these experiments, however, was the additional 

information on CM and EM subsets, which revealed major differences between healthy 

and leukaemic mice: while both subsets showed relative expansion in ageing WT mice 

(CM 3 month median 2.89%, 6 month 2.86%, 12 month 7.78%; EM 3 month median 
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7.21%, 6 month 8.67%, 12 month 36.03%), CM were decreased in ageing TCL1 mice 

and after AT (3 month median 11.04%, 6 month 11.68%, 12 month 3.36%, AT 1.4%), 

and cells were shifted towards an expanded EM subset (3 month median 5.42%, 6 

month 10.9%, 12 month 14.23%, AT 55.26%; Figure 17 C). Absolute numbers of CM 

and especially EM CD3+CD8+ cells increased in mice with CLL (Figure 17 D and Table 

12).  

Statistical differences in the relative expansion of T-cell subsets compared to 3 month 

old mice as baseline are summarized in Figure 17 E. Absolute numbers of CD3+CD8+ 

CM and EM cells are summarized in Table 12. 

 

 

Figure 17: Confirmation of T-cell subset changes in ageing TCL1 and WT mice and after 
AT in spleen. (A) Confirmation of decreased CD4+/CD8+ ratio in mice with CLL and (B) 
increase of absolute CD3+, CD4+ and CD8+ T cells numbers (AN). (C) Confirmation of loss of 
CD3+CD8+ naïve cells and shift towards antigen-experienced cells. In WT mice, CM and EM 
subsets expanded with ageing, while CM were lost in ageing TCL1 mice and after AT and EM 
expanded. (D) AN of these cell subsets were significantly increased in mice with CLL. (E) 
Heatmap summary of p-values describing statistical differences in T-cell subsets. ns = non-
significant, *p<.05, **p<.001, ***p<.0001. 
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absolute 
numbers of 
cell subset 

B6 WT B6 TCL1 
 

3mo 6mo 12mo 3mo 6mo 12mo AT 

CM 

med 8.33E+05 1.25E+06 4.22E+06 5.61E+06 5.63E+06 6.20E+06 6.21E+06 

min 6.03E+05 8.68E+05 1.84E+06 2.93E+06 2.76E+06 3.70E+06 7.03E+05 

max 9.05E+05 1.95E+06 5.85E+06 6.73E+06 5.33E+07 4.44E+07 2.52E+07 

EM 

med 1.95E+06 3.37E+06 1.44E+07 2.37E+06 4.94E+06 2.72E+07 3.49E+08 

min 1.06E+06 2.13E+06 3.56E+06 1.57E+06 2.14E+06 8.66E+06 8.12E+07 

max 2.67E+06 8.04E+06 3.05E+07 3.80E+06 1.71E+08 5.48E+07 5.29E+08 

Table 12: Summary of changes in absolute numbers of T-cell subsets in spleen. 
med=median, min=minimum, max=maximum, CM=central memory, EM=effector memory. 

 

Altogether, these experiments suggested that some similarities in T-cell subset 

changes exist between ageing WT and ageing TCL1 mice. This implies that 

observations in ageing leukaemic mice might be confounded by the effects of ageing, 

as might be expected. However, clear patterns regarding T-cell subset shifts (i.e. 

CD4+/CD8+ ratio, effector, memory, CM and EM cells) and differences in absolute 

numbers appeared to be associated only with CLL and to develop alongside 

progressing disease. This was not only supported by the AT experiments, but also by 

the observation that CLL-specific T-cell patterns were recapitulated in a younger 

mouse in the 6 month old TCL1 cohort that already had advanced-stage CLL 

(CD19+CD5+ cells in spleen 57.4%). Together, these observations confirm that AT 

experiments allow the elimination of the confounding factor of ageing.  

 

5.4.3 CLL-specific T-cell subset changes are recapitulated in peripheral blood 

We next sought to determine if the phenotypic changes in spleen as the major organ of 

disease were recapitulated in other organs, where T cells are exposed to a different 

microenvironment. These experiments were repeated twice as described above for 

spleen, and the graphs depicted in the following chapters contain the combined data of 

these experiments, unless indicated otherwise. Just as in spleen, the CD4+/CD8+ ratio 

in PB decreased with increasing CLL tumour load and after AT (Figure 18 A) as a 

combined result of an expansion of CD3+CD8+ cells and a reduction of CD3+CD4+ 

cells (data for percentages of CD3+, CD4+ and CD8+ cells not shown). In ageing WT 

mice, the CD4+/CD8+ ratio also decreased, albeit not the degree observed in mice with 

CLL (12 month TCL1 median .09 range 0-.2 vs. 12 month WT median .59 range .11-

1.1; p<.0001). Absolute numbers of CD3+ T cells were largely constant in ageing WT 

mice (3 month median 2.9/µl blood, 6 month 3.4, 12 month 2.55) and increased in 

ageing TCL1 mice and moderately after AT (3 month median 3.5, 6 month 4.6, 12 
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month 17.3, AT 3.9). Absolute numbers of CD4+ were reduced in both ageing WT (3 

month median 1.62, 6 month 1.32, 12 month .96) and ageing TCL1 mice and after AT 

(3 month median 1.46, 6 month 2.08, 12 month .98, AT .70), while CD8+ T cells were 

largely constant in ageing WT mice (3 month median 1.34, 6 month .64, 12 month 

1.26) but increased in TCL1 and AT mice (3 month median 1.71, 6 month 2.14, 12 

month 11.87, AT 2.49; note: analysis of absolute numbers was only conducted in the 

first experiment; Figure 18 B).  

In mice with CLL, naïve CD3+CD8+ T cells were shifted towards antigen-experienced 

cells, which were generally skewed towards a memory phenotype in ageing TCL1 and 

in TCL1 mice with CLL after AT. In contrast, AT WT recipients were skewed towards an 

effector phenotype, as previously observed (Figure 18 C). Ageing WT mice also 

decreased naïve cells, however not to the same degree as ageing TCL1 mice (12 

month TCL1 median 4.32% range, 1.15-13.32 vs. 12 month WT median 30.07%, range 

1.17-60.09; p=.0024).  

Absolute numbers of naïve cells were largely stable in ageing WT mice (3 month .67, 6 

month .63, 12 month .69) but decreased in ageing TCL1 mice and after AT (3 month 

median 1.28, 6 month .96, 12 month .62, AT .11; Figure 18 D). Both effector (3 month 

median .06, 6 month .1, 12 month 1.01, AT .68) and memory (3 month median .29, 6 

month .76, 12 month 9.58, AT .94) CD3+CD8+ cells increased in ageing TCL1 mice 

and after AT.  

Statistical differences in the relative expansion of T-cell subsets compared to 3 month 

old mice as baseline are summarized in Figure 18 E. 
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Figure 18: Confirmation of T-cell subset changes in ageing TCL1 and WT mice and after 
AT in peripheral blood (PB). (A) Confirmation of decreased CD4+/CD8+ ratio in mice with CLL 
and (B) changes of absolute CD3+, CD4+ and CD8+ T cells numbers (AN). (C) Confirmation of 
loss of CD3+CD8+ naïve cells and shift towards antigen-experienced cells in mice with CLL, 
and (D) changes in AN. (E) Heatmap summary of p-values describing statistical differences in 
relative frequencies of T-cell subsets. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 

 

5.4.4 CLL-specific T-cell subset changes are recapitulated in bone marrow 

Similar to spleen and PB, the CD4+/CD8+ ratio in BM decreased with increasing CLL 

tumour load and after AT (Figure 19 A), mainly due to an expansion of CD3+CD8+ 

cells while CD3+CD4+ cells remained largely stable. In WT mice, the CD4+/CD8+ ratio 

in 3 month old mice was relatively low due to a low percentage of CD4+ cells. This led 

to an increase of the ratio in ageing WT mice when compared to the 3 month old group, 

which however was consistent between 6 and 12 month old ageing WT mice. Absolute 

numbers of CD3+ cells increased in ageing TCL1 mice and after AT (3 month median 

2.45/µl cell suspension, 6 month 6.25, 12 month 5.2, AT 6.6), just as CD4+ (3 month 

median .52, 6 month .75, 12 month 1.12, AT 1.33) and CD8+ cells (3 month median 

.67, 6 month 2.15, 12 month 2.02, AT 2.85; note: analysis of absolute numbers was 

only conducted in the first experiment; Figure 19 B). 
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In mice with CLL, naïve CD3+CD8+ T cells were shifted towards antigen-experienced 

and especially effector cells (Figure 19 C). The BM of ageing WT mice, in accordance 

to other organs, decreased naïve cells, again not to the same extent as ageing TCL1 

mice with leukaemia (12 month TCL1 median 1.2%, range 0.07-3.74 vs. 12 month WT 

7.68%, range 1.17-60.09; p=.0197) and gained effector cells. However, the impact of 

CLL on T-cell subsets became again apparent when comparing absolute numbers in 

WT and leukaemic mice – absolute numbers of effector cells increased profoundly in 

mice with CLL (WT: 3 month median .12/µl cell suspension, 6 month .41, 12 month .66; 

TCL1: 3 month median .11, 6 month .66, 12 month 1.97, AT 2.53), while memory 

CD3+CD8+ cells only expanded moderately, as already indicated by the comparison of 

relative frequencies, in leukaemic TCL1 and AT mice compared to WT mice (WT 3 

month median .31, 6 month 1.05, 12 month .46; memory TCL1: 3 month .33, 6 month 

1.34, 12 month .88, AT .48; Figure 19 D).  

Statistical differences in the relative expansion of T-cell subsets compared to 3 month 

old mice as baseline are summarized in Figure 19 E. 
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Figure 19: T-cell subset changes in ageing TCL1 and WT mice and after AT in bone 
marrow (BM). (A) Confirmation of decreased CD4+/CD8+ ratio in mice with CLL and (B) 
changes of absolute CD3+, CD4+ and CD8+ T cell numbers (AN). (C) Confirmation of loss of 
CD3+CD8+ naïve cells and shift towards antigen-experienced cells in mice with CLL, and (D) 
changes in AN. (E) Heatmap summary of p-values describing statistical differences in T-cell 
subsets. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 

 

5.4.5 T-cell subset changes exhibit particular patterns in lymph nodes 

Minor differences in CLL-induced T-cell subset changes were observed in LN. While 

the CD4+/CD8+ ratio generally decreased in ageing TCL1 mice with developing CLL 

(Figure 20 A), 3 month old TCL1 mice had a high CD4+/CD8+ ratio (median 1.86, 

range 1.63-3.78), which was caused by an accumulation of CD4+ T cells in this cohort 

of mice (data for percentages of CD3+, CD4+, CD8+ cells not shown). In mice with 

CLL after AT, the CD4+/CD8+ ratio only decreased in TCL1 but not in WT recipients. 

Absolute numbers of CD3+ (3 month median 15.1/µl cell suspension, 6 month 11.1, 12 

month 35.9, AT 51.1) and CD8+ (3 month median 3.68, 6 month 4.56, 12 month 28.81, 

AT 22.99) increased in leukaemic mice, but decreased in ageing WT mice (3 month 

CD3 median 20.15, CD8 6.8; 6 month CD3 21.8, CD8 9.35; 12 month CD3 3.5, CD8 

1.45). Absolute numbers of CD4+ cells were reduced in both ageing WT (3 month 

11.43, 6 month 11.32, 12 month 1.78) and ageing TCL1 mice (3 month 10.47, 6 month 
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5.74, 12 month 3.78), but not in AT mice (median 20.55, note: analysis of absolute 

numbers was only conducted in the first experiment; Figure 20 B).  

Shifts from CD3+CD8+ naive to antigen-experienced cells were recapitulated in 

leukaemic mice, with memory cells being the dominant cell type (Figure 20 C). These 

patterns, however, were less clear in AT mice, with TCL1 but not WT recipients, 

recapitulating the predominance of memory cells in ageing TCL1 mice. In ageing WT 

mice, absolute numbers of effector cells were found to be largely stable (3 month 

median .09/μl cell suspension, 6 month .32, 12 month .1), but increased in ageing 

TCL1 mice and after AT (3 month median .09, 6 month .21, 12 month 1.01, AT 1.55; 

Figure 20 D). Similarly, absolute numbers of memory cells increased in ageing 

leukaemic mice and after AT (3 month median .67, 6 month 1.27, 12 month 21.04, AT 

13.91), while being largely stable in WT mice (3 month median .88, 6 month 1.84, 12 

month .39). Statistical differences in the relative expansion of T-cell subsets compared 

to 3 month old mice are summarized in Figure 20 E.  

 

 

Figure 20: T-cell subset changes in ageing TCL1 and WT mice and after AT in lymph 
nodes (LN). (A) Confirmation of decreased CD4+/CD8+ ratio in ageing mice with CLL, and (B) 
changes of absolute CD3+, CD4+ and CD8+ cells numbers (AN). (C) Confirmation of loss of 
CD3+CD8+ naïve cells and shift towards antigen-experienced cells in ageing mice with CLL and 
partly after AT, and (D) increase in AN. (E) Heatmap summary of p-values describing statistical 
differences in T-cell subsets. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 
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5.4.6 Developing CLL and CD3+, CD4+, CD8+ subset changes are significantly 

correlated with each other 

After characterizing the development of T-cell subset changes over time, we next 

sought to confirm the direct association between developing disease and T-cell 

phenotype. We therefore correlated the relative frequencies of CD19+CD5+ and CD3+, 

CD3+CD4+, and CD3+CD8+ cells, respectively, in all organs from TCL1 and AT mice, 

using the Spearman's rank correlation coefficient model to determine the statistical 

dependence between these variables. As indicated by the previous analyses, we found 

that developing CLL significantly associated with the loss of CD3+ and more 

importantly, among CD3+ cells, with the loss of CD4+ cells and the increase of CD8+ 

cells in spleen, PB, BM and LN, suggesting a causal and linear relationship between 

CLL and those T-cell defects (see Figure 21 A for spleens, B for PB, C for BM and D 

for LN, and Table 13). LN of AT mice were excluded from this analysis, as disease 

development is delayed in this compartment.  

 

 

Figure 21: Statistical correlations between CLL and T-cell subsets. Using nonparametric 
Spearman correlation coefficient modelling, the variables “developing CLL in all available TCL1 
and AT mice” and “changes in CD3, 4 and 8 subsets” were correlated with each other. Cells 
were gated on mononuclear cells (MNC). Each data point is representative of a single mouse, 
correlating the relative frequency of CD3, 4 or 8 (depicted in different shades of blue and plotted 
on the y-axes) with the corresponding relative frequency of CD19+CD5+ CLL cells (plotted on 
the x-axes). (A) In mice phenotyped in both experimental round 1 and 2, progressing CLL and 
the loss of CD3+ and CD3+CD4+ cells and the increase of CD3+CD8+ were significantly 
associated with each other. Associations with CD3+CD4+ and CD3+CD8+ cells were confirmed 
in (B) peripheral blood (PB), (C) bone marrow (BM) and (D) lymph nodes (LN), excluding the AT 
mice in LN correlation analyses.  
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spleen PB 
combined 

dataset 

BM 
combined 

dataset 

LN 
combined 

dataset exp. round 1 exp. round 2 

CD3 

spearman r -0.8155 -0.7759 -0.6436 0.4735 -0.3489 

95% CI 
-0.8836 to            

-0.7138 
-0.8951 to           

-0.5533 
-0.7852 to           

-0.4381 
0.2354 to  

0.6580 
-0.5840 to           
-0.05988 

p value          
(two-tailed) 

< 0.0001 < 0.0001 < 0.0001 0.0002 0.0162 

p value 
summary 

*** *** *** *** * 

CD4 

spearman r -0.3901 -0.5330 -0.5614 -0.03445 -0.6358 

95% CI 
-0.5786 to            

-0.1621 
-0.7642 to              

-0.1803 
-0.7303 to               

-0.3279 
-0.2996 to 

0.2357 
-0.7839 to             

-0.4193 

p value          
(two-tailed) 

0.0009 0.0042 < 0.0001 0.7992 < 0.0001 

p value 
summary 

*** ** *** ns *** 

CD8 

spearman r 0.3819 0.5061 0.6016 0.3645 0.6252 

95% CI 
0.1527 to    

0.5722 
0.1445 to   

0.7485 
0.3811 to   

0.7574 
0.1070 to   

0.5762 
0.4047 to   

0.7770 

p value          
(two-tailed) 

0.0012 0.0071 < 0.0001 0.0053 < 0.0001 

p value 
summary 

** ** *** ** *** 

Table 13: Summary of results of statistical Spearman correlation coefficient analyses for 
all examined organs according to CD3, 4 and 8 subset. Abbreviations: BM – bone marrow, 
PB – peripheral blood, LN – lymph nodes, CI – confidence interval, ns – not-significant. 

 

5.4.7 Developing CLL leads to characteristic functional changes in T-cell 

intracellular cytokines and effector cytotoxicity function 

After confirming the suitability of the B6 TCL1 model in general and the AT model 

specifically to mirror the T-cell defects previously described in the original C3H TCL1 

model, and that the spleen appears to be representative for the examined CLL-affected 

organs, we investigated changes in T-cell function in the context of developing CLL in 

splenocytes from 3, 6 and 12 month old ageing TCL1, WT and AT mice.  

In WT mice, intracellular IL-2 was predominantly produced by CD4+ cells, and showed 

a trend towards increased production with ageing, which was however not-significant 

(p=.09 for IL-2 levels at 3 vs. 12 months). In contrast, CD4+ cells from TCL1 mice 

demonstrated a significantly decreased production of IL-2 with developing CLL 

(p=.0043 for 3 vs. 12 months), but not after AT (p=.31 for AT mice vs. healthy, age-

matched WT mice, note: AT recipients were WT recipients). Interestingly, CD8+ cells 
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from TCL1 mice also started to produce more IL-2 with increasing CLL (p=.0043 for 3 

vs. 12 months), but not after AT (Figure 22 A). 

 

 

Figure 22: Intracellular cytokine production by CD4+ and CD8+ cell subsets. Fresh 
splenocytes from 3, 6 and 12 month WT and TCL1 mice and from mice with full CLL after AT 
were stimulated for 6 hours with PMA and ionomycin (P/I) in the presence of brefeldin/ 
monensin for the last 5 hours of culture. Cells were then harvested, surface stained, fixed, 
permeabilised and stained with antibodies against IL-2, IL-4 and IFN-γ. (A) Intracellular IL-2 was 
predominantly a CD4 cytokine, increased in ageing WT mice, but decreased with developing 
CLL. CD8+ cells increased IL-2 production with ageing CLL, but not after AT. (B) Intracellular 
IL-4 was also predominantly a CD4 cytokine, increased in ageing WT CD4+ cells but was stable 
in CD8 cells without and with mitogen. CD4+ cells from ageing TCL1 mice required mitogen to 
maintain production. AT mice had significantly increased IL-4 production. (C) CD8+ cells from 
ageing TCL1 mice had significantly increased IFN-γ production, which was not fully 
recapitulated in AT mice. In CD4+ cells from ageing leukaemic mice, IFN-γ production was lost 
while WT mice exhibited an increase just as in CD8+ cells. CD4+ cells from AT mice maintained 
increased IFN-γ production. All graphs show median with interquartile range (IQR). 

 

 



Fabienne McClanahan                                                                                                     Chapter 5 

Page 118 of 258 

 

Intracellular IL-4 was detected in both CD4+ and CD8+ cells, with a predominance in 

CD4+ cells (see Figure 22 B). Even without PMA/Ionomycin, CD4+ cells from ageing 

WT increasingly produced IL-4 (p=.0022 for CD4+ cells at 3 vs. 12 month), which was 

not further increased by mitogen. IL-4 production by WT CD8+ cells appeared relatively 

stable without and with mitogen. CD4+ cells from TCL1 mice showed no significantly 

altered IL-4 production without mitogen (p=.1255 at 3 vs. 12 months), and this could 

only be increased by PMA/Ionomycin in mice at 12 months compared to young TCL1 

mice (p=.008). Interestingly, both CD4+ and CD8+ cells from AT mice appeared to 

have significantly increased IL-4 production (CD4+ cells: p=.0002 without and with 

PMA/Ionomycin; CD8+ cells: p=.0079 without and p=.0002 with PMA/Ionomycin, both 

compared to age-matched healthy WT mice), indicating that this setting might 

predispose for IL-4 production.  

Both CD4+ and CD8+ cells appeared able to produce IFN-γ, but baseline production 

was negligible and mitogenic stimulation was required (see Figure 22 C). Differences 

were apparent between ageing WT and TCL1 mice: while CD8+ cells from ageing WT 

showed slightly increased IFN-γ production (p=.0152 at 3 vs. 12 months), this was 

significantly increased in ageing TCL1 mice (p=.0043), and 12 month old leukaemic 

mice showed almost twice the percentage of IFN-γ-producing CD8+ cells. In AT mice, 

this was only recapitulated in a few mice, with the overall group having no different 

CD8+ IFN-γ production compared to age-matched healthy mice. In contrast, IFN-γ 

production by CD4+ cells appeared lost in leukaemic mice, while WT mice exhibited an 

increase just as in CD8+ cells (p=.0022 at 3 vs. 12 months). CD4+ cells from AT mice, 

however, maintained increased IFN-γ production relative to healthy aged-matched WT 

controls (p=.0002). 

In the same experiment, we measured cytotoxicity by CD107a degranulation and 

intracellular GrB and attributed these effector functions, along with IFN-γ production, 

specifically to the antigen-experienced CD44+CD3+CD8+ subset. To describe CLL/ 

ageing-induced changes within antigen experienced CD44+ cells, we formed a ratio 

between cells expressing a certain effector marker and cells lacking this expression 

after stimulation with PMA/Ionomycin. A decreased ratio is therefore indicative of loss 

of cells able to act as effector cells, and vice versa. In ageing WT mice, 

CD44+CD3+CD8+ cells largely maintained their ability to localise CD107a to their 

surface and to produce IFN-γ. Intracellular GrB ratio also remained relatively constant, 

indicating that key effector functions were maintained. Some trends were observed 

over time, but none reached statistical significance (3 vs. 12 month CD107a ratio 

p=.1797; GrB ratio p=.2403; IFN-γ ratio p=.3095, Figures 23 A, B and C upper panels).  
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In contrast, with developing CLL both ageing TCL1 and AT mice showed a decreased 

CD107a ratio, demonstrating that within the CD44+ subset, cells without the ability to 

degranulate (i.e. functionally deficient cells) became predominant (p=.0173 for TCL1 

mice at 3 vs. 12 months; p=.0001 for AT vs. aged-matched healthy controls, Figure 23 

A ).  

Intracellular GrB ratio, however, remained constant, albeit at a generally lower level 

than in WT mice, and was even increased after AT (p=.0261), indicating that the 

production of lytic granule content is at least maintained to a certain extent in the 

presence of leukaemic cells (Figure 23 B). Interestingly, developing CLL in TCL1 mice 

was accompanied by an increase in the ratio of IFN-γ producing versus non-producing 

CD44+ cells (p=.0087 for mice at 3 vs. 12 months, Figure 23 C). However, this was 

not-significant in AT mice compared to age-matched healthy WT mice (p=.2119). In 

accordance to their differentiation status, these effector functions were restricted to 

antigen-experienced cells, and absent in naïve CD3+CD8+CD44- cells.  

 

 

Figure 23: Effector cell function in CD3+CD8+CD44+ antigen experienced cells. Key 
effector cell cytotoxic functions were measured after PMA/Ionomycin stimulation and expressed 
as a ratio between cells expressing CD107a, GrB and IFN-γ. (A) In contrast to ageing WT mice, 
developing CLL (i.e. ageing TCL1 mice and AT mice) led to significantly decreased CD107a 
ratio. (B) Intracellular GrB ratio remained constant in ageing TCL1 mice and increased after AT. 
(C) Developing CLL was accompanied by a highly significant increase in IFN-γ ratio in ageing 
TCL1 but not AT mice. 
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5.4.8 Developing CLL is accompanied by increasing T-cell proliferation 

As another marker of T-cell effector function, we determined ex vivo and in vivo 

proliferation by ki67 and EdU incorporation, respectively. In ageing WT mice, the 

proliferation of CD3+CD8+ T-cells, expressed by changes in the ki67 ratio, remained 

relatively constant but showed a trend towards decreased proliferation (p=.0632 at 3 

vs. 12 months; Figure 24 A). In ageing TCL1 mice with developing CLL, however, the 

ki67 ratio increased significantly, indicating that within the CD44+ subset, cells with the 

ability to proliferate became predominant (p=.0274 at 3 vs. 6 months; p=.0013 at 3 vs. 

12 months; Figure 24 A). This was also recapitulated after AT (p=.0016 for AT vs. age-

matched WT). These patterns were confirmed by measuring in vivo proliferation 

(Figure 24 B): T-cell proliferation, indicated by cells positive for AF488-coupled 

incorporated EdU, remained constant in WT T cells over time, but increased 

significantly with developing disease (p=.0043 at 3 vs. 6 months and p=.0002 at 3 vs. 

12 months for TCL1 mice; p=.0007 for AT vs. age-matched WT mice). This was 

observed in both CD8+ and non-CD8+ (i.e. largely CD4+) cells (CD8+: p=.0087 for 3 

vs. 6 months; p=.0007 for 3 vs. 12 months; p=.0002 for AT vs. WT; non-CD8+: p=.0173 

for 3 vs. 6 months; p=.0002 for 3 vs. 12 months; p=.0002 for AT vs. WT).   

 

 

Figure 24: Proliferation in T-cell subsets. Proliferation was measured ex vivo by intranuclear 
ki67 in CD3+CD8+ T cells and in vivo by EdU incorporation in all CD5+ T cells and CD8+ and 
CD8- T-cell subsets. (A) In contrast to ageing WT mice, developing CLL in TCL1 mice and AT 
led to significantly increased ki67 ratios in CD3+CD8+CD44+ cells, indicating increasing 
proliferation in the presence of CLL. (B) Confirmation of increased T-cell proliferation in vivo, 
both in CD8+ and in CD8- subsets.  
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As the EdU technique allows multiplexing with a variety of other markers, we also 

concurrently assessed B-cell proliferation in both ageing WT and TCL1 mice and after 

AT (see Figure 25). The proliferation of healthy CD19+CD5- B cells remained constant 

in ageing WT mice, but increased in CD19+CD5- B cells from 6 month old TCL1 mice 

and was similar to their CLL cell proliferation (i.e. CD19+CD5+ cells). This 6 month age 

group represents an early stage of CLL, where both a healthy B cell and a malignant 

CLL cell population exist and can be directly compared. With progressing CLL, the 

CD19+CD5+ population continued to proliferate, as expected. 

 

 

Figure 25: Proliferation of healthy 
B and CLL cells in vivo: 
Proliferation of healthy B cells 
remained constant in ageing WT 
mice, but CD5+CD19+ CLL cell 
proliferation continued to increase 

with developing disease.  

 

 

 

 

 

 

5.4.9 Developing CLL is accompanied by impaired ability of autologous B and T 

cells to form immunological synapses 

Our group has demonstrated that impaired immune synapse formation is an important 

feature of T-cell dysfunction in both human and murine CLL. To conclude the 

characterization of how T-cell defects develop alongside progressing CLL, we 

measured T-cell synapse formation between autologous B/CLL and T-cells in 3, 6 and 

12 month old TCL1 mice and in AT mice, and compared this to the synapse formation 

observed in autologous cells from 3 month old WT mice. While the ability to form 

immunological synapses was comparable in 3 month old TCL1 and WT mice, this was 

significantly impaired in 12 month TCL1 mice and after AT (p<.0001, respectively). 

Surprisingly, this did not appear to be a linear progressive loss, as 6 month old TCL1 

mice, i.e. at the early stage of CLL, exhibited superior synapse formation compared to 

3 month old TCL1 mice (Figure 26).  
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Figure 26: Development of 
immune synapse formation: The 
ability of autologous B and T cells 
to form immunological synapses 
was measured in 3, 6, 12 month 
old TCL1, 3 month old WT, and AT 
mice. Compared to young TCL1 
mice, this was significantly 
impaired in aged TCL1 and AT 
mice, but not 6 month old TCL1 
mice with early stage CLL.  

 

 

 

 

 

5.5 Summary of phenotypic and functional T-cell defects developing with 

progressing CLL 

In summary, we were able to demonstrate that developing CLL and phenotypic 

changes in T cell subsets were highly significantly correlated with each other, and that 

this is equally modelled in B6 TCL1 and C3H TCL1 mice. This included a decrease in 

CD4+/CD8+ ratio, which was recapitulated in spleen, PB, BM and LN. Within 

CD3+CD8+ cells, naïve cells were progressively lost and the population shifted 

towards antigen-experienced cells. The subset of antigen-experienced cells, however, 

appeared to be dependent on the microenvironment: effector cells progressively 

became the dominant cell type in BM, and memory cells in PB and LN. In spleens of 

B6 TCL1 mice, memory and effector cells were equally expanded, while C3H mice 

exhibited a more pronounced shift to effector cells. Regardless, the spleen memory 

pool of B6 TCL1 mice was further characterized by a shift towards EM and loss of CM 

cells. While some of these phenotypic T-cell changes, such as the progressive 

decrease of naïve cells and subset shifts among effector and memory cells, were also 

observed to a certain extent in ageing WT mice, they were considerably more 

pronounced in the presence of CLL. In addition, the extent of differences between 

healthy ageing T cells and ageing CLL T cells became apparent when comparing their 

absolute numbers, which were in general considerably higher in TCL1 mice. This 

allowed the identification of a CLL-specific T-cell phenotype, which included the CD8+ 

and EM subset expansions and the massive naïve cell loss. The AT model was 

confirmed to be a generally adequate tool to mirror the phenotypic T-cell changes of 

ageing CLL. However, the following differences became apparent: the disease load in 
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LN did not fully mirror 12 month old TCL1 mice, and as a consequence, the T-cell 

phenotype was not as clearly confined to CLL-typical changes in this compartment. In 

addition, minor differences were observed in effector versus memory subset 

distribution depending on whether AT recipients were WT or TCL1 mice. Functionally, 

typical cytokine T-cell defects that developed alongside CLL were a loss of IL-2 

producing CD4+ cells and aberrantly increased percentages of CD8+ cells producing 

IL-2, the loss of spontaneous IL-4 producing CD4+ cells, and significantly increased 

IFN-γ producing CD4+ and CD8+ cells. Cytokine profiles were only partly mirrored in 

AT mice, as they seemed to be enriched for IL-4 producing CD4+ and CD8+ cells while 

lacking a significant increase in IFN-γ producing cells. Antigen-experienced CLL T-cells 

appeared to lose their ability to localise CD107a to their surface progressively, which is 

indicative of impaired cytotoxicity function, but maintained the ability to produce 

cytolytic GrB, while increasing their IFN-γ production potential. Except for the latter 

change, this was mirrored in AT mice. Accordingly, immune synapse formation was 

significantly impaired in ageing TCL1 and AT mice, but this did not appear to be a 

linear development as 6 month old TCL1 mice exhibited an increased ability to form 

synapses relative to 3 month old TCL1 mice. Surprisingly, T-cell proliferation was found 

to increase with developing CLL and after AT. Statistical differences in the relative 

expansion or loss of functional T cell subsets compared to 3 month old mice as 

baseline are summarized in Figure 27. 

 

 

Figure 27: Heatmap summary of p-values describing statistical differences in functional 
T-cell subsets. Groups were compared to the relative percentage of functional subsets in 3 
month old mice. Blue colour indicates relative expansion, red colour indicates relative loss of 
cell subsets. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 
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5.6 Discussion 

The goal of this part of the work was to validate the B6 TCL1 model for the 

investigation of global T-cell defects, to further characterize T-cell subsets in the 

context of advancing CLL in different CLL-affected compartments, and to explore the 

impact of developing CLL on T-cell effector function.  

Using T-cell phenotype as an established surrogate marker for global T-cell defects in 

human CLL and the TCL1 model118-120, 133, 220, we demonstrated that this can be 

adequately modelled in both the original C3H-F1 TCL1 and the backcrossed B6 TCL1 

model, therefore validating the latter for further studies on the characterization and 

repair of T-cell dysfunction. Previous work of our group on T-cell defects in mice has 

been done using C3H-F1 TCL1 mice, and the backcrossed B6 TCL1 model was been 

inadequately characterized so far. Therefore, in order to fully understand the underlying 

changes in the context of developing CLL, and in a second step, the impact of repairing 

our previously described T-cell defects in backcrossed B6 TCL1 mice, a thorough 

validation of this model was an essential first step. This comparison between C3H and 

B6 TCL1 mice was however restricted to splenic T-cell subsets, as the spleen is 

considered the major organ of disease in this model, but was excluded from the B6 

TCL1 characterization work of Hofbauer et al212, 220. In addition, preclinical 

characterization studies such as the T-cell work from our group216, or studies 

investigating the effect of therapeutic interventions265, are generally done using 

splenocytes from TCL1 mice, also in part because sufficient cell numbers are more 

easily obtained from an enlarged spleen than from LN or blood from a mouse. We were 

able to confirm that the T-cell phenotype in murine CLL cells from spleen mirrors that of 

human CLL121, 122, 133, 390, 391, and includes the fall in the CD4+/CD8+ ratio, and a shift 

from naïve to antigen-experienced CD3+CD8+ cells.  

However, this CLL-specific T-cell phenotype in human studies is largely based on the 

characterization of T cells from PB, while the only other murine study using 

backcrossed B6 TCL1 mice so far describing similar phenotypic alterations used T cells 

from PB and LN220. In contrast, an older study in CLL patients, which characterized T 

cells from LN and BM, reported increased numbers of CD4+ T cells in these 

compartments392. To directly compare differences in T-cell subsets in different organs 

from the same animals, we characterized CD3+, CD4+, CD8+ and CD3+CD8+ naïve 

and effector/memory cells in spleen, PB, LN and BM in ageing B6 TCL1 and age-

matched WT mice. We found that the major aspects of the CLL-specific T-cell 

phenotype were recapitulated in all organs, indicating that the described phenotypic T-

cell changes are induced by the presence of CLL regardless of the microenvironment. 
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It has been suggested that the relative reduction in numbers of PB CD4+ T cells is due 

to their increased susceptibility to FasL-mediated apoptosis126, and a recently 

published study using B cell-derived lymphoblastoid cell lines proposed that this could 

be mediated by constitutively produced MHCII(+)FasL(+) exosomes produced by B-

cells393. In addition, relatively reduced peripheral CD4+ cell numbers could also be a 

result of chemokine/cytokine driven migration into secondary lymphoid organs129. 

Studies in other disease entities associated with chronic inflammatory responses have 

also demonstrated that T-cell subpopulations differ between lymphoid organs and PB, 

and that this could be mediated by cytokines such as CCR4, CXCR3394, 395. Our 

findings support an accumulation of CD4+ T cells in the bone marrow and secondary 

lymphoid organs, probably as a result of migration, as in leukaemic mice, the 

CD4+/CD8+ ratio was generally higher in BM, LN and spleen than in PB. In line with 

previous reports in both human and mouse CLL, we largely found increased numbers 

of T-cell subsets due to leucocytosis and organomegaly in all examined compartments 

compared to age-matched WT mice.  

In all organs, naïve CD3+CD8+ cells were progressively lost and the population shifted 

towards antigen-experienced cells. The subset of antigen-experienced cells, however, 

appeared to be dependent on the microenvironment: effector cells progressively 

became the dominant cell type in BM, and memory cells in PB and LN. In spleens of 

B6 TCL1 mice, memory and effector cells were equally expanded, while C3H mice 

exhibited a more pronounced shift to effector cells. Regardless, the spleen CD8+ 

memory pool of leukaemic mice was further characterized by a shift towards EM and 

loss of CM cells, based on the coexpression of CCR7 and CD62L. A skewing towards 

CD8+ and CD4+ antigen-experienced cells in PB and LN has been previously 

described in murine CLL220. This paper, however, refers to these cells as memory cells 

and reports statistical values in the text for memory cells, but the corresponding figures 

and tables are consistently labelled “effector+memory” cells. It is therefore unclear 

based on the published information, which subset they found to be preferentially 

expanded. Another study using the original TCL1 C3H mice reported an expansion of 

CD8+ effector cells in the peritoneal cavity, but termed this population effector memory 

cells, although their panel did not include any markers such as CCR7 to allow such a 

discrimination135.  

Previous work from our group has found that human CLL CD8+ T cells in blood 

differentiate into CCR7- EM cells133. As this is very similar to our findings in spleen, this 

shift might be recapitulated regardless of microenvironment. Differences in human 

CD8+ lymphocyte subsets were originally thought to be potentially explained by the 
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presence of CMV144, but work from our group later confirmed that impaired T-cell 

function and altered subset composition were irrespective of CMV serostatus133. Based 

on the observation that CMV-reactivations are uncommon in untreated CLL, suggesting 

that antiviral responses are uncompromised, a recently published study suggested that 

CMV-specific CD8+ T cells were indeed functionally intact, while global T-cell defects 

were still present148. Therefore, changes in the T-cell compartment in CLL are likely to 

be very heterogeneous and potentially influenced by a variety of other factors. Murine 

studies allow us to at least control for the confounder of any underlying common 

infection, as mice are generally considered free of infection. This is ensured by the 

maintenance of mice in specific barrier-systems and rigorous infection screening, which 

were also conducted regularly and were confirmed negative in our colony. 

The AT model was confirmed to be a generally adequate tool to mirror the phenotypic 

T-cell changes of ageing CLL, while having the advantage of developing CLL more 

uniformly as a cohort than 12 month old TCL1 mice, where individual animals of the 

same age usually exhibit a wide range of stages of CLL development. The AT model 

therefore appears superior to ageing CLL in terms of more consistently modelling the 

full inhibitory effect of CLL on T-cells; therefore it can be argued that CLL-associated T-

cell changes are most adequately modelled in AT mice, while eliminating confounders 

such as underlying age. However, the TCL1 model per se has also been characterized 

to mirror the biological properties of aggressive human CLL, such as stereotyped B-cell 

receptors or epigenetic alterations (see Chapter 1.2.1.2). Due to its shorter disease 

latency, it is therefore possible that the AT model needs to be considered as even more 

aggressive than CLL that develops in ageing TCL1 mice. In addition, it is not known if 

serial leukaemia transfer in mice fosters clonal evolution of specific CLL sub-clones or 

mutations in BCR pathways, which have been described in human CLL. Therefore, our 

data on ageing TCL1 mice could be used to model the T-cell defects occurring in more 

indolent CLL, while AT mice mirror aggressive CLL. 

As spleen appeared to be representative for CLL-affected secondary lymphoid organs, 

we investigated changes in T-cell function in the context of developing CLL in 

splenocytes from TCL1, WT and AT mice. For a complete analysis of function in 

secondary lymphoid organs compared to blood, it would have been desirable to 

conduct these investigations in a direct comparison. However, functional assays in 

blood were not feasible given the very small volumes of blood retrieved by cardiac 

puncture. Regardless, we were able to identify typical cytokine T-cell defects that 

developed alongside CLL; these included the loss of IL-2 production in CD4+ cells and 

aberrantly increased production by CD8+ cells, the loss of spontaneous IL-4 production 



Fabienne McClanahan                                                                                                     Chapter 5 

Page 127 of 258 

 

by CD4+ cells, and significantly increased IFN-γ production by CD4+ and CD8+ cells. 

Cytokine profiles were only partly mirrored in AT mice, as they seemed to be enriched 

for IL-4 producing CD4+ and CD8+ cells while lacking a significant increase in IFN-γ 

production, which is however very similar to a pattern recently described by Brusa et al. 

in T cells from CLL patients134. Early studies in human CLL suggested that CLL was a 

CD4+ Th2-mediated disease, with increased numbers of both CD4+ and CD8+ T cells 

producing IL-4153, 396. However, a number of other reports have described increased 

production of IFN-γ and TNF-α by T cells from CLL patients, which also correlated with 

disease stage164, 397-400. In addition, IL-2 was shown to increase CLL cell proliferation401. 

Previous work from our group found that CD4+ T cells from CLL patients showed 

increased production of IFN-γ and IL-2, and no reduction in TNF-α, while CD8+ T cells 

had increased production of IFN-γ and TNF-α without any reduction in IL-2 when 

compared with healthy controls133. Our previous murine work suggested that T-cell 

cytokines were Th2 preponderant216. Assuming that the ageing TCL1 mouse model is 

more indolent and the AT models represents more aggressive disease, our present 

data indicate that CD4+ cells are IFN-γ/Th1 preponderant in more indolent stages, but 

become IL-4/Th2 preponderant in aggressive CLL. Similarly, indolent CLL would be 

associated with aberrant IL-2 and IFN-γ production by CD8+ T cells, and aggressive 

CLL with aberrant IL-4 and loss of IFN-γ production. However, these different cytokine 

secretion patterns between more and less aggressive CLL might also be biased by 

immune responses associated with the process of ageing. Although we were 

conducting all comparisons between leukaemic mice and age-matched WT mice (i.e. 

compared ageing TCL1 mice with ageing WT mice, and young AT mice with young 

age-matched WT), the cytokine-secretion potential of T cells has been demonstrated to 

undergo fundamental changes with ageing402. Therefore, the different cytokine 

repertoire in AT mice might also be explained by the fact that younger mice simply 

have a different repertoire of cytokine secretion potential than older mice.   

A more consistent picture between ageing TCL1 and AT mice was found regarding 

CD8 T-cell effector function: developing CLL led to a progressively lost ability of 

CD107a relocation to the cell surface, with was used as a measurement of cytotoxicity, 

but cells maintained the ability to produce cytolytic GrB. Accordingly, immune synapse 

formation was significantly impaired in ageing TCL1 and AT mice, but this did not 

appear to be a linear development as 6 month old TCL1 mice exhibited an increased 

ability to form synapses. We have previously described in both murine and human CLL 

that GrB mRNA levels were not impaired in CLL T cells, but that cells still had an 

impaired cytotoxicity function and poor immunological synapse formation77, 171, 216. 
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Impaired cytotoxicity was later found to be explained by an impaired ability of human 

CLL PB T-cells to focus CD107a and GrB polarisation into the immunological synapse, 

therefore preventing the targeted lysis of antigen-presenting cells133. In the present 

study, we have confirmed that all these functions were affected in T cells from spleen. 

This indicates that impaired effector function is a hallmark of CLL T cells regardless of 

the microenvironment, and that the defects are developing progressively alongside CLL 

from an early stage on. 

Somewhat surprisingly, T-cell proliferation was found to increase with developing CLL 

and after AT. This is a novel finding and is in marked contrast to our previous human 

work, which found a proliferative defect in PB CLL T cells due to a combination of a 

reduction in the proportion of cells able to divide upon polyclonal activation, and 

prolongation of the division time of the proliferating cells133. This, however, was 

measured by CFSE incorporation following 72h ex vivo stimulation with anti-CD3/CD28 

beads, whereas proliferation of murine T cells was measured both directly in vivo and 

ex vivo without any further antigen or mitogen stimulation. This can therefore be 

considered the most accurate measurement of actual T-cell proliferation in vivo. 

Interestingly, Roth et al. described significantly shorter average telomere lengths in 

naïve and memory T cells from ZAP-70+/CD38+ patients compared to ZAP-70-/CD38- 

patients and healthy controls, indicating increased proliferation of T cells in CLL 

patients with poorer risk disease. Therefore, increased proliferation of T cells in TCL1 

mice might be another indication of the aggressiveness of the disease.  

CLL B-cells themselves have long been viewed as non-proliferating cells; this was 

challenged by clinical studies using heavy water to label CLL cells in vivo, and more 

recently by murine studies demonstrating that CLL cells had higher proportions of 

proliferating cells than non-leukaemic lymphocytes, which is in line with our present 

observations comparing healthy B-cells and CLL cells260, 403. The same murine study 

also found that BrdU incorporation into T cells did not differ between TCL1 and WT 

mice, indicating that T-cell proliferation was at least maintained. The discrepancy to the 

increase in T-cell proliferation observed in our current work could be explained by the 

fact that Enzler et al. examined mice with a lower burden of disease, which are 

probably more similar to the 6 month old TCL1 mice we used in our study, and that 

increased proliferation might have become apparent had they used older mice with 

more progressed CLL as well.  

In sum, we have extensively validated the backcrossed B6 TCL1 model for the 

characterization and repair of T-cell defects in CLL, we have demonstrated the 

strengths and potential shortcomings of the AT model to mirror the T-cell defects seen 
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in ageing TCL1 mice, and we have shown for the first time how different 

microenvironments and compartments affect the T-cell phenotype in murine CLL. In 

addition, we have identified the dynamic alterations of T-cell phenotype and function in 

the context of developing CLL, and we have described novel mechanisms of T-cell 

dysfunction. Altogether, this work supports the understanding that, despite a typical 

CLL-induced T-cell phenotype, CLL T cells are at last partially functional and have 

developed several mechanisms that try to compensate increasing tumour load and 

maintain anti-tumour immune responses. The mechanisms of why these anti-tumour 

immune are not sufficient and do not lead to efficient anti-tumour control, and how the 

inhibitory effects of CLL cells are mediated, will be further investigated in the next 

chapter.  



Fabienne McClanahan                                                                                                     Chapter 6 

Page 130 of 258 

 

6 PD-L1/ PD-1 mediated T-cell dysfunction and T-cell exhaustion in TCL1 

mice on the B6 background 

6.1 Specific introduction 

Our group has previously identified the molecular signature of human CD4+ and CD8+ 

T cells in CLL, and confirmed that this is very closely mirrored in leukaemic TCL1 

mice171, 216. Dysregulated T-cell genes were mostly involved in pathways of cell 

proliferation, differentiation, effector function, and actin cytoskeleton formation. The 

functional impact of the latter was modelled in immune synapse formation assays 

between T cells and antigen presenting cells (APCs). These experiments confirmed 

that T cells from CLL patients inappropriately respond to APCs due to their inability to 

regulate actin modelling effectively, and to recruit key cytoskeletal signalling molecules 

to the immune synapse77. These defects could be induced in normal allogeneic T cells 

by co-culturing them in direct cell-cell contact with CLL cells, and were also 

recapitulated in synapses between autologous CLL and T cells from leukaemic TCL1 

mice. Using functional siRNA screening, aberrant surface expression of CD200, PD-L1, 

CD270 and CD276 on CLL cells were identified as the major mediators of impaired T-

cell actin dynamics, with a dominant role of PD-L179. Blocking these ligands in vitro led 

to a significant improvement of immune synapse formation, with the combined activity 

of all four molecules having the greatest effect.  

The corresponding binding partners of PD-L1 and CD270 - PD-1 and CD160 - have 

been demonstrated to be aberrantly expressed by CLL T cells, probably as a result of 

chronic antigenic stimulation133, 134. This has been extensively studied in the context of 

chronic viral infections with high viral replication, such as hepatitis B and C, human 

immunodeficiency virus (HIV), and simian immunodeficiency virus (SIV), where chronic 

antigenic stimulation leads to failed immune responses and persistence of viral 

antigens beyond the effector phase. The continued presence of viral antigen and 

inflammation drive the on-going replication of virus-specific effector T cells and lead to 

a number of progressive phenotypic and functional changes that have been termed “T-

cell exhaustion”. Of note, T-cell exhaustion is not limited to chronic viral infection, but 

also includes bacterial and parasitic infections. Exhaustion represents a state of 

functional hypo-responsiveness that occurs as a progressive process over a period of 

weeks or months, depending on the chronic stimulus, and has been characterized as a 

hierarchical loss of effector CD8+ T-cell function: first, proliferative capacity and 

production of IL-2 are lost, followed by the ability to produce TNF-α, and ultimately IFN-

γ147. Loss of function generally coincides with expression of inhibitory surface 

receptors, including PD-1, LAG-3, CD160, 2B4, TIM-3, BTLA, and CTLA-4404. PD-1 has 
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emerged as a major inhibitory receptor associated with T cell exhaustion405-407. Upon 

binding to its ligands PD-L1 and PD-L2, PD-1/PD-L1/PD-L2 mediated signalling 

represses T-cell receptor signalling and paralyses T-cell motility, probably in synergy 

with other inhibitory receptors285, 292, 408-410. In mice, T-cell exhaustion and the 

associated hierarchical loss of function can be modelled by infections with different 

strains of lymphocytic choriomeningitis virus (LCMV)411. Comparisons of gene 

expression profiles from naïve, effector, memory and exhausted CD8+ T cells from 

LCMV models have revealed that exhausted T cells harbour a unique and distinct 

molecular signature, with alterations in T-cell receptor and cytokine signalling 

pathways, metabolism, migration and actin-cytoskeleton formation412, 413. In addition, a 

number of transcription factors are differently expressed, such as BLIMP-1, BAT3, 

NFAT, TBET and EOMES414, 415.  

However, exhaustion is neither a fixed, irreversible, terminal differentiation state, nor an 

unresponsive T-cell state, and several studies have demonstrated that exhausted T 

cells represent a very heterogeneous population containing several subsets of cells 

that despite PD-1 expression are able to exert certain effector function. For example, T-

BEThiPD-1int cells represent a progenitor T-cell subset, which proliferate in response to 

persisting antigen, and give rise to EOMEShiPD-1hi subpopulations. The latter are 

considered the terminal progeny, express higher levels of other inhibitory receptors and 

do not replicate, but exhibit high levels of cytotoxic activity. Adoptive transfer 

experiments have demonstrated that during the early phase of chronic infection, 

exhausted virus-specific CD8+ T cells can continue their differentiation process and 

form functional T-cell memory upon transfer into healthy mice, but at the same time 

maintain an exhausted phenotype, including the surface expression of PD-1416. 

Exhausted T cells from established chronic infections in contrast were unable to 

differentiate when removed from antigen and did not restore effector functions. The 

heterogeneity of T-cell populations expressing PD-1 has been underscored by findings 

on the effect of antibody blockade, which could reverse exhaustion in PD-1int cells, but 

not in terminally differentiated PD-1hi T cells417.  

Several studies have demonstrated that tumour-infiltrating T cells share many 

phenotypic and functional characteristics of exhausted T cells in chronic infections: 

these include impaired production of IFN-γ, TNF-α, and IL-2, the expression of 

inhibitory receptors such as PD-1, LAG-3, 2B4, TIM-3, CD160 and CTLA-4, and altered 

signalling pathways described for exhausted T cells418-423 were demonstrated to be 

expressed in a substantial number of CD8+ cells in tumour-bearing mice.  
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Our group has demonstrated that T cells from CLL patients exhibit features of T-cell 

exhaustion, such as increased expression of surface exhaustion markers, impaired 

proliferation, and cytotoxic defects with a reduced ability to lyse target cells, while 

retaining the capacity to produce cytokines such as IFN-γ and TNF-α133. Another 

recently published study found that proliferating CD8 T cells from CLL patients had 

higher expression of PD-1 than non-proliferating T cells, and that T cells had impaired 

IFN-γ and IL-4 production after direct binding of PD-1 to PD-L1 ligand, with both of 

those patterns also being observed but at a lower degree after stimulation of T cells 

from healthy controls134, suggesting a somewhat contained physiological reaction in 

CLL T cells.  

Altogether, these observations emphasise the heterogeneity of PD-1 expressing T-cell 

populations in CLL. Despite the expression of typical exhaustion markers, certain 

effector functions appear to be maintained, but it is not clear how distinct states of 

dysfunction develop in the context of advancing CLL and what their functional 

characteristics are. Findings relating to PD-1 and exhaustion in human CLL are also 

likely to be biased by age: CLL is predominantly a disease of the elderly, but high PD-1 

expression is also found on functional effector memory T cells in healthy older 

humans424. This suggests that PD-1 should not be considered a definitive marker for T-

cell exhaustion and dysfunction. In addition, it is likely that factors such as antigen 

specificity, T-cell receptor affinity, level of tumour antigen, and T-cell differentiation 

state, as well as non-T-cell factors such as the microenvironment and metabolic 

conditions contribute to the functional state of not only CLL, but tumour-associated T 

cells in general.  

Understanding the associations between PD-L1 and PD-1 expression and T-cell 

function is however particularly important for immunotherapeutic interventions, as 

different subsets might require different strategies to restore cell function: it is possible 

that blockade of the PD-1/ PD-L1 pathway has distinct effects on T-cell subsets, such 

as promoting effector T-cell populations with physiological PD-1 expression, restoring 

impaired effector function of “early exhausted” populations, or rescuing some effector 

functions in even terminally differentiated T cells. To date, this has only been partly 

answered in CLL, and studies using human CLL samples are likely to be biased by not 

only age, but also potentially underlying infections other than CMV, and treatment. In 

addition, peripheral blood T cells might show different expression patterns than cells in 

secondary lymphoid organs. The majority of these questions can be answered in the 

TCL1 model. Our group has demonstrated the suitability of this model to mirror T-cell 

dysfunction and T-cell directed questions, which was confirmed and extended by 
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further in-depth work in this project. We therefore hypothesized that TCL1 mice are 

also an adequate preclinical model to mirror PD-L1/PD-1 mediated immune dysfunction 

and to further study the concept of exhaustion in the absence of confounders. This is 

also an essential step to fully understand the effect of in vivo antibody blockade of PD-

L1/PD-1 interactions.  

 

6.2 Goals and objectives 

My next goal was therefore to investigate the suitability of the B6 TCL1 model to mirror 

PD-L1/PD-1 interactions and their inhibitory effect on T-cell function, and to extend this 

to the second binding partner of PD-1, namely PD-L2. Specifically, I sought to address 

the following questions: 

 Are the inhibitory ligands CD200, CD270, CD274 (PD-L1), CD276 and CD273 (PD-

L2) differentially expressed on murine CLL cells? 

 Are the previously described corresponding receptors CD160 and PD-1 expressed 

on murine CD8+ T cells? 

 Can T-cell exhaustion be modelled in TCL1 mice, and if yes, what are the 

functional characteristics? 

 How do inhibitory ligands and typical exhaustion markers develop in the context of 

advancing CLL? 

 Can the TCL1 model be used to disentangle functional differences of the 

heterogeneous “exhausted” T-cell population using PD-1 as a marker?  

 

6.3 Specific methods and materials 

6.3.1 Mice and examined organs 

The surface expression of CD200, CD270, CD274 (PD-L1) and CD276 was initially 

characterized in aged TCL1 mice on both the original C3HB6-F1 and the backcrossed 

B6 background from our colony, and in AT mice from AT experiments 5 and 6 (see 

Chapter 4, Table 7). Aged WT mice were retired female breeders from our colony. Mice 

were sacrificed under protocol 19b2 of PIL 70/7531 once they met the endpoint criteria 

for established CLL (see general methods), and spleens were harvested and 
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processed as described in general methods. An overview of mice included in this 

experiment is depicted in Figure 28.  

 

 

Figure 28: Overview of mice to initially assess the expression of inhibitory ligands on 
spleen CLL and normal B cells. A total of 32 animals were phenotyped (20 TCL1 and 12 age-
matched WT mice). Both the original C3H and backcrossed B6 TCL1 mice were used, and 
leukaemic mice were aged TCL1 mice and young TCL1 mice that developed CLL after adoptive 
transfer (AT).  

 

The changes in PD-L1 expression in the context of developing CLL were assessed in a 

second round of experiments, which we conducted alongside the T-cell phenotyping 

and T-cell functional studies described in the previous chapter using 3, 6 and 12 month 

old TCL1 and WT and AT mice listed in Table 8 as “II. Available mice to assess T-cell 

function in spleen alongside developing CLL”. PD-L1 and PD-L2 expression were 

characterized in spleen, PB, BM and LN from mice listed as 1func through 7funct in “III. 

Available mice to assess T-cell phenotype in organs alongside developing CLL”.   

WT and AT mice, listed as 1b through 8b in Table 8 as “I. Available mice to assess T-

cell phenotype in spleen alongside developing CLL”, were used to characterize the 

expression and development of typical exhaustion markers in spleen. This was 

confirmed by a slightly modified panel excluding TIM-3 in spleen from mice listed as 

1func through 7funct in “III. Available mice to assess T-cell phenotype in organs alongside 

developing CLL”. These mice were also used to characterize expression of PD-1 in 

different organs. In the first experiment, AT recipients were young TCL1 mice, and in 

the second experiment, young WT recipients were used.  

To unmask the effect of ageing and to assess T-cell function, surface T-cell exhaustion 

markers and functional T-cell assays were conducted in mice from AT experiment 8, 

Chapter 4. Young TCL1 transgenic mice (n=10) and sex-matched WT littermates 

(n=10) were randomized to AT with 2x107 syngeneic CLL cells each, injected i.v. within 

three days of each other, or a pool of an equivalent number of spleen cells from healthy 

mice. Further information on AT procedures is provided in Chapter 4. Mice were bled 

regularly to assess the engraftment and development of CLL, and sacrificed once they 
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met the criteria for CLL defined in general methods. Matched recipients of normal 

spleen cells were sacrificed on the same day and served as controls in all experiments.  

 

6.3.2 Multicolour flow cytometry for inhibitory ligand expression on normal and 

malignant B cells 

CLL cells and normal B cells were characterized by CD19 and CD5 expression as 

previously described. Experiments were performed on both frozen and fresh samples. 

As controls, FMO and isotype controls for CD200, CD270, CD273 (PD-L2), CD274 

(PD-L1) and CD276 were prepared. Samples were acquired on a BD LSRII. Stopping 

gates were set to CD19+CD5+ cells in leukaemic mice and CD19+ in healthy mice to 

record 15,000 events. Information on antigens, fluorochromes, clones, concentrations 

and suppliers is listed in Table 14. 

 

 mouse antigen fluorochrome clone concentration host/isotype supplier 

inhibitory 
ligands 

CD200 PerCPe-fluor 710 OX90 0.2 mg/ml rat IgG2aκ eBioscience 

CD270 APC 
HMHV-
1B18 

0.2 mg/ml 
Armenian 

hamster IgG 
eBioscience 

CD273 PerCPe-fluor 710 122 0.2 mg/ml rat IgG2aκ eBioscience 

CD274 PeCy7 10F.962 0.2 mg/ml rat IgG2bκ Biolegend 

CD274 PE MIH5 0.2 mg/ml rat IgG2aλ eBioscience 

CD276 PE M3.2D7 0.2 mg/ml rat IgG2aκ eBioscience 

CLL 

CD5 FITC 53-7.3 0.5 mg/ml rat IgG2aκ eBioscience 

CD5 APC 53-7.3 0.2 mg/ml rat IgG2aκ eBioscience 

CD19 APC-Cy7 6D5 0.2 mg/ml rat IgG2aκ Biolegend 

CD19 FITC eBio1D3 0.5 mg/ml rat IgG2aκ eBioscience 

isotype 
controls 

 PE RTK2758 0.2 mg/ml rat IgG2aκ Biolegend 

 PeCy7 RTK4530 0.2 mg/ml rat IgG2bκ Biolegend 

 PerCPe-fluor 710 
eB149/ 
10H5 

0.2 mg/ml rat IgG2aκ eBioscience 

 APC HTK888 0.2 mg/ml 
Armenian 

hamster IgG 
Biolegend 

Table 14: Summary of antigens, fluorochromes, antibody clones, concentrations and 
suppliers used to assess inhibitory ligand expression. 

 

An example of the gating strategy to identify cell populations positive and negative for 

inhibitory ligands is depicted in Figure 29. Cells were gated on viable (i.e. DAPI-

negative) single MNC. Inhibitory ligands were gated on CD19+ B cells in WT mice and 

CD19+CD5+ CLL cells in TCL1 and AT mice. Gates were placed based on isotype and 
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FMO controls for inhibitory ligands and expressed as percentage of cells positive for a 

specific inhibitory marker (Figure 29 A, example shows gating on CLL cells from a 

representative TCL1 mouse). In addition, the median fluorescence intensity (MFI) was 

reported for each ligand, corrected for the MFI of the respective isotype control 

(specific MFI).  

 

 

Figure 29: Gating strategy to assess expression of inhibitory ligands on normal B cells 
and CLL cells in mice. Cells were gated on viable single mononuclear cells. CD200, CD270, 
CD274 and CD276 were gated on CD19+ B cells in WT mice and CD19+CD5+ CLL cells in 
leukaemic mice. (A) Cell populations positive and negative for inhibitory ligand expression were 
discriminated based on isotype and FMO controls. This graph shows a representative example 
from a TCL1 mouse, and combines FCS files from the full stain containing all fluorochromes-
labelled antibodies (black colour), and the isotype control for the respective marker (grey 
colour). (B) Corresponding histograms depicting the median fluorescence intensity (MFI) for 
each ligand (dark colour) and the isotype control (grey colour). 

 

6.3.3 Comparison of gene-expression profiles from T-cell subsets in deposited 

data 

To investigate the molecular mechanisms of T-cell exhaustion, the gene expression 

profile (GEP) of CD8+ T cells from leukaemic TCL1 mice published by our group (GEO 

accession number GSE8836)216 was compared to previously published GEP data of 

effector, memory, and exhausted T cells (GSM235537)412. The latter was a landmark 

publication characterizing differences in the molecular signature of exhausted, effector 

and memory CD8+ T cells from murine LCMV infection models compared to naïve 

CD8+ cells. This paper used infection with Armstrong strain of LCMV, which is usually 

cleared by day 10, followed by contraction and differentiation, to model acute infection 
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and the generation of functional effector and memory CD8+ T cells. Infection with clone 

13 of LCMV leading to chronic infection, accompanied by loss of effector function and 

ineffective viral control, was used to model T-cell exhaustion. The CLL T-cell dataset 

was reanalysed with Partek software, and following the criteria of the LCMV analysis, 

TCL1 genes that were at least 2-fold up-or downregulated were selected as aberrantly 

expressed and exported to Microsoft Excel for further analysis. This gene list was then 

manually compared to reported dysregulated genes in effector, memory and exhausted 

CD8+ T cells both by gene ID, alternative names, and accession number. Genes that 

were represented in both the TCL1 and any of the LCMV signatures were considered 

as overlapping genes, and attributed to specific LCMV subset signatures regardless of 

whether they were up- or downregulated.  

 

6.3.4 Multicolour flow cytometry for surface expression of T-cell exhaustion 

markers 

T-cell subsets were characterized based on the surface expression of CD3, CD4, CD8 

and CD44. PD-1, TIM-3, CD160, KLRG-1, 2B4 and LAG-3 were selected as typical 

exhaustion markers that have also been used to define exhaustion-like phenotypes in 

other murine cancer models. In experiments unmasking the effect of ageing by AT, the 

panel was extend by the cytokine receptors CD122 and CD127. CLL was routinely 

determined by CD19 and CD5 expression. Information on antigens, fluorochromes, 

clones, concentrations and suppliers is listed in Table 15.  

Cells were prepared for flow cytometry as described in Chapter 3.4.1. Stopping gates 

were set to CD3+CD8+ cells to record at least 12,000 events. Cells were gated on 

viable single MNC. CD4 and CD8 were gated on CD3+ lymphocytes. Naïve cells were 

identified as CD44low+ and antigen-experienced cells as CD44+ based on FMO 

controls for CD44. Exhaustion markers were gated on CD3+CD8+ MNC and plotted 

against CD44. Gates to discriminate cells positive and negative for a certain exhaustion 

marker were placed based on FMO controls for exhaustion markers and included in all 

experiments. 
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mouse 
antigen 

fluorochrome clone concentration 
host/ 

isotype 
supplier 

T-cell 
phenotype 

CD3e APCCy7 17A2 0.2 mg/ml rat IgG2bκ Biolegend 

CD4 PerCPCy5.5 RM4-5 0.2 mg/ml rat IgG2aκ eBioscience 

CD8a FITC 53-6.7 0.5 mg/ml rat IgG2aκ eBioscience 

CD44 PECy7 IM7 0.2 mg/ml rat IgG2bκ eBioscience 

CD44 PE IM7 0.2 mg/ml rat IgG2bκ eBioscience 

T-cell 
surface 

exhaustion 
markers 

 

PD-1 APC RMP1-30 0.2 mg/ml rat IgG2bκ eBioscience 

TIM3 PE 88.2C12 0.2 mg/ml rat IgG1κ eBioscience 

CD160 PE eBioCNX46-3 0.2 mg/ml rat IgG2aκ eBioscience 

LAG3 PE eBioC9B7W 0.2 mg/ml rat IgG1κ eBioscience 

LAG3 PerCP e-fluor710 eBioC9B7W 0.2 mg/ml rat IgG1κ eBioscience 

2B4 APC 244F4 0.2 mg/ml rat IgG2aκ eBioscience 

KLRG1 PE 2F1 0.2 mg/ml 
golden Syrian 
hamster IgG 

eBioscience 

KLRG1 PerCP e-fluor710 2F1 0.2 mg/ml 
golden Syrian 
hamster IgG 

eBioscience 

T-cell 
cytokine 
receptors 

CD122 PE 5H4 0.2 mg/ml rat IgG2aκ eBioscience 

CD127 APC A7R34 0.2 mg/ml rat IgG2aκ eBioscience 

CLL 
CD5 APC 53-7.3 0.2 mg/ml rat IgG2aκ eBioscience 

CD19 FITC eBio1D3 0.5 mg/ml rat IgG2aκ eBioscience 

Table 15: Summary of antigens, fluorochromes, antibody clones, concentrations and 
suppliers used to assess T-cell exhaustion markers in relation to CLL. 

 

6.3.5 Multicolour flow cytometry for intracellular cytokines and effector 

function in AT experiments unmasking the effect of ageing 

For these studies, T-cell subsets were characterized based on the surface expression 

of CD3, CD8 and CD44. PD-1 was included into this panel to allow discrimination of 

effector function based on PD-1 expression. Cytotoxicity was assessed by measuring 

CD107a effector cell degranulation. The cytokine panel was extended to include 

intracellular IFN-γ, IL-2, TNF-α, IL-4 and IL-5. Ex vivo proliferation was measured using 

CFSE. Table 16 shows information on antigens, fluorochromes, antibody clones, 

concentrations and suppliers. 10x106 fresh spleen cells from mice with CLL and 5x106 

fresh spleen cells from healthy mice were kept in RPMI 1640 with 10% FCS, 

1%Penicillin/Streptomycin, 1% Glutamine, and 500mM beta-mercaptoethanol in a flat 

bottom 12 well-plate. 5µg/ml CD107a was added to each well, and cells were 

stimulated and processed as described in Chapter 5.3.3. Controls included wells with 

CD107a antibody and protein transport inhibitor cocktail, but no cell stimulation 
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cocktail. After the incubation, cells were harvested, washed with PBS and prepared for 

flow cytometry as described before. 

For intracellular cytokine production, cells were set up using identical conditions in a 

separate 12 well plate, with the exception that 20x106 fresh spleen cells from mice with 

CLL were used. After the incubation, cells were harvested into Falcon tubes (BD, UK), 

stained with fixable viability dye 450 (eBioscience, UK) and surface stained 30 minutes 

on ice. Cells were washed, fixed and permeabilised as described before. Before 

intracellular staining, both stimulated and unstimulated wells were split equally to Th1 

and Th2 cytokine tubes, and cells were stained with intracellular antibody cocktails for 

30 minutes at room temperature.  

 

 mouse antigen fluorochrome clone concentration 
host/ 

isotype 
supplier 

surface 
stain 

CD3e PerCPefl 710 17A2 0.2 mg/ml rat IgG2bκ eBioscience 

CD8a BV605 53-6.7 0.5 mg/ml rat IgG2aκ Biolegend 

CD44 AF700 IM7 0.2 mg/ml rat IgG2bκ eBioscience 

PD-1 APC RMP1-30 0.2 mg/ml rat IgG2bκ eBioscience 

PD-1 PerCPefl 710 RMP1-30 0.2 mg/ml rat IgG2bκ eBioscience 

cytotoxicity CD107a PE eBio1D4B 0.2 mg/ml rat IgG2aκ eBioscience 

intracellular 
cytokines 

IFN-γ PE XMG1.2 0.2 mg/ml rat IgG1κ eBioscience 

IL-2 PeCy7 JES6-5H4 0.2 mg/ml rat IgG2bκ eBioscience 

TNF-α APC MP6-XT22 0.2 mg/ml rat IgG1κ eBioscience 

IL-4 APC 11B11 0.2 mg/ml rat IgG1κ eBioscience 

IL-5 PE TRFK5 0.2 mg/ml rat IgG1κ eBioscience 

Table 16: Summary of antigens, fluorochromes, antibody clones, concentrations and 
suppliers used to assess T-cell function in relation to CLL. 

 

CD107a and intracellular cytokines were gated as described before. In addition, 

cytokine production was plotted against CD44. Stopping gates were set to 

CD3+CD8+CD44+ cells to record at least 15,000 events, or until the sample had been 

fully aspirated, whichever occurred first. Differences in T-cell function between mice 

with CLL and healthy WT mice, and between PD-1high and PD-1low subsets were 

compared by calculating ratios between CD44+ antigen-experienced cells positive or 

negative for a cytokine or CD107a. This ratio was interpreted as cells with the ability to 

exert effector cell function compared to cells of the same subset that lack this ability. 

Changes of this ratio were interpreted as loss or gain of cells with effector cell function.  
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6.3.6 Flow sorting of PD-1 subsets for immune synapse formation assays 

To assess differences of PD-1 subsets in the ability to form immunological synapses 

with normal mouse B cells as APCs, spleens from 6 available mice with CLL after AT 

were flow-sorted based on PD-1 expression. A pool of normal frozen mouse 

splenocytes was used as controls and subjected to the same procedures, including 

flow sorting. Frozen splenocytes were thawed and debulked of CLL cells by positive 

magnetic selection as described in Chapter 3.3.1. Positive labelled normal B cells were 

used as APC and rested in the incubator until needed. Cells in the CD19- fractions 

were stained with CD8 FITC, CD44 PE and PD-1 APC. An example of the sorting 

strategy is shown in Figure 30 A. CLL T cells were sorted for PD-1high, PD-1low, and 

CD8+ T cells. Normal T cells were sorted for CD8+ only. Purities were confirmed to be 

>95% (Figure 30 B), and stopping gates were set to obtain a minimum of 500,000 T 

cells per subset for each condition in the synapse assay, which was performed as 

described in Chapter 3.5. 
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Figure 30: Flow sorting of CD8+ T cells according to PD-1 expression. Frozen splenocytes 
from WT mice and mice with CLL after AT were debulked of B cells by positive selection, and 
the remaining cells were stained with CD8, CD44 and PD-1. (A) Example of gating and sorting 
strategy. (B) Purities were confirmed to be >95% for all sorted populations.  
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6.4 Results 

6.4.1 Inhibitory ligands CD200, CD270, CD274 (PD-L1) and CD276 are expressed 

on murine CLL cells but only CD274 and CD276 are significantly upregulated 

compared to normal B cells 

To investigate if the TCL1 model is a suitable tool to mirror PD-L1/PD-1 interactions, 

we first compared the expression of the previously identified inhibitory ligands CD200, 

CD270, CD274 (PD-L1), and CD276 on spleen CLL cells from TCL1 and AT mice and 

compared this to the expression on CD19+ B cells from age-matched healthy WT mice. 

This first experiment was performed on frozen cells as mice had reached their 

individual CLL-defined endpoint at different times. To minimize the likelihood of a batch 

effect, samples were cryopreserved until a sufficient number of mice had been 

collected, and the phenotyping panel was performed on all previously frozen cells 

samples at the same time.  

The CLL load in spleen was very high, defined as the proportion of CD19+CD5+ cells 

after gating on viable single MNC in this cohort of leukaemic animals, with a median of 

92%, and a minimum of 64% in two animals. WT mice were confirmed to be free of 

CLL. PD-L1 was uniformly expressed on virtually all spleen CLL cells (median 99.2%, 

range 95.6-100). CD200 and CD270 were in general highly expressed but the 

percentage of expression on CD19+CD5+ spleen cells varied among animals (CD200 

median 84.8%, range 42.8-99.9; CD270 median 72.3%, range 46.7-96.7). In contrast, 

CD276 expression levels varied widely among leukaemic animals (median 51.9%, 

range 7.7-94.7)  

However, the comparison to normal spleen B cells from healthy WT mice revealed that 

in contrast to our human data, the percentage of CD200+ and CD270+ cells was 

significantly lower in TCL1 mice than in WT mice (CD200 p=.0216, CD270 p<.0001). 

Just as in human CLL, the percentages of PD-L1+ and CD276+ cells were higher in 

TCL1 than in WT mice (PD-L1 p=.0002; CD276 p=.0226, Figure 31 A). This pattern 

was also recapitulated when comparing the specific MFI (MFI corrected for the MFI of 

the FMO/isotype control: CD200 p<.0001; CD270 p=.0004; CD274 p<.0001; CD276 

p=.0008) (Figure 31 B). Both FMO conditions and isotypes were used as controls, 

which showed very similar results. In general, the expression of all ligands was 

relatively uniform on normal B cells from WT animals. Consistent with the 

organomegaly associated with CLL, the absolute numbers of spleen cells positive for 

CD200, CD270, PD-L1 and CD276 were all significantly increased in leukaemic mice 

(Figure 31 C). 



Fabienne McClanahan                                                                                                     Chapter 6 

Page 143 of 258 

 

In leukaemic mice, background (i.e. B6 TCL1 vs. C3H TCL1) appeared to have only a 

minor effect on expression of inhibitory ligands: similar patterns regarding CD270, PD-

L1 and CD276 were observed in B6 and C3H TCL1 mice, whereas CLL cells from C3H 

TCL1 mice showed a borderline significantly higher percentage of CD200 expression 

(Figure 31 D). This was also confirmed by comparing specific MFIs. No differences 

were found between aged TCL1 mice with CLL and AT mice, both in terms of relative 

expression and specific MFI (Figure 31 E). 

 

 

Figure 31: Expression of CD200, CD270, CD274 (PD-L1) and CD276 on CLL and normal B 
cells. Absolute number (AN) of cells positive for a marker, defined by gating on FMO and 
isotype controls, and specific MFI (Median Fluorescence Intensity, MFI corrected for the MFI of 
the FMO/ isotype control) were compared. (A) Percentage of CD200+ and CD270+ CLL/B cells 
was lower in TCL1 mice than in WT mice, while percentage of CD274+ and CD276+ cells was 
higher in TCL1 than in WT mice. (B) Similar patterns were found when comparing specific MFIs. 
(C) Consistent with the organomegaly associated with CLL, AN of spleen cells positive for 
CD200, CD270, CD274 and CD276 were significantly increased in leukaemic mice. (D) Similar 
expression patterns were found in TCL1 mice on both backgrounds (B6 TCL1 vs. C3H TCL1), 
with the exception of CD200. (E) No differences were found between aged TCL1 mice with CLL 
and AT mice. All graphs depict median with interquartile range (IQR). ns = non-significant, 
*p<.05, **p<.001, ***p<.0001.  
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6.4.2 Highly aberrant PD-L1 and PD-L2 expression are exclusive to malignant 

CLL cells and develop in the context of advancing disease regardless of 

microenvironment 

After we confirmed that aberrant PD-L1 expression on spleen CLL cells can be 

modelled in TCL1 mice and that it closely mirrors the expression of PD-L1 in human 

CLL, we sought to examine how this develops in the context of progressing CLL. In 

addition, characterization of PD-L1 expression in human CLL had been limited to flow 

cytometry in PB and immunohistochemistry in LN, while the mouse data described in 

Chapter 6.4.1 was derived from spleen single cell suspensions. Therefore, we sought 

to extend the mouse phenotyping panel to PB, BM and LN, and to also assess the 

expression of PD-L2 in 3, 6, and 12 month old TCL1 and WT mice and AT mice (WT 

recipients). As our first experiment demonstrated that percent positive cells and specific 

MFI provide effectively the same information, we restricted this analysis to comparison 

of MFIs.  

We routinely confirmed that WT and young TCL1 mice were free of CLL. As before, in 

mice without a detectable CLL population PD-L1/PD-L2 expression was assessed on 

CD19+ B cells, while in mice with CLL this was assessed on CD19+CD5+ CLL cells 

(Figure 32 C). As discussed in the previous chapter, 6 month old TCL1 mice represent 

an early stage of CLL, where malignant CD19+CD5+ CLL cells exist alongside normal 

CD19+ B cells, allowing these populations to be directly compared. We therefore 

assessed expression on both normal and malignant B cells in this age group to gain 

insight as to whether PD-L1/PD-L2 expression is exclusive to CLL cells.  

PD-L1 expression on normal spleen B-cells was relatively constant in healthy ageing 

WT mice, but increased in TCL1 mice developing CLL and after AT (Figure 32 A). This 

was recapitulated in BM and LN. In PB, PD-L1 expression in WT mice was significantly 

increased at 6 and decreased at 12 months, but this was most likely the result of a 

single outlier in this group of mice. In PB of TCL1 mice developing CLL and in AT mice, 

PD-L1 expression increased consistently. The direct comparison of normal and 

malignant B-cell populations in 6 month old TCL1 mice demonstrated that aberrant PD-

L1 expression appeared to be restricted to CLL cells in spleen and BM (for both 

organs, p=.0022 for MFI of PD-L1 in normal B cells vs. CLL cells). A similar, but not-

significant, trend was observed in PB (p=.09). Interestingly, PD-L1 expression was 

comparable (p=.2805) in normal and malignant B cells in LN in these 6 month old mice, 

and only became strongly upregulated at 12 months, and to a certain degree after AT. 

This is consistent with the longer latency of disease accumulation we observed in LN 

(see previous chapter). Confirming our previous findings, PD-L1 expression was 
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significantly upregulated in fully leukaemic mice compared to age-matched WT mice in 

all organs (p=.0043). PD-L2 expression appeared to be strongly dependent on the 

microenvironment in ageing WT mice, as it showed a slight upregulation in spleen, BM 

and LN, but not PB (Figure 32 B). In TCL1 mice, highly upregulated PD-L2 was 

restricted to CLL cells, as demonstrated by the direct comparison between normal and 

malignant B-cell populations in 6 month old TCL1 mice. In addition, PD-L2 expression 

was significantly higher on CLL cells from all organs from fully leukaemic mice 

compared to normal B cells from aged-matched healthy WT mice (p=.0043). Statistical 

differences of MFIs compared to 3 month old mice as baseline are summarized in 

Figure 32 D.  

 

 

Figure 32: Development of PD-L1/PD-L2 expression alongside advancing CLL in different 
organs. Organs from 3, 6, and 12 month old TCL1 and WT mice and AT mice (WT recipients) 
were phenotyped by flow cytometry and specific MFIs were compared. (A) PD-L1 expression 
increased progressively in TCL1 mice and after AT in all examined organs. Aberrant expression 
was restricted to CLL cells as evidenced by direct comparison between normal and malignant B 
cells in 6 month old TCL1 mice, and was significantly higher in fully leukaemic TCL1 than in 
healthy WT mice. (B) PD-L2 expression appeared to be dependent on the microenvironment in 
ageing WT mice, and increased progressively in TCL1 mice and after AT in all examined 
organs. Highly increased expression was exclusive to malignant B cells. (C) Examples of 
representative flow plots from spleen demonstrating the presence/absence/co-existence of 
normal and malignant B-cell populations. (D) Heatmap summary of p-values describing 
statistical differences in MFI. Groups were compared to specific MFIs in 3 month old mice. Blue 
colour indicates increase, red colour indicates decrease of MFI. ns = non-significant, *p<.05, 
**p<.001, ***p<.0001. 
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6.4.3 Molecular signature of exhausted T-cells from LCMV infection model is 

represented in murine CLL T cells but similarities to functional effector cells are 

maintained 

After confirming the suitability of TCL1 mice to model aberrant PD-L1/PD-L2 

expression, we focused on the further characterization of their binding partner PD-1 on 

CD8+ T cells. Aberrant PD-1 expression has been reported as having implications not 

only in human CLL, but also in chronic viral infection leading to T-cell exhaustion. In 

addition, the majority of dysregulated pathways identified in the molecular signature of 

CLL CD8+ T cells showed resemblance to dysregulated pathways reported in 

exhausted T cells in chronic viral infection. However, further studies have indicated that 

T cells in CLL show phenotypic similarities to exhausted T cells but maintain certain 

effector functions such as cytokine proliferation, indicating that they might not be “truly” 

exhausted. To investigate the molecular mechanisms of T-cell dysfunction and to 

determine if dysregulated CLL T cell genes are represented and/ or enriched in the 

molecular signature of exhausted, effector or memory cells, we compared the gene 

expression profile of CD8+ T cells from leukaemic TCL1 mice to previously published 

gene expression profile data of effector, memory, and exhausted T cells412.  

Between 690 dysregulated genes in the TCL1 and 680 dysregulated genes in the 

LCMV dataset, 73 genes were overlapping (Figure 33 A). A summary of overlapping 

genes can be found in Table 28 in the Appendix. Among LCMV genes, Wherry et al. 

confirmed that exhaustion represents a unique state of T-cell gene expression 

compared to other cell subsets, as it contains a large number of exclusively expressed 

dysregulated genes (Figure 33 B). In addition, they identified more similarities between 

exhausted and effector cells than between exhausted and memory cells. A remarkably 

similar distribution was observed in the overlapping genes from our dataset; over one 

third of CLL T-cell genes were represented in the exhaustion signature, indicating that 

this also represents a unique state of gene expression in CLL T cells (Figure 33 C). 

These genes were mostly involved in the regulation of signalling potential, transcription 

factors, metabolic/bioenergetic regulation, cytoskeleton regulation and vesicle 

trafficking. In addition, about 20% of overlapping dysregulated genes from our dataset 

were also represented in the effector signature, and 16% in the overlapping signature 

between exhausted and effector cells, which potentially explains the partly maintained 

effector function of CLL T cells described in the literature. 
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Figure 33: Comparison of gene expression profiles between deposited data. The 
molecular signature of CD8+ T cells from leukaemic TCL1 mice (Gorgun et al.216, GEO 
accession number GSE8836) was re-analysed with Partek software applying the criteria of 
Wherry et al.412 (GSM235537). (A) Overlap in gene expression profile for the TCL1 (Gorgun) 
and the Wherry dataset. (B) More similarities exist between exhausted and effector cells than 
between exhausted and memory cells (graph adapted from Wherry et al., shown here to 
illustrate the grouping of gene signatures). (C) Distributions in the overlapping genes from the 
TCL1 (Gorgun) and LCMV (Wherry) exhaustion (Ex), effector (Eff) and memory (Mem) 
signatures. 
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6.4.4 Typical exhaustion phenotype is modelled in TCL1 mice but is 

confounded by ageing 

After confirming that the molecular signature of CLL CD8+ T cells resembles that of 

exhausted T cells, we sought to determine the surface expression of exhaustion 

markers that had also been described in other murine cancer models. These included 

PD-1, TIM-3, CD160, KLRG-1, 2B4 and LAG-3. Here, we focused on PD-1 due to the 

prominent role of its ligands PD-L1 and PD-L2 in both human and murine CLL.  

Using CD44 expression to discriminate between naïve (CD44-) and antigen-

experienced (CD44+) CD3+CD8+ cells, we determined changes in the relative and 

absolute numbers of PD-1+ and PD-1- subsets in 3, 6 and 12 month old TCL1 and WT 

mice and after AT. Gates were defined based on PD-1 FMO controls (Figure 34 A). An 

example of how subsets were quantified in the context of the dynamic changes within 

CD3+CD8+ cells (i.e. loss of naïve cells and shift to antigen-experienced cells; see 

previous chapter) is depicted in Figure 34 B. With developing CLL, PD-1 was step-wise 

upregulated on antigen-experienced cells, and in line with the organomegaly, absolute 

numbers increased. This was to a certain extent also observed in ageing WT mice, 

confirming that the relative PD-1 expression is confounded by the effect of ageing. 

However, the upregulation of PD-1 could be induced in young mice after AT, 

suggesting a causal relationship between CLL and PD-1 expression. We confirmed 

these patterns in two independent experiments using different mice; the relative (left 

panel) and absolute numbers (right panel) of CD3+CD8+CD44+PD-1+ cells are shown 

in Figure 34 C for experiment 1, and in Figure 34 D for experiment 2.  
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Figure 34: Surface expression of PD-1 on naïve CD44- and antigen-experienced CD44+ 
CD3+CD8+ cells from spleen. Changes in relative and absolute numbers (AN) of PD-1+ and 
PD-1- subsets were compared in 3, 6 and 12 month old TCL1 and WT mice, and after AT. (A) 
Representative flow plots from TCL1 mice at different ages demonstrating the shifts of subsets. 
FMO controls were used to determine PD-1 gates. (B) Quantification of subsets in the context of 
CLL-induced T-cell subset changes. Stacked bar charts were used to visualize the loss of naïve 
(light grey) and shift to antigen-experienced cells (dark grey), along with the changing 
expression of PD-1. (C) With developing CLL and after AT, PD-1 expression increased on 
antigen-experienced cells, and to a certain extent also in WT mice. AN were significantly higher 
in TCL1 and AT mice. (D) Confirmation in second experimental round. All graphs in (C) and (D) 
show median with interquartile range. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 

 

We observed very similar patterns for LAG-3 (Figure 35 A), 2B4 (Figure 35 B) and 

KLRG-1 (Figure 35 C), which were confirmed by two experimental rounds. TIM-3 

expression increased in ageing TCL1 mice but was generally expressed at very low 

levels (median in all age groups <2% CD3+CD8+CD44+TIM3+), and expression could 

not be induced by AT (Figure 35 D). As it cannot be assumed that expression changes 

at such low levels indicate true disease-related aberrations, we excluded this marker 

from the confirmation experiment.  
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Figure 35: Surface expression of other exhaustion markers on naïve CD44- and antigen-
experienced CD44+ CD3+CD8+ cells from spleen. Confirmation of increased expression of 
(A) LAG-3, (B) 2B4 and (C) KLRG-1 in ageing TCL1 mice and after AT. (D) TIM-3 was 
expressed at very low levels and could not be induced by AT. Stacked bar charts provide an 
overview of data from experiment 1 and are shown as a representative example for both 
experiments.  

 

A very different pattern was observed for CD160: in the first experiment, expression 

increased with developing CLL and after AT, in line with the other exhaustion markers. 

In the second experiment, however, expression was lost in ageing TCL1 mice and after 

AT, with absolute numbers still being significantly higher than in WT mice, while relative 

CD160 increased in WT mice (Figure 36 A and B). To rule out that this was caused by 

slight differences in the gating strategy or a batch effect by mice, data from both 

experiments was re-gated and re-analysed together, which yielded the same results. In 

addition, the characteristics of mice used in experiments were compared and no 

differences were detected (data not shown).  
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Figure 36: Surface expression of CD160 on naïve CD44- and antigen-experienced CD44+ 
CD3+CD8+ cells from spleen. Conflicting expression patterns were observed in the two 
experiments conducted. (A) The first experiment demonstrated increased expression with 
developing CLL and after AT and increased absolute numbers (AN). (B) In the second 
experiment, CD160 was lost with developing CLL and after AT, with AN increasing. (C) 
Representative flow plots from WT and TCL1 mice from the two experiments. Note: in first 
experiment, AT recipients were young TCL1 mice, and WT in the second experiment. Plots are 
overlaid graphs between FMO control for CD160 (black colour) and the full stain (grey colour). 
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A heatmap summary of relative (panel A) and absolute (panel B) changes of 

CD3+CD8+CD44+ cells expressing the investigated surface exhaustion markers in all 

experiments conducted is depicted in Figure 37. 

 

 

Figure 37: Heatmap summary of p-values describing statistical differences in relative and 
absolute changes of cell subsets expressing typical exhaustion markers. Groups were 
compared to (A) relative and (B) absolute numbers (AN) in 3 month old mice and experiments 
were conducted twice using different cohorts of mice. The first experiment is signified as (1), the 
second one as (2) in these tables. Blue colour indicates expansion, red colour loss of cell 
subsets. ns=non-significant, *p<.05, **p<.001, ***p<.0001. 

 

6.4.5 Aberrant PD-1 expression by CD3+CD8+ T cells develops largely 

regardless of microenvironment 

After demonstrating the step-wise upregulation of PD-1 on antigen-experienced 

CD3+CD8+ T cells from spleen, we compared this to PD-1 expression in PB, LN and 

BM from 3, 6 and 12 month old TCL1 mice and AT mice. As LNs have been 

demonstrated to show delayed disease development and model only some aspects of 

T-cell dysfunction after AT, LN from mice with CLL after AT were excluded from this 

comparison. With the exception of LN, the step-wise upregulation of PD-1 on antigen-

experienced CD3+CD8+ T cells was recapitulated in all organs, and could be induced 

by AT (Figure 38 A). A heatmap summary of p-values of the statistical comparison with 

3 month old mice is depicted in Figure 38 B. Spleen T cells had the highest PD-1 

expression (median 19.4%, range 12.3-28.8), followed by BM (median 14.6%, range 

10.0-27.9) and PB (median 8.7%, range 5.7-28.8).  
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Figure 38: Development of PD-1 expression on CD3+CD8+ T cells alongside advancing 
CLL in different organs. Cells from spleen, PB, BM and LN from 3, 6, and 12 month old TCL1 
and AT mice (WT recipients) were phenotyped by flow cytometry and percentages of 
CD3+CD8+CD44+PD1+ cells were compared. (A) PD-1 expression increased in ageing TCL1 
mice and after AT in all examined organs, with the highest percentage in spleen, followed by 
BM and PB. (B) Heatmap summary of p-values describing statistical differences. Groups were 
compared to expression in 3 month old mice. Blue colour indicates expansion, red colour 
indicates loss of cells expressing PD-1. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 

 

6.4.6 Randomized AT experiments unmask the effect of ageing  

After we had confirmed that not only PD-L1/PD-L2 but also PD-1 and other exhaustion 

markers can be adequately modelled in TCL1 mice, but that the underlying 

mechanisms might be masked by ageing, we next conducted randomized AT 

experiments. The aim of these experiments was to eliminate ageing as a confounder 

by using young TCL1 and WT recipients, and to investigate functional differences 

between PD-1high and PD-1low T-cell subsets. Complementing other work in this project, 

additional aims were to directly compare T-cell phenotype changes in TCL1 and WT 

recipients using donor cells from the same pool. Before the AT, the purity of the donor 

pool was confirmed by flow cytometry to contain >95% CLL cells, while the WT pool 

was confirmed to be free of CLL. 

 

6.4.6.1 Confirmation of CLL-induced specific T-cell phenotype in both WT and 

TCL1 recipients 

For this experiment using mice from AT experiment 8 (see Table 7), CLL could be 

induced in both TCL1 and WT recipients by injecting them with cells from a pool from 

leukaemic TCL1 donors, without any significant differences in latency or disease 

characteristics (see Chapter 4.4.3, Figure 8). For mice receiving normal B cells, WT 

recipients did not develop any leukaemia, but TCL1 recipients had a slightly higher 
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percentage of CD19+CD5+ CLL cells in spleen (median 6.0%, range 3.9-11.9). This 

minor increase is in line with very early TCL1 transgene-driven CLL development 

expected at this age (recipients were 4 months old).  

The direct comparison between WT and TCL1 recipients confirmed that AT of CLL 

cells induced the previously defined disease-specific T-cell phenotype, namely the 

relative loss of CD3+ cells, the relative increase of CD3+CD8+ cells, the loss of naïve 

CD3+CD8+ cells, and the shift towards antigen-experienced cells (Figure 39 A and B 

left panel), and the increase of absolute numbers of all subsets in leukaemic mice 

(Figure 39 B right panel). This was observed regardless of whether animals were WT 

or transgenic (all differences for these subsets between WT and TCL1 recipients of 

CLL cells were not-significant). In line with the very early TCL1-driven CLL 

development, we observed slight differences in CD3+CD8+ T-cell subsets between WT 

and TCL1 recipients of normal B cells, namely a beginning loss of naïve and shift to 

antigen-experienced cells (p=.0182).  

 

 

Figure 39: Confirmation of CLL-specific T-cell phenotype in AT mice. Mice were injected 
with donor cells from a leukaemic TCL1 donor or normal B cells. (A) Correlation between 
increasing CLL and relative loss of CD3+ and relative increase of CD3+CD8+ cells were 
confirmed. Recipients of WT donor cells are clustered on the y-axis, with leukaemic mice 
exhibiting the CLL-induced phenotypic T-cell defects. (B) Confirmation of CLL-specific T-cell 
phenotype in relative (left panel) and absolute numbers (AN, right panel) of CD3+, CD8+, naïve 
and antigen-experienced CD3+CD8+ cells. Abbreviations: WT=wild-type; D=donor; R=recipient. 
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6.4.6.2 CLL induces aberrant expression of typical surface exhaustion markers 

We next compared PD-1 expression between WT and TCL1 recipients of CLL and 

normal B cells. In recipients of CLL cells, PD-1 was significantly upregulated compared 

to recipients of normal B cells, regardless of whether recipients were transgenic or not 

(Figure 40 A, all differences between PD-1+ and PD-1- subsets between WT and TCL1 

recipients were not-significant). The very early CLL development in young TCL1 mice 

did therefore not translate into induction of PD-1, indicating that WT and TCL1 

recipients can be analysed together. While eliminating the confounding effect of age, 

both relative PD-1 expression and absolute numbers (data for absolute numbers not 

depicted) were significantly higher in both CD44+ (Figure 40 B) and CD44- (Figure 40 

C) subsets in mice with CLL. The ratio between PD-1+ and PD-1- cells among CD44+ 

cells was also significantly higher in recipients of CLL, indicating that the antigen 

experienced CD3+CD8+ cell population was highly enriched for PD-1+ cells (Figure 40 

D, summary of p-values in Table 15).  

 

 

Figure 40: CLL-induced aberrant expression of PD-1 on CD3+CD8+ cells. (A) Antigen 
experienced and naïve CD3+CD8+ cells from mice with CLL showed increased PD-1 
expression and expanded numerically irrespective of transgene status of recipient mice. (B) 
Changes of relative PD-1 expression on CD44+ and (C) CD44- cells and (D) differences in PD-
1 subset ratios between mice injected with normal B cells from WT donors compared to mice 
injected with CLL cells from leukaemic TCL1 donors. WT=wild-type; D=donor; R=recipient. ns = 
non-significant, *p<.05, **p<.001, ***p<.0001. 
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Virtually identical patterns were observed for KLRG-1, 2B4, and LAG-3, regarding both 

changes in CD44 subsets and expression of exhaustion markers (summarized in 

Figure 41 A as stacked bar charts), increase in relative expression, and ratios (Figure 

41 B). Absolute numbers of cells expressing these exhaustion markers were also 

consistently significantly increased in mice with CLL (data not depicted). 

Representative flow plots are shown in Figure 41 C, and a summary of p-values is 

available in Table 17.   

 

 

Figure 41: CLL-induced aberrant expression of KLRG-1, 2B4 and LAG-3 on CD3+CD8+ 
cells. (A) Antigen experienced (dark grey) CD3+CD8+ cells from mice with CLL (TCL1 donor) 
upregulate exhaustion markers compared to normal mice (WT donor). Naïve cells are depicted 
in light grey. (B) Changes of relative numbers of CD44+ cells expressing exhaustion markers, 
and differences in ratios between mice injected with normal B cells from WT donors compared 
to mice injected with CLL cells from leukaemic TCL1 donors. (C) Representative flow plots. ns = 
non-significant, *p<.05, **p<.001, ***p<.0001. 

 

Interestingly, CD160 expression, which had shown conflicting expression patterns in 

previous experiments, was also increased in mice with CLL (p=.0115, Figure 42 A and 

B). However, the ratio between CD160+ and CD160- cells among CD44+ cells was not 

different between leukaemic and healthy mice, indicating that CLL does not lead to an 

enrichment of CD160+ cells in the antigen-experienced CD3+CD8+ cell population 

(Figure 42 B right panel). Representative flow plots are depicted in Figure 42 C. 
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A summary of all p-values of the comparisons between mice injected with normal B 

cells from WT donors compared to mice injected with CLL cells from leukaemic TCL1 

donors is provided in Table 17.  

 

 

Figure 42: CLL-induced expression of CD160 on CD3+CD8+ cells. (A) Antigen experienced 
CD3+CD8+ cells from mice with CLL (TCL1 donor) upregulate CD160 compared to healthy 
mice (WT donor). (B) Changes of relative numbers of CD160+CD44+ cells and differences in 
ratios between mice injected with normal B cells from WT donors compared to mice injected 
with CLL cells from leukaemic TCL1 donors. (C) Representative flow plots. ns = non-significant, 
*p<.05, **p<.001, ***p<.0001. 

 

 
absolute numbers of 

CD3+CD8+ cells 
relative numbers of 

CD3+CD8+ cells 
ratio of positive vs. 

negative cells in 
CD44+ subset marker CD44+ CD44- CD44+ CD44- 

PD-1 <.0001 .0006 <.0001 .0002 .0006 

KLRG-1 .0009 .0335 .0002 .02105 .0033 

2B4 .0006 .0006 <.0001 .0831 <.0001 

LAG-3 .0006 .0006 .0006 .8148 <.0001 

CD160 .001 .0047 .0115 .6065 .6806 

Table 17: Summary of p-values of comparisons between mice injected with normal B 
cells compared to mice injected with CLL cells for expression of exhaustion markers. For 
each marker, absolute and relative numbers, as well as ratios of cells positive and negative for 
exhaustion marker among antigen experienced CD3+CD8+CD44+ cells were compared. 
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6.4.6.3 CLL induces altered cellular survival cytokine profile indicating switch 

from IL-7 to IL-2 dependency 

In addition to surface exhaustion markers such as PD-1, KLRG-1, etc., aberrant 

expression of CD122 and CD127 cytokine receptors has been described as a 

characteristic of exhausted cells. CD122 is the β-chain of the receptor for IL-2, and 

CD127 the α-chain of the receptor for IL-7. CD127 is expressed by naïve and memory 

cells, and its selective expression in the effector phase identifies CD8+ T cells that give 

rise to long-lived memory T cells425. TBET has been shown to directly repress 

expression of the IL7R gene and to downregulate CD127 surface expression, thus 

promoting effector cell differentiation at the expense of memory cell formation. At the 

same time, it can upregulate CD122, switching the cellular survival cytokine profile from 

IL-7 to IL-2, resulting in hypo-responsiveness to homeostatic cytokines and becoming 

dependant on antigen stimulation for survival426.  

Antigen experienced CD3+CD8+ T cells from mice with CLL after AT significantly 

upregulated CD122 (p<.0001, Figure 43 A and B upper panels) while downregulating 

CD127 (p=.0025, Figure 43 A and B lower panels) compared to healthy controls, while 

expanding both subsets numerically (graphs not depicted, CD122 p=.0006, CD127 

p=.0006). In addition, the ratios between CD122+ and CD122- (p=.0002, Figure 43 B 

upper right panel), and CD127+ and CD127- cells (p<.0001, Figure 43 B lower right 

panel), respectively, demonstrated that antigen-experienced cells were enriched for 

CD122+ and depleted of CD127+ cells. This result indicates that the pool of cells 

committed to long-lived memory differentiation was very small. In addition, these 

patterns potentially reflect an altered dependency from IL-7 to IL-2. Representative flow 

plots are depicted in Figure 43 C. 
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Figure 43: CLL-induced expression of IL-2 and IL-7 cytokine receptors on CD3+CD8+ 
cells. CD122 (IL-2Rβ chain) and CD127 (IL-7Rα chain) expression was compared between 
mice injected with normal B cells compared to mice injected with CLL cells. (A) Antigen 
experienced CD3+CD8+ cells from mice with CLL (TCL1 donor) upregulate CD122 and 
downregulate CD127 expression compared to healthy mice (WT donor). (B) Changes of relative 
numbers of CD122+ and CD127+CD44+ cells, and differences in ratios. (C) Representative flow 
plots. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 

 

6.4.6.4 CLL T-cells maintain certain effector functions such as cytokine 

production and degranulation despite PD-1 expression  

After the phenotypic characterization, we compared key CD3+CD8+ effector functions 

between mice injected with cells from CLL donors and a pool of WT donors and 

attributed these to PD-1high and PD-1low subsets in mice with CLL.  

Confirming the findings discussed in the previous chapter, the percentage of 

CD3+CD8+ cells producing IL-2 was comparable in mice with CLL and healthy mice 

(p=.1605, Figure 44 A left panel), while IL-4 (p=.0006, Figure 44 B left panel) and IFN-γ 

(p=.0104, Figure 44 C left panel) were significantly increased in mice with CLL. To 

attribute the ability to produce cytokines to specific cell subsets, we compared the 

ratios of cytokine producing and non-producing cells within CD44- naïve and CD44+ 

antigen experienced CD3+CD8+ cells between mice without and with CLL (Figure 44 

right panels). While IL-2 ratios were comparable between healthy and CLL mice 

(Figure 44 A), the increased IL-4 production in CLL T cells was found to be attributed to 

increased production by CD44- cells, as indicated by the significantly increased ratio in 

mice with CLL compared to healthy mice (p=.0006, Figure 44 B). Increased IFN-γ 
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production in mice with CLL could be attributed to both naive (p=.007) and antigen 

experienced (p=.0148, Figure 44 C) cells. Although no differences in the percentage of 

cells producing TNF-α was found when comparing CD3+CD8+ cells from mice without 

and with CLL (p=.5752, Figure 44 D left panel), a significantly reduced TNF-α ratio was 

found among antigen experienced cells, indicating that they were enriched for cells 

unable to produce TNF-α (p=.0011).  

In addition, we largely confirmed the previously observed differences in cytokine 

production by CD3+CD8- cells (note: CD4 antibody was not included in this panel, but 

as described in the previous chapter, gating CD3 against CD8 allows the identification 

of a CD3+CD8- population, which we previously found to be mostly CD4+ cells). CD4+ 

cells from mice with CLL had significantly higher IFN-γ (p=.0019), but lower TNF-α 

(p=.0002) production compared to healthy mice. In contrast to the previous experiment, 

IL-2 was not reduced in mice with CLL (p=.3823). In addition, there were trends 

towards increased IL-4 (p=.1605) and IL-5 (p=.083) production in mice with CLL 

(Figure 44 E).  
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Figure 44: Intracellular cytokine production by CD4+ and CD8+ subsets. Intracellular IL-2, 
IL-4, IFN-γ and TNF-α were compared between mice with CLL (TCL1 donor) and healthy mice 
(WT mice). Cytokines were first gated on CD3+CD8+ cells (left panel (A) to (D)), and then on 
CD44+ and CD44- subsets, and expressed as ratios (right panel (A) to (D)). (A) IL-2 production 
was not increased, and IL-2 ratios were comparable between healthy and CLL mice. (B) Mice 
with CLL had significantly increased IL-4 production, mostly due to an increased production 
within CD44- cells. (C) IFN-γ production was significantly increased in mice with CLL and could 
be attributed to both CD44- and CD44+ cells. (D) No difference in intracellular TNF-α was found 
when comparing CD3+CD8+ cells, but a significantly reduced TNF-α ratio became apparent in 
CD44+ cells. (E) CD4+ cells from mice with CLL had significantly higher intracellular IFN-γ, a 
trend towards increased IL-4 and IL-5, but lower TNF-α production. In contrast to previous 
findings, IL-2 was not reduced in CLL T cells. 
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We next compared cytokine production by CD3+CD8+ cells according to PD-1 

expression in mice with CLL. To rule out that mitogen stimulation would have an effect 

on PD-1 expression, the percentages of CD3+CD8+CD44+ cells positive for PD-1 

without and with PMA/Ionomycin treatment were compared, and no general increase of 

expression was found (Figure 45 E).  

In general, intracellular cytokines were detected in both PD-1high and PD-1low subsets 

(Figure 45 A). As a higher percentage of cells were PD-1low, leading to a substantially 

different distribution of cells between the PD-1high and the PD-1low pool, differences in 

cytokine production were described as ratios within PD-1high and PD-1low cells, 

respectively (Figure 45 B). There was no difference between PD-1high and PD-1low cells 

in the ratio of CD3+CD8+ cells able to produce IL-2 (p=.3939) and IL-4 (p=.2345) 

compared to those not producing any cytokine after PMA/Ionomycin treatment, 

indicating that despite PD-1 expression, comparable percentages of cells maintained 

IL-2 and IL-4 production.  

Albeit not significant, probably due to the large range between mice, the ratio of IFN-γ 

showed a trend to be increased in PD-1high cells (p=.38), indicating that those cells were 

enriched for IFN-γ producing cells. In contrast, PD-1high cells had a significantly lower 

TNF-α ratio (p=.026), indicating that they were depleted of cells producing TNF-α.  

Cytotoxic function, as measured by CD107a relocation to the cell surface after 

stimulation with PMA/Ionomycin, was maintained in both PD-1high and PD-1low 

CD3+CD8+ cells, indicating that cells were able to degranulate (Figure 45 C). When 

forming the ratio between CD107a+ and CD107a- cells within PD-1 subsets, we found 

a significantly increased ratio in PD-1high cells (p=.0104), indicating that cells with the 

ability to degranulate were enriched compared to the PD-1low subset.  
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Figure 45: Intracellular cytokine production and degranulation in PD-1 subsets. 
Intracellular IL-2, IL-4, IFN-γ, TNF-α and CD107a were gated on PD-1 subsets to compare 
differences in key effector functions. (A) Intracellular cytokines were detected in both PD-1high 
and PD-1low subsets. (B) Despite PD-1 expression, comparable percentages of cells were able 
to produce IL-2 and IL-4, while PD-1high cells showed a trend to be enriched for IFN-γ producing 
cells but depleted of cells producing TNF-α. (C) Both PD-1high and PD-1low CD3+CD8+ cells 
were able to degranulate, but cells with the ability to degranulate were enriched in the PD-1high 

subset (D). (E) PMA/Ionomycin stimulation had no effect on changes in PD-1 expression. 

 

We had intended to measure T-cell proliferation in this experiment ex vivo by CFSE 

dilution, after optimizing this assay beforehand using normal T cells from WT mice. 

Optimization included several experiments to determine the optimal number of cells, 

plates to be used, duration of stimulation and ratio between cells and CD3/CD28 

beads. We ultimately established that for mouse T cells, fresh cells needed to be used, 

that splenocytes had to be depleted of B cells by positive selection of CD19+ B cells 

with CD19 microbeads, and that 0.2x106 cells should be stimulated with CD3/CD28 

beads at a 1:1 cell:bead ratio and cultured for 72 hours in 96 well round-bottom plates. 

However, in the AT experiment described here, proliferation measured by CFSE 

dilution was very inconsistent in mice with CLL, and did not allow comparison of 

proliferation between CLL and normal T cells using conventional read-outs such as 

proliferation index. While T-cell proliferation was observed and could be quantified in 
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normal T cells, CLL T cells had in initial proliferation peak, and then diluted CFSE in “a 

bulk” instead of in an orderly fashion by cell cycle divisions, probably because CLL T 

cells were not quiescent at the time of labelling (see Figure 46 A and B). After this had 

been confirmed in three different mice with CLL, we did not pursue measurement of 

proliferation ex vivo by CFSE, but focused on methods using ki67 and EdU 

proliferation. Hence, this experiment did not yet yield the desired information on CLL 

induced proliferation defects and their association to PD-1 expression in T cells from 

mice with CLL.    

 

 

Figure 46: CD3+CD8+ T-cell proliferation by CFSE dilution. Fresh splenocytes were 
debulked of B and CLL cells, labelled with CFSE and cultured for 72h with CD3/CD28 
dynabeads. (A) Compared to normal T cells from mice injected with B cells from healthy WT 
donors (WTD), proliferation was not quantifiable using conventional tools such as proliferation 
index in T cells from mice with CLL after injection with cells from leukaemic TCL1 donors 
(TCL1D). (B) Representative histogram demonstrating proliferation peaks. All graphs show data 
gated on viable, single, CD3+CD8+ cells.  

 

6.4.6.5 The ability to form immunological synapses is significantly impaired in 

PD-1high compared to PD-1low cells 

As impaired immune synapse formation has been characterized as one of the major 

CD8+ effector cell defects, we compared the ability of PD-1high and PD-1low CD8+ T 

cells to form synapses with normal mouse B cells as APC. T cells from mice with CLL 

were flow-sorted for CD8, CD44+PD-1high and CD44+PD-1low, while normal T cells were 

flow-sorted for CD8, and their mean areas of T-cell F-actin immune synapses in µm2 

formed with CMAC-labelled normal B cells were compared. Compared to normal CD8+ 

T cells, the ability of CLL CD8+ T cells to form synapses with normal B cells was 

significantly impaired (p<.0001, Figure 47 A). However, PD-1low CD8+ T cells formed 

larger synapses than PD-1high CD8+ T cells (p<.0001). Compared to all CD8+ T cells, 

synapses between PD-1high T cells and APCs were significantly smaller (p<.0001), 
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while synapses between PD-1low T cells and APCs were significantly larger (p<.0001), 

indicating that the impaired ability of CD8+ T cells in general seems to be promoted by 

the PD-1high subset, probably via interference with Lck signalling. Representative 

confocal images are depicted in Figure 47 B. 

 

 

Figure 47: Immune synapse formation between normal B cells and T cells from healthy 
mice and mice with CLL. (A) Compared to normal B and CD8+ T cells (hBC-hTC), the ability 
of CLL T cells to form synapses with normal B cells as APCs was impaired (hBC-CLL TC), with 
PD-1low CD8+ T cells (hBC-PD-1low) forming larger synapses than PD-1high CD8+ T cells (hBC-
PD-1high). (B) Representative confocal images of synapses taken with a 63x objective between 
hBC-hTC, hBC- PD-1high and hBC-PD-1low cells. Blue = CMAC labelled B cells, red = Rhodamine 
Phalloidin.   
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6.4.7 PD-1 expressing normal T cells have markedly different effector functions 

than PD-1 expressing CLL T cells  

After the AT experiments had unmasked the effect of ageing and had demonstrated 

that effector functions such as cytokine production and degranulation appear to be 

maintained regardless of PD-1 expression of CLL T cells, we reinvestigated the cohort 

of ageing TCL1, WT, and AT mice described in Chapter 5.4. We had obtained 

functional data for these mice to elucidate how T-cell effector functions change in the 

context of developing CLL, and had also included PD-1 surface stain in these assays. 

As demonstrated in Chapter 5.4, PD-1 expression by CD3+CD8+CD44+ T cells could 

be detected in both TCL1 and WT mice from 6 months on. To investigate if PD-1 

expression might be associated with different effector functions in healthy mice than in 

mice with CLL, we attributed CD107a degranulation, intracellular GrB and IFN-γ, and 

EdU proliferation to PD-1high and PD-1low cells in both WT and TCL1 mice (Figure 48 A-

D). Three month old mice had no detectable PD-1 expression and effector function was 

therefore determined on PD-1low cells only.  

In ageing WT mice, both PD-1 subsets contributed to the overall patterns associated 

with ageing described in the previous chapter, i.e. maintenance of degranulation and 

intracellular GrB, reduction of proliferation, and increase of intracellular IFN-γ 

production. The effector ratios for CD107a (Figure 48 A left panel) and EdU 

proliferation (Figure 48 D left panel) were comparable in PD-1 subsets (PD-1high vs. 

PD-1low 6 and 12 month all p-values ns), indicating that both PD-1high and PD-1low 

contained comparable proportions of cells able to degranulate and to proliferate. 

Effector ratios for intracellular GrB (Figure 48 B left panel) and IFN-γ (Figure 48 C left 

panel), however, were 2 to 3 times higher in PD-1high than in PD-1low cells (GrB 6 month 

p=.0087, 12 month p=.0931; IFN-γ 6 month p=.026, 12 month p=.0043). The PD-1high 

subset therefore appeared to be enriched for cells positive for GrB and IFN-γ compared 

to the PD-1low subsets, making PD-1 expressing cells the main contributor to exerting 

these effector functions.  

In TCL1 mice developing CLL, effector ratios followed very different patterns: with the 

onset of CLL at 6 months, the CD107a effector ratios of PD-1high and PD-1low were very 

similar to each other (p=.5887), but about 2 fold higher than in age-matched WT mice, 

indicating that CLL T cells were highly enriched for cells able to degranulate at an early 

stage of disease (Figure 48 A right panel). With progressing CLL, both subsets lost 

cells with the ability to degranulate, leading to a significant decrease in ratios. However, 

no difference between PD-1high and PD-1low cells was observed (p=.0222), thus 

demonstrating that effector cells expressing PD-1 maintained the ability to degranulate.  
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GrB ratios were also found to be higher in mice with CLL compared to age-matched 

controls: the ratio of PD-1high cells was approximately 3 fold higher, and that of PD-1low 

cells was approximately 7 fold higher, than in WT mice (Figure 48 B right panel). These 

differences led to the predominance of PD-1high over PD-1low cells in being enriched for 

GrB-containing cells as it was observed in WT mice being abrogated in the context of 

developing CLL (GrB ratio PD-1high vs. PD-1low : 6 month p=.8726; 12 month p=.2948).  

TCL1 mice with CLL at 6 months had IFN-γ ratios comparable to age-matched WT 

mice, but the PD-1 subset ratios were not different in TCL1 mice (p=.3095), indicating 

that the physiological enrichment of PD-1high over PD-1low  cells observed in WT mice 

was lost with CLL (Figure 48 C right panel). The previously detected CLL-induced 

significant increase of IFN-γ could be attributed to both PD-1high and PD-1low cells, again 

with no difference between their ratios (p=1.0).  

CLL-induced increased T-cell proliferation was found to be attributed to both PD-1high 

and PD-1low, but the PD-1high ratio was significantly higher than the PD-1low ratio (6 

month p=.0087, 12 month p=.0317, Figure 48 D right panel). Increased T-cell 

proliferation therefore appears to be predominantly accounted for by PD-1high cells.  

Table 18 contains an overview of medians and ranges of effector cell ratios for ageing 

WT and TCL1 mice.  

In the AT mice in this cohort, we confirmed that PD-1high and PD-1low cells maintained 

comparable effector ratios for CD107a, and that PD-1high cells were enriched for IFN-γ 

containing cells compared to PD-1low cells. In addition, we added new information 

regarding GrB and proliferation: just as for IFN-γ, PD-1high cells were enriched for GrB 

containing and proliferating cells (graphs not shown, medians and ranges are 

summarized in Table 18).  
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Figure 48: Associations between PD-1 expression and effector functions in T cells from 
healthy mice and TCL1 mice with developing CLL. Ratios for CD107a degranulation, 
intracellular GrB and IFN-γ, and EdU proliferation were compared between PD-1high and PD-1low 
cells in WT and TCL1 mice. (A) In ageing WT mice, both PD-1high and PD-1low expressing cells 
contained comparable proportions of cells able to degranulate. In TCL1 mice with developing 
CLL, CD107a effector ratios were higher than in age-matched WT mice, but with progressing 
CLL both subsets similarly lost cells with the ability to degranulate. (B) In ageing WT mice, the 
PD-1high subset was enriched for GrB+ cells compared to the PD-1low subset. In TCL1 mice, GrB 
ratios were highly increased, but the predominance of PD-1high over PD-1low cells in being 
enriched for GrB+ cells was lost. (C) Ageing WT mice also exhibited an enrichment of the PD-
1high subset for IFN-γ+ cells, which was lost in TCL1 mice with developing CLL. Both PD-1 
subsets contributed to the CLL-induced significant increase of IFN-γ. (D) In ageing WT mice, 
both PD-1high and PD-1low expressing cells contained comparable proportions of proliferating 
cells. Increased T-cell proliferation in CLL T cells was predominantly driven by PD-1high cells. All 
graphs show median with IQR, and the percentage of PD-1+CD3+CD8+CD44+ cells is depicted 
for each age cohort on the right x-axis.  

 

 

   
WT Eµ-TCL1 

 

   
3 mo 6 mo 12 mo 3 mo 6 mo 12 mo AT 

CD107a PD1low minimum 1.17 0.02 1.23 3.96 3.66 2.05 1.03 

  
median 1.89 2.41 2.39 4.00 4.82 3.40 1.27 

  
maximum 2.68 2.74 5.14 4.42 6.61 6.23 1.79 

 
PD1high minimum 

 
0.19 1.52 

 
2.92 1.80 0.90 

  
median 

 
2.96 2.05 

 
4.26 2.54 1.48 

  
maximum 

 
4.33 4.63 

 
12.00 3.70 2.50 

GrB PD1low minimum 0.02 0.03 0.03 0.02 0.41 0.49 0.45 

  
median 0.04 0.06 0.05 0.03 0.45 0.54 0.59 

  
maximum 0.08 0.08 0.34 0.06 0.86 0.92 0.68 

 
PD1high minimum 

 
0.07 0.07 

 
0.16 0.40 1.68 

  
median 

 
0.19 0.14 

 
0.47 0.66 2.21 

  
maximum 

 
0.39 0.25 

 
3.24 2.42 3.22 

IFN-γ PD1low minimum 0.34 0.46 2.29 0.78 0.74 3.74 0.70 

  
median 0.64 0.97 3.13 1.20 1.14 6.31 1.25 

  
maximum 1.26 1.59 5.30 1.70 4.30 22.27 1.92 

 
PD1high minimum 

 
1.07 5.05 

 
0.20 0.49 2.82 

  
median 

 
1.67 6.74 

 
0.65 6.59 3.65 

  
maximum 

 
3.92 10.43 

 
3.00 16.67 4.96 

EdU PD1low minimum 0.00 0.01 0.02 0.02 0.01 0.04 0.12 

  
median 0.03 0.13 0.03 0.04 0.02 0.18 0.17 

  
maximum 0.08 0.33 0.05 0.07 0.16 0.27 0.24 

 
PD1high minimum 

 
0.01 0.03 

 
0.10 0.23 0.24 

  
median 

 
0.09 0.04 

 
0.18 0.28 0.30 

  
maximum 

 
0.27 0.11 

 
0.31 0.58 0.38 

Table 18: Medians and ranges of effector cell ratios for ageing WT, TCL1 and AT mice. 
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6.5 Summary of PD-L1/PD-1 mediated T-cell dysfunction and T-cell 

exhaustion in TCL1 mice 

In these experiments, we were able to demonstrate that all inhibitory ligands that have 

been identified as important mediators of impaired immune synapse formation, namely 

CD200, CD270, PD-L1 and CD276, were expressed on spleen CLL cells from TCL1 

mice with CLL, but that only PD-L1 and CD276 mirrored the aberrant over-expression 

of human CLL cells compared to normal B cells. This could be modelled in both the 

original C3H and backcrossed B6 TCL1 strains, as well as in ageing TCL1 mice with 

fully developed CLL and young mice with CLL after AT. In the context of developing 

CLL, both highly aberrant PD-L1 and PD-L2 expression were found to be exclusive to 

malignant CLL cells. This could be detected on CLL cells from PB, BM, LN and spleen, 

confirming the suitability of TCL1 mice to model aberrant PD-L1/PD-L2 expression of 

human CLL cells.  

The binding partner of PD-L1/PD-L2 on T cells, PD-1, is a major inhibitory receptor 

associated with T-cell exhaustion in chronic viral infections. As tumour-infiltrating T 

cells share many phenotypic and functional characteristics of exhausted T cells in 

chronic infections, we compared the molecular signatures of T cells from murine 

exhaustion models and murine CLL T cells. CLL CD8+ T cells genes were enriched in 

the unique molecular signature of exhausted CD8+ T cells, but were also represented 

in the signature of functional effector CD8+ T cells, indicating that CLL T cells are likely 

to be very heterogeneous populations with features of both exhaustion and functional 

effector cells. The surface expression of typical exhaustion markers, namely PD-1, 

KLRG-1, 2B4 and LAG-3 was found to be step-wise increased on CD44+ antigen-

experienced CD8+ T cells in mice with developing CLL. This was to a certain extent 

also observed in ageing WT mice, indicating that surface expression by itself might not 

be a definitive marker for T-cell exhaustion or dysfunction. PD-1, KLRG-1, 2B4 and 

LAG-3 expression could however be induced in young mice with CLL after AT, 

suggesting a causal relationship with disease. With the exception of LN, the step-wise 

upregulation of PD-1 on antigen-experienced CD3+CD8+ T cells and its induction by 

AT observed in spleen was recapitulated in cells taken from PB and BM, confirming 

that PD-1, along with other exhaustion markers, can be adequately modelled in TCL1 

mice.  

Randomized AT experiments injecting normal B cells and CLL cells into young, 

previously healthy TCL1 and WT mice confirmed that PD-1, KLRG-1, 2B4 and LAG-3 

expression could be induced by AT of CLL cells but not normal B cells. The previously 

defined disease-specific T-cell phenotype, namely the relative loss of CD3+ cells, the 
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relative increase of CD3+CD8+ cells, the loss of naïve CD3+CD8+ cells and the shift 

towards antigen-experienced cells, and the increase of absolute numbers of all subsets 

was recapitulated in both TCL1 and WT recipients, validating the use of WT mice for 

future AT experiments investigating CLL-induced T-cell dysfunction. Functionally, CLL 

was found to induce altered cellular survival cytokine profiles: antigen experienced 

CD44+CD3+CD8+ T cells from mice with CLL were enriched for CD122 (IL-2 cytokine 

receptor) and depleted of CD127 (IL-7 cytokine receptor), indicating altered 

dependency from IL-7 to IL-2. Confirming findings described in the previous chapter, 

the percentage of CD3+CD8+ cells expressing intracellular IL-2 was comparable 

between healthy and leukaemic mice. Similarly, CLL-associated increased IL-4 and 

IFN-γ production were confirmed, and this could be attributed to both CD44- naïve and 

CD44+ antigen experienced T cells. Although the percentage of CD3+CD8+ T cells 

positive for intracellular TNF-α appeared similar between normal and CLL T cells, 

CD44+ T cells from mice with CLL were enriched for cells unable to produce TNF-α. 

Significantly lower percentages of cells positive for TNF-α were also found in CD4+ T 

cells in mice with CLL.  

Randomized AT experiments also demonstrated that CLL-induced aberrant PD-1 

expression on CD3+CD8+ T cells could be associated with different abilities of cells to 

exert effector functions: in general, intracellular cytokines IL-2, IL-4, IFN-γ and TNF-α 

were detected in both PD-1high and PD-1low cells, and both PD-1high and PD-1low cells 

maintained their ability to degranulate, contrasting the notion that PD-1 expression 

would lead to a loss of these effector functions. While both PD-1 subsets contained 

comparable percentages of cells able to produce IL-2 and IL-4 compared to those that 

were not, PD-1high cells appeared to be enriched for IFN-γ producing cells but depleted 

of cells producing TNF-α compared to PD-1low cells. In addition, PD-1high cells were 

enriched for cells with the ability to degranulate compared to the PD-1low subset, but 

showed an impaired ability to form immunological synapses with normal B cells.  

Linking PD-1 expression with effector function of PD-1high cells in ageing WT mice and 

comparing this to effector function of PD-1high cells in ageing TCL1 mice developing 

CLL revealed the following differences: in ageing WT mice, both PD-1high and PD-1low 

cells contributed to the overall patterns associated with ageing described in the 

previous chapter, i.e. maintenance of degranulation and intracellular GrB, reduction of 

proliferation, and an increase of intracellular IFN-γ production. While both PD-1high and 

PD-1low subsets contained comparable proportions of cells able to degranulate and to 

proliferate, cells positive for GrB and IFN-γ appeared to be enriched in the PD-1high 

subset compared to the PD-1low subset, supporting the understanding that PD-1 
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expression in normal T cells contributes to the dynamic alterations of how effector 

functions are maintained in the context of ageing.  

CD8+ T cells from TCL1 mice developing CLL were initially highly enriched for 

degranulating cells in both the PD-1high and PD-1low subset, but both subsets lost these 

cells with progressing CLL, with degranulation being maintained in PD-1high cells even 

at later stages of disease. Similarly, GrB ratios were generally higher in mice with CLL 

compared to age-matched controls, but the predominance of PD-1high over PD-1low cells 

in being enriched for GrB containing cells that was observed in WT mice was 

abrogated in the context of developing CLL. Although IFN-γ ratios at early stages of 

CLL were roughly comparable to PD-1 subsets from age-matched WT mice, the 

physiological enrichment of PD-1high over PD-1low cells observed in WT mice was 

already lost at this stage. The previously detected CLL-induced significant overall 

increase of IFN-γ at advanced stages of CLL could be attributed to both PD-1high and 

PD-1low cells, but the enrichment of PD-1high over PD-1low cells observed in WT mice 

was continuously lost. CLL-induced increased T-cell proliferation could be attributed to 

both PD-1high and PD-1low cells, but this was predominantly accounted for by PD-1high 

cells. Altogether, these comparisons revealed that despite similar PD-1 expression 

patterns in healthy and leukaemic TCL1 mice, PD-1 expressing cells are markedly 

different in their composition of cells able to exert selected effector functions compared 

to cells that do not demonstrate this ability.  

 

6.6 Discussion 

The goal of this part of the project was to investigate the suitability of the B6 TCL1 

model to mirror PD-L1/PD-L2/PD-1 interactions, to investigate the effect of inhibitory 

signalling on T-cell exhaustion in the context of developing CLL and in different 

microenvironments, and to determine if PD-1 expression by CLL T cells can be 

correlated to specific T-cell effector functions. Using multicolour flow cytometry, we 

demonstrated that among the inhibitory ligands that have been identified as important 

mediators of impaired immune synapse formation in human CLL, PD-L1 and CD276 

mirrored the aberrant over-expression of CLL cells compared to normal B cells. This 

was established in single cell suspensions from mouse spleen cells, while previous 

experiments determining the expression of inhibitory ligands in human CLL patients 

were done by flow cytometry of peripheral blood cells, and by IHC of lymph nodes, thus 

representing different compartments where cells might be subjected to different 

microenvironmental stimuli79.  
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The functional relevance of human PD-L1 and CD276 expression was demonstrated 

by using ex vivo antibody blockade79. This augmented immune synapse formation and 

cytolytic effector function, and prevented the induction of T-cell Rho-GTPase signalling 

defects, with PD-L1 blockade having the most prominent effect. Aberrant PD-L1 

expression by tumour cells and the inhibitory effect on T cells has been shown in a 

number of other haematological malignancies, as introduced in Chapter 1.3.2, as well 

as in solid cancers312-314. In the current study, PD-L1 was also the most highly 

differentially upregulated ligand in CLL cells from TCL1 mice compared to B-cells from 

healthy mice. In contrast, CD200 and CD270 expression were significantly decreased 

on murine CLL cells compared to normal B cells. This is in marked contrast to human 

CLL, in which all four ligands were found to be aberrantly over-expressed. It is 

therefore possible that expression and function of CD200 and CD270 are regulated 

differentially in mice versus humans, and the great diversity of co-stimulatory and co-

inhibitory molecules in expression, structure and function, leading to a dual largely 

context-dependant role, has been described427. Therefore, the downregulation of 

CD200 and CD270 might be an adaptive mechanism by the tumour to counteract a 

potentially co-stimulatory function. While using ex vivo antibody blockade of CD200 

and CD276 might have elucidated the associations between expression and effect on 

T-cell effector function in the TCL1 model, we focused on aberrant PD-L1 expression 

as a major and clinically relevant mediator of T-cell dysfunction, which can be 

adequately modelled in TCL1 mice, and indeed our data support this contention.   

In addition, all ligands implicated in human CLL were discovered by siRNA screening of 

the CLL-like Mec-1 cell line, which might not translate to the complexity in vivo. 

Additional ligands or different combinations than those identified in vitro might play a 

role in mediating T-cell dysfunction in vivo. This assumption was supported by our 

findings that not only PD-L1, but also PD-L2 was aberrantly expressed on murine CLL 

cells, which has not been identified in the previously conducted siRNA screen. PD-L2 is 

a second ligand for PD-1 and inhibits T-cell activation, T-cell proliferation, cytokine 

production and cell adhesion, but exhibits a very distinct pattern of expression (see 

Chapter 1.3.1). Aberrant PD-L2 expression alongside aberrant PD-L1 expression by 

tumour cells has been described in a number of haematological malignancies317, 428. In 

solid malignancies, in contrast, PD-L1 appears to be the more dominant negative 

inhibitory molecule, with PD-L2 being expressed in only a minority of patients but still 

having some prognostic impact312-314.  

Expression of PD-L2 has not been well studied in CLL. Hence, our findings that murine 

CLL cells also aberrantly express PD-L2 compared to normal B cells are novel and 
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indicate that PD-L2 is likely to play a role in mediating T-cell defects in this disease. 

The use of this model also allowed us to attribute PD-L1 and PD-L2 overexpression 

specifically to malignant CLL cells by including 6 month old TCL1 mice, which 

represent an early stage of CLL where malignant CD19+CD5+ CLL cells exist next to 

normal CD19+ B cells and can be directly compared within the same animal. 

Interestingly, constitutive expression of PD-L2 was also found on up to 70% of mouse 

peritoneal CD5+ B1a cells, which share immunophenotypic similarities with CLL cells, 

with PD-L2 expression not being present on conventional B2-B cells429. Although we 

did not include peritoneal cavity into the current project, we demonstrated that both PD-

L1 and PD-L2 expression were also significantly higher on and exclusive to CLL cells 

from PB, BM and LN compared to normal B cells. This confirmed the suitability of TCL1 

mice to model PD-L1/PD-L2 overexpression and provided new insight into the 

modifying role of the tumour microenvironment   

The corresponding binding partner of PD-L1, PD-1, has been demonstrated to be 

aberrantly expressed by CLL T cells133, 134 and is also a major inhibitory receptor 

associated with T-cell exhaustion in chronic viral infections. Exhaustion represents a 

state of functional hypo-responsiveness that occurs as a progressive process in 

response to chronic antigenic viral stimulation. It has been characterized as a 

hierarchical loss of effector CD8+ T-cell function, which coincides with the expression of 

inhibitory surface receptors such as PD-1147,404. Interestingly, the gene expression 

profile of exhausted CD8+ T cells from murine infection models contained alterations in 

many pathways, including T-cell receptor and cytokine signalling pathways, migration 

and actin-cytoskeleton formation, that have also been identified in the molecular 

signature of CLL T cells216, 412, 413. Our comparison of deposited data on CLL T cells 

with exhausted and functional memory and effector CD8+ T cells demonstrated that 

CLL T-cell genes that were represented in the comparison dataset were enriched in the 

molecular signature of exhausted T cells, but were also somewhat represented in the 

signature of functional effector CD8+ T cells. This indicated that CLL T cells are likely 

to be a very heterogeneous population with features of both exhaustion and functional 

effector cells. Interestingly, this comparison also revealed that CLL T-cell genes 

enriched in the exhaustion signature appear to be also involved in pathways of T-cell 

metabolism and bioenergetics defects affecting ribosomal subunits, elongation factors, 

energy metabolism, citric-acid cycle, solute and ion channels and aquaporins. This is 

an interesting finding which underlines that defective T cells in CLL are a 

heterogeneous population, combining cells with many aspects of dysfunction. It also 
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identifies areas of how T-cell dysfunction in CLL can be further explored using new 

techniques such as CyTOF mass spectrometry in future studies.  

Our findings that the molecular signature of murine CLL T cells contains a mixture of 

genes that have implications in exhausted cells and in functional effector cells were 

recently mirrored in functional studies using T cells from CLL patients. Our group 

demonstrated that CLL T cells exhibit features of T-cell exhaustion, such as increased 

expression of surface exhaustion markers, including PD-1, impaired proliferation, and 

cytotoxic defects with a reduced ability to lyse target cells, but retain the capacity to 

produce cytokines such as IFN-γ and TNF-α133. In contrast, another recently published 

study found that proliferating CD8 T cells from CLL patients had higher expression of 

PD-1 than non-proliferating T cells, and that T cells had impaired IFN-γ and IL-4 

production after direct binding of PD-1 to PD-L1 ligand, which however was similar to 

the patterns in healthy controls134. These observations emphasise the functional 

relevance of the heterogeneity of CLL T cells and indicate that PD-1 expression might 

be linked to function in CLL as a more “physiological” marker than previously assumed, 

a notion that is clearly supported by our murine data. Several studies in the infection 

field have demonstrated that subsets of exhausted T cells are able to exert effector 

function despite PD-1 expression. For example, PD-1 expressing subsets have 

different abilities to continue their differentiation process and form functional T-cell 

memory upon transfer into healthy mice, while maintaining an exhausted phenotype, 

including the surface expression of PD-1416. In addition, T-cell populations expressing 

PD-1 have been demonstrated to react differently to antibody blockade. While this 

could reverse exhaustion and restore function in PD-1int cells, this was not possible in 

terminally differentiated PD-1hi T cells417. It is therefore likely that PD-1 expressing T 

cells in CLL are indeed a very heterogeneous population and probably consist of a 

larger proportion of functional effector cells despite or with PD-1 expression than 

previously assumed, while other PD-1 expressing cells might be truly dysfunctional.  

Our data demonstrated that the surface expression of typical exhaustion markers, 

namely PD-1, KLRG-1, 2B4 and LAG-3, was found to be step-wise increased on 

CD44+ antigen-experienced CD8+ T cells in mice with developing CLL. This was to a 

certain extent also observed in ageing WT mice, indicating that surface expression by 

itself cannot be considered a definitive marker for T-cell exhaustion or dysfunction. 

Indeed, high PD-1 expression is also found on functional effector memory T cells in 

healthy ageing humans424. However, we eliminated the confounding effect of ageing by 

using AT experiments, which demonstrated that PD-1, KLRG-1, 2B4 and LAG-3 

expression could be induced in young mice with CLL after AT, suggesting a causal 
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relationship with disease. With the exception of LN, the step-wise upregulation of PD-1 

on antigen-experienced CD3+CD8+ T cells and its induction by AT was recapitulated in 

cells taken from PB, BM and spleen, confirming that PD-1, along with other exhaustion 

markers, can be adequately modelled in TCL1 mice and is, similar to PD-L1/PD-L2 on 

CLL cells, independent of microenvironment.  

Functionally, CLL was found to induce altered cellular survival cytokine profiles that 

have also been implied in classical exhaustion, namely the enrichment for IL-2R+ and 

depletion of IL-7R+ CD8+ cells, which indicates an altered dependency from IL-7 to IL-

2. IL-7R is expressed by naïve and memory cells, and its selective expression in the 

effector phase identifies CD8+ T cells that give rise to long-lived memory T cells425. 

TBET has been shown to directly repress expression of the IL7R gene and to 

downregulate IL7R surface expression, thus promoting effector cell differentiation at 

the expense of memory cell formation. This is in line with the dominance of 

CD44+CD62L- effector cells over CD44+CD62L+ memory cells described in the 

previous chapter, which we have observed in mice with fully developed CLL after AT. 

At the same time, TBET can upregulate IL-2R, leading to the switch of the cellular 

survival cytokine profile from IL-7 to IL-2, resulting in hypo-responsiveness to 

homeostatic cytokines and becoming dependant on antigen stimulation for survival426. 

Although we did not examine transcription factors in this mouse model, increased 

TBET and EOMES were found in CD8+ T cells from human patients133. Interestingly, 

the percentage of both CD3+CD4+ and CD3+CD8+ cells expressing intracellular IL-2 

was comparable between healthy mice and leukaemic mice with CLL after AT, similar 

to human CLL T cells. IL-2 is predominantly produced by CD4+ T cells, and is 

important for peripheral T-cell expansion and cell survival430. In mice, the major role of 

IL-2 appears to be to promote the thymic development and peripheral expansion of 

CD4+CD25+ TRegs which regulate the size of the peripheral T-cell compartment. 

TRegs are also expanded in human CLL and correlate with progressive disease176, and 

in vitro IL-2 induces their expansion431. In a recently published in vivo study, low dose 

IL-2 administration enhanced CD8+ T-cell responses in chronically LCMV infected 

mice, decreased inhibitory receptor levels on virus-specific CD8+ T cells, and 

increased the expression of IL7R and CD44, shifting cells back to a memory-like 

phenotype432. The combination of IL-2 treatment with blockade of the PD-1 inhibitory 

pathway had synergistic effects in enhancing virus-specific CD8+ T-cell responses and 

decreasing viral load, despite increased numbers of TRegs. Increased IL-2R 

expression by CLL T cells might therefore be a compensation mechanism to account 

for increased requirement of IL-2 to maintain T-cell function in response to 
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immunological challenge by CLL cells, which is not met by increased production by T 

cells. IL-2 has also been indicated in being involved in aberrant PD-L1 and PD-1 

expression itself: common gamma-chain cytokines such as IL-2, IL-7, IL-15, and IL-21 

were found to up-regulate PD-1 and, with the exception of IL-21, PD-L1 on purified T 

cells in vitro, and to indirectly induce the expression of PD-L1 and PD-L2 on monocytes 

and macrophages in peripheral blood433. As described in the previous chapter, contrary 

to the AT model, IL-2 production by CD3+CD8+ T cells was found to aberrantly 

increase in ageing mice with CLL and was detected at early stages of CLL, coinciding 

with the beginning of aberrant expression of PD-L1/PD-L2 and PD-1. Hence, it could 

be involved in the induction of PD-L1/PD-L2 and PD-1 expression, or in the promotion 

of TRegs. If the AT model is interpreted as the aggressive form of CLL with high 

antigen load, IL-2 production in highly leukaemic mice that is not different to age-

matched WT mice might be the end-result of a previous dynamically increased 

production as indicated by the ageing TCL1 mice, with aberrant IL-2R expression 

representing the resulting “end-stage” compensation mechanism to maintain functions 

such as increased proliferation, which we have described in the previous chapter.   

Our randomized AT experiments also demonstrated that CLL-induced aberrant PD-1 

expression on CD3+CD8+ T cells could be associated with different abilities of cells to 

exert effector functions: in general, intracellular cytokines IL-2, IL-4, IFN-γ and TNF-α 

were detected in both PD-1high and PD-1low cells, and both PD-1high and PD-1low cells 

maintained their ability to degranulate, contrasting the notion that PD-1 expression 

would lead to a loss of these effector functions. In addition, we demonstrated that the 

increase in IFN-γ production frequently observed in CLL T cells appeared to be 

attributed to PD-1high cells, while this subset was depleted of cells producing TNF-α 

compared to PD-1low cells and showed an impaired ability to form immunological 

synapses with normal B cells.  

Lastly, the TCL1 model allowed us to better understand the functional difference of 

expression of PD-1 on CLL CD8+ T cells compared to the physiological expression on 

normal T cells. Linking PD-1 expression with effector function of PD-1high cells in ageing 

WT mice and comparing this to effector function of PD-1high cells in ageing TCL1 mice 

developing CLL revealed that in ageing WT mice, both PD-1high and PD-1low cells 

contributed to the overall patterns associated with ageing described in the previous 

chapter, i.e. maintenance of degranulation and intracellular GrB, reduction of 

proliferation, and increase of intracellular IFN-γ production. While both PD-1high and PD-

1low subsets contained comparable proportions of cells able to degranulate and to 

proliferate, cells positive for GrB and IFN-γ appeared to be enriched in the PD-1high 
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subset compared to the PD-1low subset, supporting the understanding that PD-1 

expression in normal T cells contributes to the dynamic alterations of how effector 

functions are maintained in the context of ageing. CD8+ T cells from TCL1 mice 

developing CLL were initially highly enriched for degranulating cells in both the PD-1high 

and PD-1low subset, probably as a result of beginning immunological challenge by CLL, 

but both subsets lost these effector cells with progressing CLL. Similarly, GrB ratios 

were generally higher in mice with CLL compared to age-matched controls, however 

the predominance of PD-1high over PD-1low cells in being enriched for GrB containing 

cells observed in WT mice was abrogated in the context of developing CLL. A similar 

observation was made for IFN-γ, indicating that PD-1 expressing cells indeed are likely 

to have a GrB and IFN-γ deficiency compared to non-PD-1 expressing cells, which 

however do not render them GrB or IFN-γ dysfunctional. In contrast, CLL-induced 

increased T-cell proliferation was predominantly driven by PD-1high cells. In this context, 

however, PD-1 expression and upregulation might also be a physiological reaction to 

increased T-cell proliferation in response to tumour antigen. Altogether, these data 

show that despite similar PD-1 expression patterns in ageing healthy and leukaemic 

TCL1 mice, PD-1 expressing cells are markedly different in their composition of cells 

able to exert selected effector functions, but that PD-1 expression in CLL T cells are 

largely functional T-cell effector cells.   

In sum, we have confirmed the suitability of the B6 TCL1 model to mirror PD-L1/PD-1 

interactions, we have extended this to the second binding partner of PD-1, PD-L2, and 

we have demonstrated that aberrant PD-L1/PD-L2/PD-1 expression is utilized by CLL 

and T cells regardless of their microenvironment. In addition, we have characterised 

the features of T-cell “exhaustion” in the context of different microenvironments, while 

unmasking the associations between CLL and ageing. Lastly, we have provided novel 

data on the associations between PD-1 expression and effector functions of T cells. 

Altogether, this work highlights the importance of PD-L1/PD-1 mediated inhibitory 

signalling on T-cell dysfunction in CLL. It supports the hypothesis that T cells in CLL 

might be rescued and reversed into a functional state able to effectively mount anti-

tumour responses by targeting PD-L1 and PD-1, and that the TCL1 model is a very 

suitable tool to study the effect of such treatment in vivo.  
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7 Potential of in vivo lenalidomide treatment to restore T-cell function in Eµ-

TCL1 mice 

7.1 Specific introduction 

A plethora of preclinical studies have demonstrated that second generation 

immunomodulatory drugs (IMiDs) such as lenalidomide and pomalidomide modulate 

the tumour microenvironment through the downregulation of pro-survival and 

inflammatory cytokines and the activation of immune effector cells. In addition to 

potently inhibiting TNF-α production in vitro434, 435, lenalidomide and pomalidomide 

increase IL-2 and IFN-γ production and cytotoxic capacities in T cells436-439. The latter 

most likely is a result of actin cytoskeleton activation. This hypothesis was further 

consolidated by work from our group showing that T cells from CLL patients exhibit 

multiple dysregulated genes and pathways involved in cytoskeleton formation and 

vesicle trafficking. This effect leads to an impaired ability to regulate F-actin 

polymerization and to polarize the cytoskeleton, therefore offering a unique platform to 

investigate the effect of IMiD treatment on cytoskeleton modelling77, 171. In vitro 

lenalidomide treatment of both APCs and T cells restored the ability of CD4+ and CD8+ 

T cells to polarize F-actin to the immunological synapse, increased the cytolytic 

capacity of CD8+ effector cells, and repaired defective integrin LFA-1-directed T-cell 

adhesion and migration77, 81. This was found to be mediated via activation of Rho 

GTPases RhoA, CdC42, and Rac179, which have been described as key signal 

transducer elements in morphological T-cell changes, cytoskeleton polarization and 

trans-endothelial migration in normal T cells, and also play a role in T-cell activation, 

thymocyte differentiation and transcription factor regulation440. The potential of in vivo 

lenalidomide treatment to restore defective immune synapse formation was recently 

confirmed in CLL patients treated within a Phase II trial with immunochemotherapy 

consisting of rituximab, pentostatin and cyclophosphamide (PCR), followed by 

lenalidomide maintenance80. Lenalidomide improved the depth of response in 24% of 

eligible patients, suggesting that it might prolong the time to re-treatment, and 

significantly improved immune synapse formation. However, immune synapses were 

already found to be enhanced after PCR compared to baseline prior to any treatment, 

indicating that cytoskeleton re-polarization can also partly be achieved by therapy with 

other substances or by removal of the CLL cells themselves as the patients respond to 

treatment.  

The addition of lenalidomide to co-cultures between CLL and normal allogeneic T cells, 

as well as treatment of autologous CLL/T-cell co-cultures, was recently demonstrated 

by our group to overcome the immunosuppressive effect of PD-L1, CD200, CD270 and 
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CD276 inhibitory signalling, as its effect on restoring the immune synapse and 

increasing CD8+ T cell cytolytic potential was comparable to the repair achieved by 

combined antibody blockade of all four inhibitory ligands79. In addition, lenalidomide 

downregulated the expression of PD-L1, CD200, CD270 and CD276 on CLL and 

tumour-infiltrated DLBCL and follicular lymphoma cells, and prevented the induction of 

aberrant expression of their receptors, including PD-1, on T cells. Similar effects were 

seen in a small number of samples from relapsed CLL patients treated with 

lenalidomide in a clinical trial79. Compared to baseline levels of expression prior to 

lenalidomide exposure, single agent lenalidomide treatment reduced the expression of 

both inhibitory ligands on CLL cells and the corresponding receptors on T cells, 

increased T-cell conjugation and synapse function with autologous tumour cells acting 

as APCs, and increased antigen-induced cytolytic effector activity. The modulation of 

levels of T cells expressing PD-1, 2B4, and CD57 were recently described in a cohort 

of 131 CLL patients441. Comparing 49 conventionally treated patients to 10 patients 

who had received a lenalidomide-containing regimen, the authors found that the 

percentage of CD4+ cells expressing either PD-1, 2B4 or CD57 alone, and all markers 

in combination, was significantly reduced after lenalidomide treatment, and was 

comparable to levels observed in healthy controls. Among CD8+ cells, the percentages 

of all subsets, with the exception of CD8+PD-1+ and CD8+PD-1+2B4+ cells, were 

similarly reduced in lenalidomide treated patients.  

Long term in vivo lenalidomide treatment also has the potential to normalize general T-

cell subsets in CLL442, 443. In 24 patients with untreated CLL enrolled in a Phase II 

clinical trial of lenalidomide, a significant reduction in percentages and absolute 

lymphocyte counts were observed after 3 cycles of therapy, with a relative increase of 

T cells, activated CD8+ T cells producing IFN-γ, and TRegs compared to baseline 

levels before treatment. After 15 cycles of treatment, activated IL-2/IFN-γ/TNF-α 

producing CD4+ T cells, TRegs and activated IFN-γ producing CD8+ T cells 

normalized to the range found in healthy subjects442. A long-term analysis of 60 CLL 

patients treated with lenalidomide (median follow up 4 years) identified a normalisation 

in the percentage of CD4+ and CD8+ cells and T-cell numbers in 48%, 71% and 99% 

of long-term responders, respectively87. Another immune cell subset that is affected by 

lenalidomide treatment, either directly or indirectly via T-cell activation, is NK cells444. 

Several preclinical studies demonstrate that IMiDs enhance NK cell mediated 

cytotoxicity439, 445, increase ADCC towards myeloma cells446, and reduce the expression 

of inhibitory ligands such as SOCS1447. In CLL, baseline NK cell numbers and 

activation status could be linked to clinical response to lenalidomide, with higher 
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numbers of NK cells, a greater capacity for NK cell proliferation in vitro, and higher 

baseline expression of NK cell activating ligands MIC-A/B on CLL cells predicting better 

outcome in a clinical trial448. Further evidence of in vivo immune activation stems from 

the observation of the occurrence of tumour-flare reactions in CLL patients treated with 

lenalidomide91. Tumour-flare reactions clinically manifests as acute and painful swelling 

of CLL-affected lymph nodes, hepatosplenomegaly, rash, and fever, which usually 

occur 8-72 hours after initial drug administration but generally respond well to steroid 

and non-steroid anti-inflammatory treatment. The clinical manifestations are associated 

with features of immune activation, with upregulation of costimulatory molecules such 

as CD40, CD80, and CD86 on CLL cells, upregulation of CD69 on T cells, and 

elevated serum levels of cytokines and chemokines78, 91, 448. As lenalidomide is not 

directly toxic to CLL cells in vitro, the anti-tumour effect of lenalidomide therefore 

appears to be mediated by activating T-cell and NK-cell anti-tumour immune responses 

rather than inducing direct tumour cell death. 

Extensive murine studies on the pharmacokinetics after oral, i.v. and i.p. application of 

lenalidomide and the resulting tissue distribution revealed that doses of 15 mg/kg i.v., 

22.5 mg/kg i.p., and 45 mg/kg orally are well tolerated in mice449. The administration of 

translationally relevant doses of 0.5 and 10 mg/kg led to systemic bioavailability ranges 

of 90–105% and 60–75% via i.p. and oral routes, respectively, with a dose-dependent 

tissue distribution. These findings demonstrate that the high oral bioavailability of 

lenalidomide in mice appears to be consistent with that in humans. Interestingly, 

studies on the effect of lenalidomide in the TCL1 mouse model are so far limited to in 

vitro studies: our group has demonstrated that the repair of immune synapse formation 

could be achieved by ex vivo treatment of autologous murine B and T cells, 

recapitulating the effect of lenalidomide in human CLL216. Work conducted in this 

dissertation project has confirmed that PD-L1/PD-1 mediated T-cell dysfunction 

observed in human CLL is adequately mirrored in TCL1 mice. In addition, we have 

demonstrated that TCL1 mice can be used to overcome the effect of confounding 

factors such as age, pre-treatment, or underlying chronic infections, which by 

themselves can influence the functional effect of PD-L1/PD-1 interactions. Although 

previous studies using CLL patient samples indicate that both in vivo and ex vivo 

lenalidomide treatment has an effect on modulating T-cell subsets and function442, 443, 

as well as PD-L1/PD-1-mediated inhibitory signalling79, 80, 441, a comprehensive analysis 

in vivo linking the effect of single agent lenalidomide to aberrant PD-L1/PD-1 

expression and functional T-cell defects has not been done.  
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7.2 Goals and objectives 

My next goal was therefore to investigate if in vivo lenalidomide treatment corrects 

CLL-induced T-cell dysfunction, with a focus on PD-L1/PD-L2/PD-1, and enhances 

anti-tumour T-cell responses in mice with CLL. Specifically, I sought to address the 

following questions: 

 Does in vivo lenalidomide treatment have the potential to effectively control disease 

development after adoptive transfer of murine CLL? 

 Does in vivo lenalidomide treatment prevent the development of the previously 

described aberrant T-cell phenotype? 

 Can in vivo lenalidomide treatment restore key T-cell effector functions? 

 Can in vivo lenalidomide treatment overcome functional T-cell defects relating to 

aberrant PD-1 expression? 

 

7.3 Specific methods and materials 

7.3.1 Mice and randomization procedure 

Three month old female B6 WT mice (n=42) were purchased from commercial 

suppliers (Charles River, UK), ear marked, and kept in cages containing a maximum of 

5 mice each for one week. Sample size was calculated based on the assumption that 

at least 17 mice per group would be needed to detect a 1.0 standard deviation 

difference in PD-1 means between treated and untreated mice in two-sided testing at a 

significance level α=0.05 with at least 80% power. For AT, mice were injected i.v. with 

4x107 syngeneic CLL cells in a single dose from the same pool of aged TCL1 mice. 

Twenty days after the i.v. injections, 50μl blood was obtained by tail bleeds from each 

mouse, and the percentage of CD19+CD5+ CLL cells among lymphocytes was 

determined by flow cytometry. Transplanted mice had a median CLL load of 26% 

(range 2-36%). Three mice did not show engraftment, and the CLL load could not be 

assessed in 1; these 4 animals were therefore excluded from the study. The remaining 

38 mice were distributed equally between treatment (n=19) and vehicle control (n=19) 

based on their individual CLL loads. The direct comparison between the intervention 

groups confirmed that mice with different CLL loads were equally balanced between 

the intervention groups (p=.6073, Figure 49). Lenalidomide (10mg/kg body weight in 

300μl PBS) or vehicle only (300μl PBS) was administered daily by oral gavage. 

Treatments were initiated on day 21 post AT, and mice were treated for 3 weeks. After 
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this time (total of 6 weeks after AT), mice were sacrificed under protocol 19b2 of PIL 

70/7531. Spleens and PB were processed as described in general methods. Healthy 

age-matched WT (hWT) mice were not included prospectively into this study. 

Differences between mice with CLL and healthy mice were depicted by historical 

comparison with data from hWT used in other experiments. 

 

Figure 49: CLL load in mice assigned to vehicle and 
lenalidomide treatment. Three weeks after AT, mice were 
bled and distributed equally between the vehicle and 
lenalidomide intervention group based on individual CLL 
loads, defined as the percentage of CD19+CD5+ 
lymphocytes. Statistical comparison confirmed that CLL loads 
were balanced between the intervention groups. Graph 
shows median with Interquartile Range (IQR). ns = non-
significant. 

 

 

 

7.3.2 Drug preparation and stability 

Lenalidomide was received as a kind gift from our collaborators at the Ohio State 

University (OSU). The drug was extracted from capsules donated by CLL patients no 

longer on treatment. Upon receipt of the powder, its content was confirmed by mass 

spectrometric analysis. The powder was diluted at 1:1000 in 30% acetonitrile solution 

containing 0.1% formic acid in LC-MS grade water (all from Fisher Scientific). Both high 

resolution Q-TOF MS1 and triple stage quadrupole Vantage mass spectrometry 

systems (Thermo Scientific, UK) with Agilent Jet Stream technology for electrospray 

ionization were used. All experiments were carried out in positive ionization mode. 

Spray voltage was set to 3500 volts, and the sheath gas (nitrogen) flow rate was 20 

arbitrary units. Argon was used as collision gas with a pressure of 1.5 mTorr. Data was 

acquired using Thermo Xcalibur software (version 2.1).  

Collecting total ion spectra over a mass range of 210 to 300 m/z, the received powder 

was confirmed as lenalidomide based on its molecular mass of 259.261 g/mol and 

published fragmentation patterns (Figure 50 A and B)450. Lenalidomide was then 

dissolved in sterile PBS, and kept in 6ml aliquots at -80°C to allow daily treatment of all 

mice from the same drug stock. Additional aliquots were kept for further mass 

spectrometry experiments. After all mice had been treated for 3 weeks, the ion count of 

the treatment compound was compared to a freshly reconstituted standard to 

document changes in drug stability. The ion count of the treatment compound was 
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1.05x107, which was lower than the ion count of the freshly reconstituted drug of 

2.03x107, indicating some degradation of the drug over the treatment period (Figure 50 

C).  

After the end of the study, 2 additional WT mice were treated with 10mg/kg body 

weight lenalidomide in 300μl PBS from the treatment compound stock or 300μl PBS 

vehicle control only. After 5 days of treatment, mice were sacrificed 24 hours after the 

last dose, and PB, spleen and brain were removed. A leukaemic untreated TCL1 

mouse was used as an additional control. Blood was collected in EDTA-coated 1.5ml 

Eppendorf tubes, centrifuged at 2,000 x g for 10 minutes at 4°C. Supernatant was then 

centrifuged at 2,000 x g for 15 minutes at 4°C to deplete platelets in the plasma 

sample. 150µl ice cold methanol containing 50ng/ml of the internal standard 

carbamazepine was added to the plasma, vortexed for one minute, kept on ice for 30 

minutes, and centrifuged at 10,000rpm for 10 minutes at 4°C. The supernatant was 

transferred to a fresh Eppendorf tube, and methanolic extracts were evaporated to 

dryness in a Savant Speedvac. Organs were weighed, and 50mg of each sample was 

homogenised in 1.5 ml of methanol/water (1:1) containing 50ng/ml of carbamazepine, 

using 5mm steel beads and a tissueLyser-II (Qiagen, UK) at 25 Hz for 5 minutes. 

Samples were then centrifuged at 16,000 x g for 10 minutes, and supernatants were 

transferred to fresh Eppendorf tubes and dried in a Savant Speedvac. All dried extracts 

were reconstituted in 10% acetonitrile, and 10µl of the reconstituted solutions were 

injected into an ultra-performance liquid chromatography system (Accela UPLC, 

Thermo Scientific, UK) equipped with an Acquity UPLC BEH C18, 1.7 µm, 100 × 2.1 

mm column (Waters, UK) and a mobile phase consisting of a mixture of water 

containing 0.1% formic acid (A), and acetonitrile containing 0.1% formic acid (B). The 

mobile phase gradient was employed, comprising buffer A = 90% at 0 - 1 min, from 90 

to 20% over 2 minutes, held at 20% for 2 minute, from 20 to 90% over 0.1 minutes, 

ending with 90% for 2.9 minutes, all at a flow rate of 250 µl/min. Eluting compounds 

were detected using the triple stage quadrupole Vantage mass spectrometry system 

(Thermo Scientific, UK). Samples were analysed in the Multiple Reaction Monitoring 

(MRM), positive ion modes at a spray voltage of 3500V. Nitrogen was used as sheath 

and auxiliary gas at a flow rate of 30 and 10 arbitrary units, respectively. Argon was 

used as collision gas with pressure of 1.5 mTorr. The optimum transitional daughter 

ions mass and collision energy of each analyst were as follows: Lenalidomide 260.0 → 

149.2 (collision energy 16V) and Carbamazepine 237.1 → 194.3 (collision energy 

20V). 
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Figure 50: Mass spectrometric analysis to confirm presence and stability of lenalidomide. 
Lenalidomide was extracted from capsules and purified by our collaborators. (A) High resolution 
Q-TOF MS1 confirmed the received compound as lenalidomide based on its molecular mass of 
259.261 g/mol and (B) principle fragmentation patterns of top 8 fragments. (C) After completion 
of the treatment period, the ion count of the treatment compound was 1.05x107, compared to 
the ion count of 2.03x107 of the freshly reconstituted drug. 



Fabienne McClanahan                                                                                                     Chapter 7 

Page 186 of 258 

 

7.3.3 Multicolour flow cytometry for cell surface markers  

T-cell subsets were characterized based on the surface expression of CD3, CD4, CD8, 

CD62L, CD44 and CCR7. Exhaustion markers included PD-1, KLRG-1, 2B4, CD160 

and LAG-3. Cytokine receptors included CD122 and CD127. CLL was assessed by 

CD19 and CD5 expression, and PD-L1 and PD-L2 were included into the CLL panel. 

Antigens, fluorochromes, clones, concentrations and suppliers are described in 

Chapters 5 and 6. Table 19 contains an overview of the flow panel combinations used 

in this experiment. Experiments were performed on fresh samples, and FMO controls 

for CD44, CCR7, exhaustion markers, cytokine receptors, PD-L1 and PD-L2 were 

included into all experiments. Cells were prepared for flow cytometry as described in 

the general methods section. The gating strategies have been described in Chapters 5 

and 6.  

 

1. spleen 

tube 1 tube 2 tube 3 tube 4 

T-cell subsets/ 
exhaustion 

T-cell exhaustion cytokine receptors B cells 

CD4 PerCPCy5.5 CD8 FITC CD8 FITC CD5 APC 

CD8 BV605 CD3 APCCy7 CD3 APCCy7 CD19 FITC 

CD3 APCCy7 CD44 AF700 CD44 AF700 CD45 APCCy7 

CD62L FITC 2B4 APC CD122 PE PDL1 PerCPefl710 

CD44 AF700 LAG3 PerCPefl710 CD127 APC PDL2 PE 

CCR7 PeCy7 CD160 PE viability dye DAPI viability dye DAPI 

KLRG1 PE viability dye DAPI   
  

PD1 APC 
  

  
  

viability dye DAPI 
  

  
  

2. peripheral blood 

tube 1 

 

tube 2 

T-cell subsets/ 
exhaustion 

B cells 

CD4 PerCPCy5.5 CD5 APC 

CD8 BV605 CD19 FITC 

CD3 APCCy7 CD45 APCCy7 

CD62L FITC PDL1 PE 

CD44 AF700 PDL2 PerCPefl710 

PD1 APC viability dye DAPI 

viability dye DAPI   

Table 19: Overview of flow panel to phenotype T-cell subsets, exhaustion markers, 
cytokine receptors, CLL and inhibitory ligands in spleen and peripheral blood.  
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7.3.4 Multicolour flow cytometry for intracellular cytokines and effector 

function 

Effector function and intracellular cytokines were evaluated as described in Chapter 6 

and included CD107a degranulation, intracellular IL-2, IL-4, and IFN-y, and intranuclear 

ki67. Differences in T-cell function between experimental groups were compared by 

calculating ratios between CD44+ cells positive for CD107a/IFN-γ/ki67, and CD44+ 

cells negative for these markers, to describe the ratio between effector cells within 

CD44+ cells compared to non-effector (i.e. negative) cells. Differences in ratios were 

interpreted as an increase of cells able to exert effector functions (increase of ratio), or 

decrease of cells able to exert effector functions (decrease of ratio), respectively. 

Similar comparisons were made between PD-1high and PD-1low ratios.  

 

7.3.5 Immune synapse formation assays 

CLL and B cells were purified from frozen splenocytes by manual magnetic separation 

using murine CD19 microbeads (Miltenyi, UK). The column effluent representing the 

CD19- fraction was further purified by negative selection using murine T-cell isolation 

kits (Miltenyi, UK). These T cells were used in synapse formation assays with CMAC 

labelled, sAg-pulsed autologous CLL and B cells as antigen-presenting cells at a 1:1 

ratio. Synapse assay, confocal microscopy, and image analysis were conducted as 

described in Chapter 3.5.   

 

7.3.6 Ex vivo lenalidomide treatment of autologous murine B and T cells 

The effect of ex vivo lenalidomide treatment on immune synapse formation between 

autologous mouse B and T cells was assessed following previously established 

protocols by our group77. After magnetic separation, 1x106 B and T cells were 

resuspended separately in 1ml RPMI 1640 with 10% FCS, 1% Penicillin/Streptomycin, 

1% Glutamine, and 500mM beta-mercaptoethanol, and transferred into a 24 well plate. 

Cells were then treated for 24 hours with 0.5μM lenalidomide in acidic PBS vehicle (1% 

HCl), or vehicle only, washed, and used in immune synapse formation assays as 

described in general methods. Optimization experiments using autologous B and T 

cells from three different fully leukaemic TCL1 mice confirmed that ex vivo treatment 

with lenalidomide increased the median area of F-actin immune synapses (Figure 51). 
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Cells from in vivo lenalidomide/vehicle treated mice were treated ex vivo following 

identical procedures. 

 

Figure 51: Ex vivo lenalidomide treatment 
of autologous murine B and T cells: Purified 
CLL and T cells from 3 different fully leukaemic 
TCL1 mice were treated separately for one 
hour with vehicle (white bars) or 0.5μM 
lenalidomide (grey bars), washed, and used in 
immune synapse formation assays. 
Lenalidomide treatment significantly improved 
the mean area of immune synapses compared 
to vehicle treated cells.  

 

 

 

7.3.7 Ex vivo PD-L1 and PD-1 blockade 

To assess the effect of additional ex vivo PD-L1 and PD-1 blockade, cells from in vivo 

lenalidomide or vehicle treated mice were pre-treated ex vivo with purified blocking 

antibodies against PD-L1 and PD-1, or isotype control blocking antibodies, before 

immune synapse formation assays. Optimal doses of PD-L1 and PD-1 blocking 

antibodies were established by flow cytometry based saturation assays. For this, 

previously frozen spleen cells from fully leukaemic TCL1 mice were thawed, washed, 

and counted following protocols described in general methods. Cells (1x106) were then 

resuspended in 0.1ml FACS buffer and pre-treated with 1, 5, 10, 15, 20, 30, or 40μg/ml 

purified LEAFTM (“Low Endotoxin, Azide-Free”) anti-mouse PD-L1 antibody (clone 

10F.9G2, rat IgG2bκ), 1, 5, 10, 15, 20, 30, or 40μg/ml purified anti-mouse PD-1 

antibody (clone RMP1-30, rat IgG2bκ), equivalent concentrations of purified isotype 

blocking antibodies, or were left untreated (all antibodies from Biolegend). After 1 hour, 

cells were washed to remove any unbound antibodies, and stained with PeCy7-labelled 

anti PD-L1 and APC-labelled PD-1 antibodies on the same clones (i.e. 10F.9G2 and 

RMP1-30, both from eBioscience, UK) at a constant 1:100 dilution. FMO controls for 

PD-L1 and PD-1 were included into all experiments. MFIs were compared among cells 

treated with increasing concentrations of blocking antibody, and a decrease in MFI was 

interpreted as the inability of fluorescently labelled antibody to bind to the PD-L1 or PD-

1 epitope because of pre-existing blockade by the purified antibody. Doses at which a 

plateau was reached, and no further decrease of MFI was observed by using higher 

concentrations of blocking antibody, were determined as optimal antibody doses to 
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achieve best possible blockade of PD-L1 and PD-1. For purified PD-L1 antibody, this 

was determined to be 10μg/ml (Figure 52 A), and for PD-1 20μg/ml (Figure 52 B). Cells 

from in vivo lenalidomide/vehicle treated mice were purified as described above, and 

treated ex vivo for 1 hour with 10μg/ml PD-L1, 20μg/ml PD-1, and blocking antibodies 

in 0.1ml FACS buffer. Cells were then washed, and used in immune synapse formation 

assays as described in Chapter 3.5. 

 

 

Figure 52: Saturation curves of blocking PD-L1 and PD-1 antibodies. To determine optimal 
doses of PD-L1 and PD-1 blocking antibodies in vitro, cells were pretreated for 1h with 
increasing concentrations of purified blocking PD-L1 (clone 10F.9G2), PD-1 (clone RMP1-30), 
and isotype blocking antibodies. After washing to remove unbound antibodies, cells were 
stained with PeCy7-labelled PD-L1 (clone 10F.9G2) and APC-labelled PD-1 (clone RMP1-30). 
(A) Pre-treatment with 10μg/ml anti-PD-L1 was found to sufficiently block the binding of 
fluorescently labelled PD-L1, determined by a plateau in decrease of Median Fluorescence 
Intensity (MFI). (B) Pre-treatment with 20μg/ml anti-PD-1 sufficiently blocked the binding of 
fluorescently labelled PD-1. Figure shows representative saturation curves from 3 different 
experiments. FMO = Fluorescence-Minus-One control.  
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7.4 Results 

7.4.1 In vivo lenalidomide treatment does not result in effective CLL control and 

has no effect on aberrant PD-L1 and PD-L2 expression 

To assess the effect of in vivo lenalidomide treatment in mice with CLL after AT of 

4x107 CLL cells from leukaemic Eµ-TCL1 donors, mice received daily lenalidomide or 

PBS vehicle control. Treatment was started 3 weeks after AT, and mice with different 

CLL loads were well balanced between intervention groups. After 3 weeks of treatment 

(a total of 6 weeks after AT), we found that in vivo lenalidomide did not result in 

effective CLL control. This was demonstrated by both spleen weights and CLL load in 

examined organs; no differences were observed in median spleen weights between 

lenalidomide (1.05g; range .85-1.24) and vehicle treated mice (1.0g; range .73-1.68, 

p=.7069, Figure 53 A), and the median percentages of CD19+CD5+ CLL lymphocytes 

were comparable in spleen (lenalidomide 71.3%, range 52.2-84.3; vehicle 68.1%, 

range 56.4-83.8, p=.6037, Figure 53 B) and PB (lenalidomide 69.7%, range 48.1-86.5; 

vehicle 70.5%, range 52.9-86.6, p=.4335, Figure 53 C).  

Similarly, in vivo lenalidomide had no effect on the surface expression of PD-L1 and 

PD-L2 on CLL cells from spleen and PB. In spleen, the specific MFI for PD-L1 was 

1,052 (range 610.9-1,414) in lenalidomide treated and 1,024 (range 675.2-1,227) in 

vehicle treated mice (p=.3981, Figure 53 D left panel). Specific MFIs for PD-L2 were 

2,338 (range 1,442-3,870) in lenalidomide treated and 2,463 (range 1,315-3,181) in 

vehicle treated mice (p=.900, Figure 53 D right panel). In PB, the specific MFI for PD-

L1 was 777.4 (range 508-987.5) in lenalidomide treated and 687.9 (range 511.1-1,087) 

in vehicle treated mice (p=.4389, Figure 53 E left panel). Specific MFIs for PD-L2 were 

1,826 (range 1,285-2,665) in lenalidomide treated and 1,726 (range 1,376-3, 148) in 

vehicle treated mice (p=.8043, Figure 53 E right panel). 
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Figure 53: Effect of in vivo lenalidomide treatment on CLL progression and PD-L1 and 
PD-L2 expression on CLL cells. Mice were treated with 10mg/kg body weight lenalidomide or 
vehicle control, started at 3 weeks after AT of 4x107 splenocytes from leukaemic TCL1 mice, 
and sacrificed after 3 weeks of treatment. (A) median spleen weights; (B) percentages of 
CD19+CD5+ lymphocytes in spleen and (C) peripheral blood (PB); (D) Median Fluorescence 
Intensity (MFI) of PD-L1 and PD-L2 in spleen and (E) PB CLL cells. All graphs show medians 
with IQR. ns = non-significant.  

 

7.4.2 Lack of CLL control is reflected by persistence of typical CLL-induced 

aberrant T-cell phenotype 

The ineffective CLL control by in vivo lenalidomide treatment was reflected by the 

persistence of typical CLL-induced T-cell phenotypic alterations. Both lenalidomide and 

vehicle treated mice exhibited comparable percentages of CD3+, CD3+CD4+ and 

CD3+CD8+ T cells in spleen (Figure 54 A) and PB (Figure 54 D), leading to non-

significantly different CD4+/CD8+ ratios in spleen (Figure 54 B) and PB (Figure 54 E). 

Among CD3+CD8+ cells, naive cells were lost and shifted towards antigen-
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experienced effector and EM cells. This was recapitulated in spleen (Figure 54 C) and 

PB (Figure 54 F, note: CM and EM cell subsets were not assessed in PB).  

 

 

Figure 54: T-cell phenotype in lenalidomide and vehicle control treated mice. In vivo 
lenalidomide did not correct the typical CLL-induced aberrant T-cell phenotype. Percentages of 
CLL cells and CD3+, CD4+, and CD8+ T cells in (A) spleen and (D) peripheral blood (PB), 
CD4+/CD8+ ratios in (B) spleen and (E) PB, and percentages of CD3+CD8+ T-cell subsets in 
(C) spleen and (F) PB without and with lenalidomide treatment.  

 

Table 20 summarizes the p-values of statistical comparisons of T-cell subsets between 

the experimental groups for all examined organs. 

 

 p-value 

T-cell subsets spleen peripheral blood 

%CD3 .0815 .7156 

%CD3+CD4+ .7639 .4459 

%CD3+CD8+ .4815 .0927 

CD4+/CD8+ ratio .7149 .1760 

%Naïve CD3+CD8+ .5022 .4808 

%Effector CD3+CD8+ .3353 .9856 

%Memory CD3+CD8+ .1348 .2438 

%EM CD3+CD8+ .5727 nd 

%CM CD3+CD8+ .5016 nd 

Table 20: Summary of p-values of statistical comparisons of T-cell subsets between 
lenalidomide and vehicle treated mice for spleen and peripheral blood. nd – not 
determined, EM – effector memory, CM – central memory  
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7.4.3 In vivo lenalidomide treatment prevents development of typical CLL-

induced exhaustion-like T-cell phenotype  

Despite the lack of CLL control and persistent T-cell subset alterations, in vivo 

lenalidomide treatment appeared to have an effect on the expression of previously 

described exhaustion-like markers on CD8+ T cells (Figure 55). Compared to vehicle 

control treated mice, the surface expression of PD-1 (p=.0368), KLRG-1 (p=.0039), 

LAG-3 (p=.0011) and 2B4 (p=.0157), but not CD160 (p=.0977) was significantly 

reduced on antigen-experienced CD3+CD8+CD44+ T cells from lenalidomide treated 

mice. The reduction of PD-1 was also observed in CD3+CD8+ T cells in PB (p=.0097).  

 

 

Figure 55: Exhaustion surface markers in lenalidomide and vehicle control treated mice. 
In vivo lenalidomide significantly reduced the surface expression of typical exhaustion markers 
on antigen experienced CD3+CD8+CD4+ cells. (A) Surface expression of PD-1, KLRG-1, LAG-
3, 2B4 and CD160 in spleen, and PD1 in peripheral blood (PB) on CD3+CD8+CD44+ T cells 
from lenalidomide treated mice. Samples from healthy WT mice (hWT) analysed with the same 
panel in a different experiment were retrospectively included to visualize expression levels in 
normal cells. (B) Representative flow plots for all examined markers from vehicle and 
lenalidomide treated mice, and respective fluorescence-minus-one (FMO) controls. All graphs 
show median with IQR. hWT are marked with an asterisk to emphasize that they were not 
prospectively included into the experiment. ns = non-significant.  
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7.4.4 In vivo lenalidomide treatment does not restore key T-cell effector 

functions 

In line with the persistence of CLL-typical aberrant T-cell subsets, effector function was 

not improved by in vivo lenalidomide treatment. There were no differences in the 

percentages of CD3+CD4+ lymphocytes positive for intracellular IL-4 (p=.8492), IFN-γ 

(p=.6120) or IL-2 (p=.5184) between vehicle and lenalidomide treated mice (Figure 56 

A). The retrospective comparison to healthy age-matched WT mice, which had been 

included into another study, revealed that both lenalidomide and vehicle treated mice 

maintained aberrantly increased intracellular IL-4 and IFN-γ, as well as decreased IL-2 

production.  

Among CD3+CD8+ cells, the CD107a ratio was equally impaired in lenalidomide and 

vehicle treated mice (p=.7513, Figure 56 B), indicating a maintained cytotoxic defect 

compared to cells from healthy WT mice, while IFN-γ (p=.3922, Figure 56 C) and ki67 

ratios (p=.8362, Figure 56 D) continued to be equally increased. Similarly, in vivo 

lenalidomide treatment had no effect on reducing aberrant intracellular IL-4 production 

in CD3+CD8+ T cells (p=.6678, data not shown). The expression of cytokine receptors 

CD122 and CD127 on CD3+CD8+ cells was also not different between lenalidomide 

treated and control mice (CD44- cells CD122 p=.347, CD127 p=.0643; CD44+ cells 

CD122 p=.1633, CD127 p=.1765, Figure 56 E).  
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Figure 56: T-cell effector function in lenalidomide and vehicle control treated mice. In vivo 
lenalidomide had no effect on key effector functions of CD8+ and CD4+ T cells. (A) Percentage 
of CD3+CD4+ lymphocytes positive for intracellular IL-4, IFN-γ, and IL-2 in vehicle and 
lenalidomide treated mice. (B) CD107a; (C) IFN-γ; and (D) ki67 ratios in CD44+CD3+CD8+ T 
cells from lenalidomide or vehicle treated mice. (E) Expression of cytokine receptors CD122 and 
CD127 on CD3+CD8+ cells from lenalidomide treated or control mice. All graphs show median 
with IQR. Healthy WT mice (hWT) are marked with an asterisk to emphasize that they were not 
prospectively included into the experiment. ns = non-significant. 

 

To assess if differences in PD-1 surface expression would translate into effector 

function of PD-1high and PD-1low CD3+CD8+ T cells, we compared CD107a and INF-γ 

ratios between lenalidomide and vehicle treated mice. Both in PD-1high and in PD-1low 

CD3+CD8+ T cells, there were no differences in CD107 ratio (PD-1high p=.5901, PD-1low 

p=.7274) or INF-γ ratio (PD-1high p=.2743, PD-1low p=.3418), indicating that 

lenalidomide treatment did not overcome effector defects associated with PD-1 

expression (Figure 57 A, B).  
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Figure 57: T-cell effector function in PD-1high and PD-1low CD8 T cells from lenalidomide 
and vehicle control treated mice. In vivo lenalidomide had no effect on effector functions in 
PD-1 cell subsets. (A) CD107 ratios and (B) INF-γ ratios in PD-1high and PD-1low CD3+CD8+ T 
cells from lenalidomide or vehicle treated mice. All graphs show median with IQR. ns = non-
significant. 

 

7.4.5 In vivo lenalidomide treatment improves immune synapse formation 

which can be further improved by additional ex vivo PD-L1 blockade 

After we had confirmed previously published findings on the effect of ex vivo 

lenalidomide treatment on murine B and T cells, we compared the abilities of 

autologous B and T cells to form immunological synapses between lenalidomide and 

vehicle treated mice. The mean area of T-cell F-actin synapse (μm2) was significantly 

larger in lenalidomide treated mice compared to vehicle treated mice, but was still 

impaired compared to normal autologous cells (Figure 58 A; p values are summarized 

in Table 19). Interestingly, additional lenalidomide treatment ex vivo restored the 

synapse area regardless of previous in vivo treatment, even above levels of normal 

cells, indicating that the repair of cytoskeletal defects is a very rapid and prominent ex 

vivo mechanism of action of this drug.  
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Figure 58: Immune synapse formation between autologous T and CLL/B cells. CLL and B 
cells and autologous T cells were purified from frozen splenocytes and used in immune synapse 
formation assays. (A) Effects of in vivo lenalidomide treatment on the ability of CLL T cells to 
form immunological synapses compared to cells from vehicle treated animals. Additional ex vivo 
lenalidomide treatment for 24hr restored the synapse area regardless of previous in vivo 
treatment. Graph shows mean with standard error of means (SEM). (B) Representative confocal 
images of synapses taken with a 63x objective between autologous WT B cells (hWT BC) and T 
cells (hWT TC), autologous CLL (CLL BC) and T cells (lena CLL TC) from in vivo lenalidomide 
treated mice, autologous CLL (CLL BC) and T cells from vehicle treated mice (veh CLL TC – all 
first row), and between autologous CLL (CLL BC) and lena CLL TC and veh CLL TC after 
additional ex vivo treatment with lenalidomide for 24h (second row). Blue = CMAC labelled B 
cells, red = Rhodamine Phalloidin.  

 

To establish the role of aberrant PD-L1 expression on CLL cells in mediating immune 

synapse formation defects in this experiment, CLL cells were pre-treated with PD-L1 or 

isotype blocking antibodies before immune synapse formation assays. While isotype 

had no effect, with the area of T-cell F-actin immune synapse being comparable to the 

levels of in vivo treated mice (in vivo lenalidomide treated mice p=.4482, in vivo vehicle 

treated mice p=.5916), additional ex vivo PD-L1 blockade significantly improved the 

area of immune synapses in both lenalidomide and vehicle treated mice (both p<.0001) 

and even restored immune synapses to normal levels (Figure 59 A).  

To quantify the effect of aberrant PD-1 expression on T cells on immune synapse 

formation, we next pre-treated T cells with PD-1 or isotype blocking antibodies before 

immune synapse formation assays. While ex vivo PD-1 blockage was unable to further 

increase the area of immune synapses in lenalidomide treated mice (p=.283), leaving 

synapses in those mice significantly smaller than in healthy mice (p<.0001), it 

significantly improved the area of immune synapses in vehicle treated mice (p<.0001) 

to levels comparable to lenalidomide treated mice (p=.977, Figure 59 B).  

The combined ex vivo blockade with both PD-1 and PD-L1 antibodies restored immune 

synapses in both lenalidomide and vehicle treated mice to normal levels, similar to PD-

L1 blockade alone (Figure 59 C). Table 21 summarizes the p-values of statistical 

comparisons of areas of immune synapses between different conditions.  
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Figure 59: Effect of ex vivo PD-L1 and PD-1 blockade on immune synapse formation 
between autologous T and CLL/B cells. Before synapse assays cells were pre-treated 1 hour 
with blocking antibodies at previously determined optimal concentrations. (A) PD-L1 blockade 
on CLL cells significantly improved the area of immune synapses in both lenalidomide and 
vehicle treated mice and restored immune synapses to sizes comparable to healthy WT (hWT) 
mice. (B) PD-1 blockade on T cells significantly improved the area of immune synapses in 
vehicle treated mice only but did not restore immune synapses to sizes observed in hWT mice. 
(C) Combined PD-L1 blockade on CLL cells and PD-1 blockade on T cells significantly 
improved the area of immune synapses in both lenalidomide and vehicle treated mice and 
restored immune synapses to sizes comparable to healthy WT (hWT) mice. 
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difference 
between 

lenalidomide 
and vehicle 
treatment 

effect of ex 
vivo 

treatment on 
lenalidomide-
treated mice 

effect of ex vivo 
treatment on 

vehicle-treated 
mice 

difference 
between 

healthy and     
lenalidomide-
treated mice 

difference 
between 

healthy and 
vehicle-treated 

mice 

in vivo treatment only < .0001 na na < .0001 < .0001 

24h ex vivo lenalidomide .2555 < .0001 < .0001 .532 < .0001 

ex vivo PD-L1 blockade 
PDL-1 blocking AB 

.1445 < .0001 < .0001 .9393 .1541 

isotype blocking AB < .0001 .4428 .5916 < .0001 .0009 

ex vivo PD-1 blockade 

PD-1 blocking AB 
.977 .283 < .0001 < .0001 .0001 

isotype blocking AB < .0001 .5476 .4959 .0002 < .0001 

ex vivo PD-L1/PD-1 
blockade 

PD-L1/PD-1 blocking AB 

.0176 < .0001 < .0001 .586 .0571 

isotype blocking AB .0293 .9278 .1683 .0037 < .0001 

Table 21: Summary of p-values of statistical comparisons between lenalidomide and 
vehicle treated mice and healthy WT mice with and without additional ex vivo 
lenalidomide treatment, ex vivo PD-L1/PD-1 antibody blockade, and isotype blocking 
antibodies (AB). na = not applicable. Statistically significant p-values are highlighted in bold.  

 

7.4.6 Lenalidomide is detectable in tissues and plasma of treated mice 

To confirm that the oral application of the selected dose of lenalidomide was sufficient 

to lead to detectable drug levels in plasma and CLL affected tissues, we treated WT 

mice with lenalidomide leftover from the stock administered to mice after AT, using 

identical doses and application routes. Mice received 5 days of oral application of 

10mg/kg lenalidomide in 300µl PBS or vehicle (PBS) only, were sacrificed 24 hours 

after the last dose, and tissues were collected. Lenalidomide concentrations in plasma 

as well as intracellular concentrations in spleen and brain (non-lymphoid tissue control) 

were measured by high-resolution mass spectrometry by an investigator blinded to the 

treatment of the mice. Tissues from an untreated leukaemic TCL1 mouse sacrificed at 

the same time as the treated mice were included as negative controls, and freshly 

constituted lenalidomide was included as a positive control. Lenalidomide could be 

detected in all tissues and plasma from treated mice, but not in tissues from untreated 

mice. These findings indicate that the drug concentration and stock used in this 

experiment was sufficient to lead to detectable drug levels in all tissues (Figure 60).  
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Figure 60: Confirmation of drug concentrations by mass spectrometry. High resolution 
mass spectrometry was used to confirm that treatment for 5 days with 10mg/kg body weight of 
the lenalidomide stock used in the in vivo study was sufficient to lead to detectable intracellular 
drug concentrations in lymphoid and non-lymphoid tissues, as well as in plasma. The drug could 
not be detected in tissues from healthy WT mice (hWT) or a leukaemic untreated TCL1 mouse. 

 

7.5 Summary of effect of in vivo lenalidomide treatment on T-cell dysfunction 

and T-cell exhaustion in TCL1 mice 

In summary, we found that in vivo lenalidomide did not result in effective CLL control if 

administered daily by oral gavage from three weeks after AT of 4x107 splenocytes from 

leukaemic TCL1 mice. Median spleen weights and the percentages of CD19+CD5+ 

CLL lymphocytes in spleen and peripheral blood were comparable in lenalidomide and 

vehicle treated mice. In addition, treatment had no effect on the expression of PD-L1 

and PD-L2 on CLL cells. The ineffective CLL control by in vivo lenalidomide treatment 

was reflected by the persistence of typical CLL-induced T-cell phenotypic alterations. 

Both lenalidomide and vehicle treated mice continued to exhibit a reduced CD4+/CD8+ 

ratio, and a loss of naive cells and shift towards antigen-experienced CD8+ effector 

and EM cells. This was recapitulated in spleen and PB. Accordingly, effector function 

was not improved by in vivo lenalidomide treatment. There were no differences in the 

percentages of CD3+CD4+ lymphocytes from spleen positive for intracellular IL-4, IFN-
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γ or IL-2 between vehicle and lenalidomide treated mice, and both groups continued to 

exhibit aberrantly increased intracellular IL-4 and IFN-γ, and decreased IL-2 production 

by CD4+ T cells compared to healthy WT mice. Among CD3+CD8+ cells, the CD107a 

ratio was equally impaired in lenalidomide and vehicle treated mice, indicating a 

maintained cytotoxic defect compared to cells from healthy WT mice, while IFN-γ and 

ki67 ratios continued to be equally increased, indicating persistent cytokine and 

proliferation defects. Similarly, in vivo lenalidomide treatment had no effect on reducing 

aberrant intracellular IL-4 production in CD3+CD8+ T cells, or on the expression of 

cytokine receptors CD122 and CD127. 

Despite the lack of CLL control and persistent T-cell subset alterations, in vivo 

lenalidomide treatment appeared to have an effect on the expression of previously 

described exhaustion-like markers, with the surface expression of PD-1, KLRG-1, LAG-

3 and 2B4, but not CD160 being significantly reduced on antigen-experienced CD44+ 

CD3+CD8+T cells from lenalidomide treated mice. The reduction of PD-1 was also 

observed in CD8+ T cells in peripheral blood. This however did not translate into 

improved effector function of PD-1high and PD-1low CD3+CD8 T cells, with CD107a and 

INF-γ ratios in PD-1 subsets being comparable between lenalidomide and vehicle 

treated mice.  

In contrast, in vivo lenalidomide treatment had a very strong effect on immune synapse 

formation between autologous T and CLL cells; the ability of CLL T cells to form 

immunological synapses was significantly improved compared to vehicle treatment, but 

synapses were not restored to normal levels. However, additional ex vivo lenalidomide 

treatment for 24 hours fully restored the synapse area regardless of previous in vivo 

treatment, underlining the strong ex vivo effect of the drug on cytoskeletal regulation. 

Ex vivo PD-L1 blockade on CLL cells significantly improved the area of immune 

synapses in both lenalidomide and vehicle treated mice and restored immune 

synapses to sizes comparable to healthy WT mice. Additional ex vivo PD-1 blockade 

on T cells significantly improved the area of immune synapses in vehicle treated mice 

only, but did not restore immune synapses to levels observed in WT mice. Combined 

ex vivo PD-L1 and PD-1 blockade significantly improved the area of immune synapses 

in both lenalidomide and vehicle treated mice and restored immune synapses to sizes 

comparable to healthy WT mice. 
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7.6 Discussion 

The goal of this part of the project was to investigate if in vivo lenalidomide treatment 

can correct CLL-induced PD-L1/PD-L2/PD-1 mediated T-cell dysfunction and enhance 

anti-tumour T-cell responses in mice with CLL after adoptive transfer. Despite 

promising early clinical trial data from human CLL, indicating that lenalidomide 

treatment normalizes general T-cell subsets and restores T-cell cytokine production441-

443, this was not observed in lenalidomide treated mice with CLL. In our experiments, in 

vivo lenalidomide did not result in the normalization of aberrant T-cell subsets and key 

T-cell effector functions such as CD4+ and CD8+ T-cell cytokine secretion, CD8+ T-cell 

proliferation, and CD107a degranulation.  

The most apparent explanation for our findings is the lack of effective CLL control by 

lenalidomide treatment in mice, allowing CLL cells to continuously exert their full 

immunosuppressive effect on immune cells. Several in vitro studies have demonstrated 

that lenalidomide is not directly toxic to CLL cells448, in contrast to multiple myeloma 

and MDS cells where it has a direct cytotoxic effect451. Instead, in vitro lenalidomide 

has been shown to increase the expression of costimulatory molecules, and to induce 

p-ERK signalling in CLL cells448. Other studies have implicated a role for the PI3-kinase 

pathway in lenalidomide-induced CLL cell activation71. The combination of PI3-kinase 

activation and induction of NFκB and NFAT signalling resulted in enhanced 

transcription and stabilisation of CD154 (CD40L) mRNA, leading to expression of 

CD154 on CLL cells452. CD154 positive CLL cells upregulated BID, DR5 and p73, 

became sensitised to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-

mediated apoptosis, and promoted the co-stimulatory activation of normal B cells, 

resulting in the production of polyclonal antibodies. A recently published study 

demonstrated that lenalidomide inhibited CLL proliferation via induction of the CDK 

inhibitor p21 regardless of functional p53453.  

In contrast, in our in vivo experiment the daily administration of lenalidomide (10mg/kg 

body weight by oral gavage) from three weeks after AT did not prevent CLL 

progression in treated mice, as evidenced by comparable spleen weights and CLL load 

in spleen and peripheral blood in lenalidomide and vehicle treated mice. This lack of 

CLL control could potentially be explained by insufficient drug application, such as 

inadequate doses or timing of treatment. According to current FDA guidelines454, 

human equivalent doses (HEDs) are calculated using the following formula: HED = 

animal dose in mg/kg x (animal weight in kg/human weight in kg). Assuming a 60kg 

human, the mouse dose of 10mg/kg selected in our studies corresponds to 48.8mg in a 

patient. This is considerably higher than the doses currently used in CLL patients; the 
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initial clinical study used a starting dose of 25mg/day in the majority of patients, which 

is the standard target dose for the treatment of multiple myeloma82. As this was 

associated with unacceptable toxicities in CLL patients, especially tumour flare 

reactions78, 91, reduced starting doses as low as 2.5mg were used in further clinical 

trials, and escalated to a maximum of 25mg80, 83-86, 90, 455. Therefore, the dose selected 

in our study clearly is translationally relevant. In addition, pharmacokinetics and 

pharmacodynamics studies in mice have demonstrated a high systemic bioavailability 

of 75% via oral routes and a dose-dependent tissue distribution, which is consistent 

with the high oral bioavailability in humans449. Moreover, we performed repeated mass 

spectrometry studies to rule out that the lack of CLL control was attributed to 

degradation of the dissolved drug stock over the treatment period of 3 weeks, as 

several studies have indicated that IMiDs are unstable in aqueous solutions456, 457. 

Indeed, comparing the PBS diluted treatment compound after three weeks storage at 

minus 80ºC to a freshly reconstituted standard demonstrated a two-fold lower ion count 

in the treatment compound, indicating some degradation of the drug over the duration 

of the treatment period. To assess if intracellular and plasma drug concentrations could 

still be achieved with this degraded compound, we treated additional healthy WT mice 

for 5 days with 10mg/kg per day, or PBS vehicle control, and sacrificed them 24 hours 

after the last dose. Despite the lower ion count and the 24 hour latency until the 

animals were sacrificed, lenalidomide could be detected in spleen, plasma, and non-

lymphoid tissues. It is therefore unlikely that the lack of disease control, either by direct 

or indirect mechanisms, can be attributed to insufficient dosing or degradation of the 

drug.  

It is possible that better CLL control could have been achieved by earlier initiation or 

longer duration of treatment. In our study, the median CLL load in peripheral blood, 

defined as the percentage of CD19+CD5+ lymphocytes, was 26% and therefore 

representative of an earlier stage of CLL. In addition, mice were well balanced between 

the intervention groups, ruling out that groups might have been enriched for mice with 

more or less advanced CLL. Initiation of treatment shortly after adoptive transfer might 

have resulted in the prevention of CLL-induced phenotypic and functional T-cell 

defects, as the drug would have been administered at a stage of low tumour volume. 

This hypothesis is supported by earlier findings from our groups, which demonstrated 

that T-cell defects are rapidly induced ex vivo by direct cell-cell contact with malignant 

cells after just 48 hours of co-culture77. However, this would have only insufficiently 

mirrored published studies using cells from human CLL patients, where a repair of T-
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cell phenotype and subsets was observed in patients with manifest disease and 

indication for treatment80, 441-443.  

More effective disease control in mice might have also been achieved by prolongation 

of the treatment period or by the combination with other substances. This hypothesis is 

supported by data from clinical trials in human CLL. Using lenalidomide monotherapy, 

ORR of up to 65% for first-line therapy and up to 47% for relapsed/refractory patients 

were reported, with most patients exhibiting PR82-85, 90. However, in these studies the 

median times to best response were 3 to 18 months in previously untreated and 6 to 9 

months in relapsed/refractory patients, with late responses being observed in some 

patients after more than one year. Combination therapy with monoclonal antibodies 

such as rituximab or ofatumumab increased ORR to up to 95% in previously untreated 

and up to 66% in relapsed/refractory patients, while largely increasing the proportion of 

patients with complete responses86, 88. Other studies have demonstrated an association 

between longer duration of treatment and normalization of T-cell subsets: in 24 patients 

with untreated CLL enrolled in a Phase II clinical trial of lenalidomide, a relative 

increase of T cells, activated CD8+ T cells producing IFN-γ, and TRegs compared to 

baseline levels before treatment were observed after 3 cycles of treatment. Only after 

15 cycles of treatment, activated IL-2/IFN-γ/TNF-α producing CD4+ T cells, TRegs and 

activated IFN-γ producing CD8+ T cells normalized to the range of healthy subjects442. 

Another long-term analysis of 60 CLL patients treated with lenalidomide with a median 

follow up 4 years showed normalization in the percentages of CD4+ and CD8+ cells 

and T-cell numbers respectively in 48%, 71% and 99% of long-term responders87. 

Therefore, the treatment duration of 3 weeks in our in vivo study might have been too 

short, and/or the single-agent application too weak to allow for effective disease control 

and modulation of T-cell subsets. Longer treatments, however, are not feasible in the 

AT model, as mice usually succumb to their disease after a median of 7 weeks (range 

3.7-20, see Figure 10 Chapter 4.4.3). Therefore, lenalidomide treatment of ageing 

TCL1 mice might be a more beneficial experimental model to study the long-term effect 

of lenalidomide on CLL and T cells in mice.  

There is reasonable concern that the lack of activity of lenalidomide in mice might be 

caused by species differences of molecular targets, as the first generation IMiD 

thalidomide has been found to have teratogenic activity in humans, rabbits, chicks, and 

zebrafish, but not in mice and rats. The molecular target of both thalidomide and 

second generation IMiDs essential for their activity is cereblon (CRBN), a 442 amino-

acid protein and a component of the E3 ubiquitin ligase complex that also contains 

DNA damage binding protein 1 (DDB1), regulator of cullins (Roc)-1 and Cullin 4 
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(Cul4)76, 458-460. CRBN was found to be largely evolutionarily conserved, and 

thalidomide was confirmed to bind to CRBN from humans, mice, chick, and 

zebrafish458. However, selected spots in the mouse ortholog of the human thalidomide 

binding domain (TBD) showed inter-species variability, raising the possibility that this 

might translate into functional differences. This was further explored by a recently 

published study describing the crystal structure of human and murine CRBN bound to 

DDB1 and different IMiDs461. The same conformations were found in both human and 

mouse TBDs, suggesting that any structural changes observed are not likely to be a 

consequence of species differences. In addition, CRBN orthologs were compared 

across different animal and plant kingdoms, and found to exhibit 100% sequence 

conservation in the essential tri-Trp binding pocket. However, due to two rodent 

polymorphisms proximal to the lenalidomide-binding site, mouse CRBN was unable to 

rescue the antiproliferative effects of pomalidomide in CRBN deficient DF15R cells and 

did not exhibit the pomalidomide-dependent degradation of transcription factors. These 

findings suggest that despite identical molecular targets and binding sites, it is likely 

that rodents do not respond to IMiD agents in the same way that humans do, which 

potentially explains the weak modulation of T-cell effector functions we observed.  

Two key substrates of the CRBN CRL4 E3 ligase are Aiolos (IKZF3) and Ikaros 

(IKZF1), which are members of a family of zinc finger transcription factors. It has been 

demonstrated that binding of lenalidomide and pomalidomide to CRBN in myeloma 

cells or T cells increased IKZF1 and IKZF3 binding to CRBN, inducing their 

ubiquitination and subsequent proteasomal degradation76, 462, 463. The resulting IKZF 

depletion led to loss of viability of IKZF-dependent myeloma cells, while simultaneously 

enhancing the production of IL-2 in T cells. Aiolos has also been described as playing a 

major role in promoting TH17 differentiation by directly silencing IL-2 expression464. In 

CLL, it was demonstrated by knockdown experiments using in vitro CD40L/IL-4/IL10 

stimulated CLL cells that p21-mediated reduction of CLL proliferation and degradation 

of IKZF 1 and 3 after lenalidomide treatment is dependent on CRBN453. Congruently, 

CLL cells from patients treated with lenalidomide within a clinical trial showed induced 

expression of p21 following lenalidomide therapy. Interestingly, Aiolos expression, but 

not Ikaros expression, was found to be upregulated in CLL cells465. This was later 

linked to being the result of NF-kB signalling, with enriched active chromatin marks of 

Aiolos having an effect on Bcl-2 family members466. The effect of lenalidomide on 

CRBN complex-mediated IKZF degradation in CLL T cells is not known. However, 

previous work from our group demonstrated that knockdown of CRBN significantly 
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reduced the ability of lenalidomide to modulate Rho GTPase-dependent T cell 

migration on CD54-coated slides81.  

Interestingly, despite the lack of disease control and the persistence of CLL-typical 

phenotypic and functional defects, we observed a reduction of the surface expression 

of typical exhaustion markers, namely PD-1, on CD8+ cells from lenalidomide treated 

mice. This is in line with observations in CLL patients treated with lenalidomide. The 

percentage of CD4+ cells expressing either PD-1, 2B4 or CD57 alone, and all markers 

in combination, was observed to be significantly reduced after lenalidomide treatment, 

and was comparable to levels observed in healthy controls441. Among CD8+ cells, the 

percentages of all subsets, with the exception of CD8+PD-1+ and CD8+PD-1+2B4+ 

cells, were similarly reduced in lenalidomide treated patients. This study, however, did 

not contain any information on the treatment duration. Our group has demonstrated on 

a small number of lenalidomide treated patients that aberrant expression of PD-1 was 

significantly reduced after 3 weeks of treatment79. During the same time, however, 

lenalidomide treatment also resulted in the reduced expression of PD-L1 on CLL cells, 

increased T-cell conjugation and synapse function with autologous tumour cells, and 

increased antigen-induced cytolytic effector activity. While the reduction of PD-1 

expression on mouse CD8+ T cells did not translate into improved effector function in 

PD-1 subsets, measured by cytokine secretion and CD107a degranulation, we were 

able to confirm previous findings on the restoration of the immune synapse; treatment 

of mice with lenalidomide significantly improved the ability of T cells to form 

immunological synapses with autologous CLL cells. However, it did not lead to a full 

restoration of synapses to levels observed in autologous cells from healthy mice. 

Interestingly, this was achieved by additional ex vivo lenalidomide treatment for 24 

hours, both in cells from mice treated with lenalidomide and vehicle. These findings 

underline the strong direct ex vivo effect of the drug on cytoskeletal regulation and 

demonstrate that cells from these animals are capable of synapse formation. 

Furthermore, these results support the hypothesis that our in vivo treatment did not 

attain sufficiently high lenalidomide levels for an adequate period and/or that the effects 

are readily reversible in vivo, rather than that lenalidomide solely fails to bind murine 

cereblon.  

The addition of lenalidomide to co-cultures between human CLL and normal allogeneic 

T cells, as well as treatment of autologous CLL/T-cell co-cultures, was able to 

overcome the immunosuppressive effect of PD-L1 inhibitory signalling, as its effect on 

restoring the immune synapse and increasing CD8+ T cell cytolytic potential was 

comparable to the repair achieved by antibody blockade of PD-L179. To assess the role 
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of PD-L1/PD-1 in inhibiting effective immune synapse formation in the context of in vivo 

lenalidomide treatment of mice, we added ex vivo blocking antibodies against PD-

L1/PD-1 before immune synapse assays. We found that additional ex vivo PD-L1 

blockade on CLL cells significantly improved the area of immune synapses in both 

lenalidomide and vehicle treated mice and restored immune synapses to sizes 

comparable to healthy WT mice. Interestingly, additional ex vivo PD-1 blockade on T 

cells only improved the area of immune synapses in vehicle treated mice and restored 

it to levels observed in lenalidomide treated mice. Combined ex vivo PD-L1 and PD-1 

blockade significantly improved the area of immune synapses in both lenalidomide and 

vehicle treated mice and restored immune synapses to sizes comparable to healthy 

WT mice. These findings highlight the importance of aberrant PD-L1 expression on 

CLL cells to mediate immune synapse formation defects of T cells. As immune 

synapse formation is an essential step to activate T cells upon the encounter of MHC-

presented antigen, it can be hypothesized that the repair of immune synapses by PD-

L1 blockade leads to a restoration of T-cell effector functions and overcomes the 

functional defects associated with aberrant T-cell phenotypes.   

In sum, our in vivo experiments using single agent and short term lenalidomide 

treatment have confirmed that the repair of cytoskeleton defects is a prominent 

mechanism of action that is recapitulated in mice with CLL, even though different 

therapeutic responses exist in mice with CLL versus human CLL patients. In addition, 

they have highlighted the role of aberrant PD-L1 expression by CLL cells in impairing 

T-cell function, and provided a strong rationale that this could be overcome using in 

vivo PD-L1 blockade. Therefore, the potential of in vivo PD-L1 blockage to correct CLL-

induced T-cell dysfunction and enhance anti-tumour T-cell responses in mice with CLL 

will be explored in the next chapter.  
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8 Potential of in vivo PD-L1 blockade to restore T-cell dysfunction 

8.1 Specific introduction 

In physiological settings, co-receptors essential for the activation of immune effector 

cells (so-called immune checkpoints) tightly regulate the amplitudes and qualities of T-

cell responses and thereby maintain self-tolerance, prevent autoimmunity, and protect 

healthy tissues from being damaged by limiting normal immune responses332. Many 

tumours utilize these checkpoints to their advantage to escape anti-tumour immune 

responses338. PD-L1 and PD-1 have emerged as one of the most prominent immune 

checkpoint ligand/receptor axes that contribute to maintaining an immunosuppressive 

tumour microenvironment, and several studies have demonstrated that aberrant PD-L1 

expression by tumour cells has an inhibitory effect on T cells, both in haematological 

malignancies (see Chapter 1.3.2) and in solid cancers312-314. Encouraging results from 

early clinical trials using PD-1/PD-L1 antibodies showed significant response rates, 

even in heavily pre-treated patients with solid tumours, thus validating PD-L1/PD-1 as 

key targets for immunotherapy approaches aiming to shift the balance back from a pro-

tumour to an anti-tumour microenvironment (see Chapter 1.4.2).  

One of the earliest clinical Phase I dose-escalation studies in patients with 

haematological malignancies using the PD-1 antibody pidilizumab showed a favourable 

safety profile and evidence of clinical activity in 6 of 18 patients, with no maximum 

tolerated dose defined362. In this cohort of patients, an increase of absolute numbers of 

peripheral blood CD4+ T cells was observed that was maintained up to 21 days after 

treatment. More recently, pidilizumab was administered to patients with DLBCL 30–60 

days after autologous haematopoietic stem-cell transplantation (auto-HSCT) at a 

dosing schedule of 1.5 mg/kg once every 6 weeks for three cycles359. The 16-month 

PFS from first treatment was 72%, and overall survival was 85%. Among 35 patients 

with measurable disease after auto-HSCT, the ORR after pidilizumab treatment was 

51%. Pidilizumab was well tolerated with the most common adverse events noted to be 

grade one to four neutropenia, fatigue, and diarrhoea. Notably, pidilizumab 

administration was associated with several changes in the absolute number of 

circulating lymphocyte subsets, and led to a sustained increase of PD-L1+CD25+CD4+ 

T cells, CD4+ CM T cells, CD8+ CM T cells, and PD-L1+ monocytes. In addition, the 

authors found an increase in CD127+ CM CD4+ and CD8+ T cells. In a recently 

published study, pidilizumab was combined with the anti-CD20 antibody rituximab in 

patients with relapsed follicular lymphoma360. This Phase II trial demonstrated that this 

combination was well-tolerated and produced overall and CRR of 66% and 52%, 

respectively, with tumour regression in 86% of patients. Within this trial, a number of 
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correlative studies were performed to assess the immunological effects of pidilizumab. 

The authors found that expression of PD-L1 (but not PD-1 or PD-L2) was significantly 

higher in peripheral blood CD4+, CD8+, and CD14+ cells of responders than non-

responders, but was not associated with PFS. The comparison of PB samples taken 14 

days after the first pidilizumab infusion with baseline samples demonstrated an 

increase in absolute lymphocyte count, CD3+ T cells and CD4+ T cells, but not in 

CD8+ T cells. Naive, EM, and CM CD4+ T cells were significantly increased after 

treatment. Among CD8+ T cells, terminally differentiated cells were decreased, but 

other subsets were not-significantly different. The comparison of gene expression 

profile data of paired core-needle biopsies demonstrated that the change in expression 

after treatment was correlated with outcome and tumour shrinkage, with increased 

expression of T-cell activation signatures after pidilizumab being associated with longer 

PFS. This however was not confirmed by flow cytometry or immunohistochemistry, and 

paired tissue and peripheral blood samples at diagnosis (i.e. from the same patient) 

could not be correlated with each other. In addition, it is possible that the co-

administered anti-CD20 antibody rituximab might have had a confounding effect on the 

amplitude and quality of T-cell responses; rituximab induces B-cell depletion and 

modulates immune-mediated cell killing via various degrees of complement-dependent 

cytotoxicity (CDC), ADCC and phagocytosis467, which might have had an effect on the 

T-cell signatures and phenotypes observed in this study. Ongoing Phase II studies are 

evaluating the safety and clinical efficacy of pidilizumab in patients with AML and 

multiple myeloma in combination with cell-based vaccines468, 469, and in patients with 

multiple myeloma in combination with lenalidomide470. Another PD-1 antibody currently 

under clinical evaluation in patients with MDS, multiple myeloma, HL, mediastinal large 

B cell lymphoma, and NHL is MK-3475 (pembrolizumab)471. 

Clinical data on anti-PD-L1 antibodies in patients with leukaemias and lymphomas is 

notably absent. The anti-PD-L1 antibody MPDL3280A is currently being tested in a 

Phase I dose escalation study in patients with solid and haematological 

malignancies472, but another study evaluating the anti-PD-L1 antibody BMS-936559 in 

patients with relapsed or refractory haematological malignancies was withdrawn prior 

to any patient enrolment473. Similarly, studies of the immunological effect of in vivo PD-

L1 blockade are rare, and information is currently limited to preclinical models. Data 

from murine solid cancer models indicate that in vivo PD-L1 blockade in combination 

with IL-15 administration, CTLA-4 blockade or IDO pathway blockade restores CD8+ T 

cell IL-2 production and proliferation within the tumour microenvironment474, increases 

the numbers and lytic activity of tumour antigen-specific CD8+ T cells, augments 
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antigen-specific IFN-γ release, and inhibits suppressive functions of regulatory T 

cells475, 476. However, it is becoming clear that PD-L1 is not only aberrantly expressed 

by tumour cells, but also by cells in the tumour microenvironment such as MDSCs, 

tumour-associated macrophages, and dendritic cells, which also has an effect on 

modulating T-cell function199, 298, 477, 478.  

Despite the increasing pre-clinical evidence pointing towards the importance of PD-1/ 

PD-L1 inhibitory signalling in CLL, neither PD-L1 nor PD-1 blockade has been clinically 

explored minimally in this disease. The study by Berger et al.362 included only 3 

patients with CLL/SLL, of which two showed stable disease with pidilizumab treatment. 

Future clinical trials on PD-1/PD-L1 blockade in CLL, however, could be supported by 

preclinical data from the TCL1 model. In-depth work performed in this project confirms 

that TCL1 mice are a valuable preclinical tool to mirror PD-L1/PD-1 mediated T-cell 

defects. In addition, our results highlight the significance of the PD-1/PD-L1 axis in 

suppressing specific T-cell effector functions in CLL, and identify T-cell subsets that are 

suitable candidates to be promoted to fully functional effector cells by blocking PD-

1/PD-L1 inhibitory signalling, as demonstrated in Chapter 7.3.7. TCL1 mice are 

therefore an ideal model to study if in vivo PD-1/PD-L1 blockade has the potential to 

add to effective disease control by restoring anti-tumour immune responses. Due to the 

similarity of our model to human CLL, output of these experiments is likely to provide a 

strong rationale for further clinical assessment of PD-L1/PD-1 immune checkpoint 

blockade. 

 

8.2 Goals and objectives 

Based on the data we generated thus far, my next goal was to investigate if in vivo PD-

L1 blockage corrects CLL-induced T-cell dysfunction and enhances anti-tumour T-cell 

responses in mice with CLL. Specifically, I sought to address the following questions: 

 Does early in vivo PD-L1 blockade have the potential to effectively control disease 

development after adoptive transfer (AT) of murine CLL? 

 Can early in vivo PD-L1 blockade prevent the development of the previously 

described aberrant T-cell phenotype? 

 Can early in vivo anti-PD-L1 treatment restore key T-cell effector functions? 

 Can early in vivo anti-PD-L1 treatment overcome functional T-cell defects relating 

to aberrant PD-1 expression? 
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8.3 Specific methods and materials 

8.3.1 Mice and in vivo treatment 

Three month old female B6 WT mice were purchased from Charles River, UK, 

randomized to “treatment” (n=15), “isotype” (n=10) or “no intervention” (n=6) groups, 

ear-tagged, and kept in cages containing 5 mice each (6 for “no intervention”) for one 

week without any further procedures. Sample size was calculated based on the 

assumption that at least 9 mice per group would be needed to detect a 1.25 standard 

deviation difference in PD-1 means between treated and untreated mice in one-sided 

testing at a significance level α=0.05 with at least 80% power. Mice randomized to 

“treatment” and “isotype” were then injected i.v. with 4x107 syngeneic CLL cells in a 

single dose from the same pool of aged TCL1 mice, followed by i.p. injection of 

10mg/kg anti-murine-PD-L1 in vivo monoclonal antibody (aPD-L1, clone 10F.9G2, rat 

IgG2b) or in vivo isotype monoclonal antibody (clone LTF-2, rat IgG2bκ, both BioXcell, 

USA) on day +1. Administrations of aPD-L1 or isotype antibodies were repeated every 

3 days, and mice were sacrificed 31 days later after having received a total of 11 

doses, along with the “no intervention” mice, under protocol 19b2 of PIL 70/7531. 

Spleens, PB, LN and BM were harvested and processed as described before. 

 

8.3.2 Multicolour flow cytometry for cell surface markers  

T-cell subsets were characterized based on the surface expression of CD3, CD4, CD8, 

CD62L, CD44 and CCR7. Exhaustion markers included PD-1, KLRG-1, 2B4, CD160 

and LAG-3. CLL was assessed by concurrent CD19 and CD5 expression, and PD-L1 

and PD-L2 were included into the CLL panel. Antigens, fluorochromes, clones, 

concentrations and suppliers are described in the previous chapters. For PD-L1, clone 

MIH5 was used, as the PD-L1 monoclonal antibody administered in vivo was clone 

10F.9G2. As demonstrated in the saturation experiments in the previous chapter, pre-

incubation with 10F.9G2 reduced consecutive binding of fluorochrome-labelled 

10F.9G2. To determine if 10F.9G2 would also block binding of fluorochrome-labelled 

MIH5, we incubated fresh MNC from the spleen of a leukaemic TCL1 mouse for 1 hour 

with the previously determined optimal dose of 10mg/ml LEAFTM purified 10F.9G2 

antibody, or LEAFTM isotype blocking antibody rat IgG2bκ (both Biolegend, UK). Cells 

were then washed and stained with fluorochrome-conjugated PD-L1 antibodies [clones 

10F.9G2 (PECy7) or MIH5 (PerCPeFluor710)] for flow cytometry. Fluorochrome-

conjugated isotype controls were also included. This experiment demonstrated that 
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pre-incubation with 10F.9G2 reduced the MFI of both PECy7 labelled 10F.9G2 and 

PerCPeFluor710 labelled MIH5, indicating that the in vivo antibody 10F.9G2 partially 

blocks the binding of MIH5, thereby influencing the correct assessment of PD-L1 

expression (Figure 61). 

 

Figure 61: In vitro blockade with PD-L1 clone 
10F.9G2 affects binding of PD-L1 clone MIH5: 
Fresh mouse spleen MNC were pre-incubated for 
1h with 10mg/ml purified anti-PD-L1 antibody clone 
10G.9G2 or isotype blocking antibody, and stained 
with PerCPefluor710 labelled PD-L1 antibody 
against clone MIH5. Cells stained with PeCy7 
10F.9G2 were used as positive control.  

 

 

 

Table 22 contains an overview of the flow panel combinations used in this experiment. 

Experiments were performed on fresh samples, and FMO controls for CD44, CCR7, 

exhaustion markers, PD-L1 and PD-L2 were included into all experiments. Cells were 

prepared for flow cytometry as described before. The gating strategies have been 

described in Chapters 5 and 6.  
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1. spleen 

tube 1 tube 2 tube 3 

T-cell subsets/exhaustion T-cell exhaustion B cells 

CD4 PerCPCy5.5 CD8 BV605 CD5 APC 

CD8 BV605 CD3 APCCy7 CD19 FITC 

CD3 APCCy7 CD44 AF700 CD45 APCCy7 

CD62L FITC 2B4 APC PDL1 PE 

CD44 AF700 LAG3 PerCPefl710 PDL2 PerCPefl710 

CCR7 PeCy7 CD160 PE viability dye DAPI 

KLRG1 PE viability dye DAPI 
  

PD1 APC 
    

viability dye DAPI 
    

2. peripheral blood 

tube 1 

 

tube 2 

T-cell subsets/exhaustion B cells 

CD4 PerCPCy5.5 CD5 APC 

CD8 BV605 CD19 FITC 

CD3 APCCy7 CD45 APCCy7 

CD62L FITC PDL1 PE 

CD44 AF700 PDL2 PerCPefl710 

PD1 APC viability dye DAPI 

viability dye DAPI   

3. bone marrow 

same as peripheral blood  same as peripheral blood 

4. lymph nodes 

same as peripheral blood  same as peripheral blood 

Table 22: Overview of flow panel used in this experiment to phenotype T-cell subsets, 
exhaustion markers, CLL and inhibitory ligands in mouse tissues.  

 

8.3.3 Multicolour flow cytometry for intracellular cytokines and effector 

function 

Effector function and intracellular cytokines were determined as described in Chapter 5 

and included CD107a degranulation, intracellular GrB, IL-2, IL-4, and IFN-y, 

intranuclear ki67, and in vivo EdU incorporation. Differences in T-cell function between 

experimental groups were compared by calculating ratios between CD44+ cells 

positive for CD107a/IFN-y/ki67, and CD44+ cells negative for these markers, to 

describe the ratio between effector cells within CD44+ cells compared to non-effector 

(i.e. negative) cells. Differences in ratios were interpreted as an increase of cells able 

to exert effector functions (increase of ratio), or decrease of cells able to exert effector 

functions (decrease of ratio), respectively. Similar comparisons were made between 

ratios within PD-1high and PD-1low subsets.  
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8.3.4 Immune synapse formation assays 

Frozen splenocytes were debulked of CLL and B cells by manual magnetic separation 

using murine CD19 microbeads, and the column effluent representing the CD19- 

fraction was further purified by negative selection using murine T-cell isolation kits as 

described in Chapter 3.3. These T cells were used in synapse formation assays with 

CMAC-labelled, sAg-pulsed healthy syngeneic B cells as antigen-presenting cells at a 

1:1 ratio. Synapse assays, confocal microscopy, and image analysis were conducted 

as described in Chapter 3.5.   

 

8.4 Results 

8.4.1 In vivo anti-PD-L1 treatment effectively controls CLL and prevents PD-L2 

expression on normal B cells 

Following AT of 4x107 CLL cells from leukaemic TCL1 donors, mice treated with 11 

doses of murine aPD-L1 showed effective control of CLL relative to mice receiving 

isotype antibody. Spleen sizes in aPD-L1 treated mice were remarkably reduced 

(Figure 62 A) and spleen weights were significantly lower compared to the isotype 

control group (median 0.2g vs. 0.9g, p<.0001, Figure 62 B). Dark focal pigmentations 

were apparent in spleens from aPD-L1 treated mice, although these are normal in 

young B6 mice and are caused by accumulation of melanin479. Compared to isotype, 

aPD-L1 treated mice had a significantly lower relative frequency of CD19+CD5+ CLL 

lymphocytes in spleens (1.6% vs. 71.7%, p<.0001), PB (10.5% vs. 63.5%, p.0019) and 

BM (.3% vs. 2.7%, p<.0001) as determined by flow cytometry of single-cell 

suspensions (Figure 62 C). In LN, no differences were detected. However, our work 

previously demonstrated that CLL involvement of LN is not well reflected in the AT 

model. Together, these results demonstrate very effective tumour control. Interestingly, 

mice treated with aPD-L1 appeared to have higher CLL loads in blood than in spleen, 

indicating that PD-L1 might have an effect on homing or migration into secondary 

lymphoid organs (Figure 62 D).  
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Figure 62: Effect of in vivo aPD-L1 treatment on disease development. Three month old B6 
WT mice transplanted with 4x107 splenocytes from leukaemic TCL1 mice were randomized to 
treatment with 10 mg/kg anti-murine-PD-L1 (aPD-L1, n=15) or isotype antibody (n=10), 
administered i.p. every 3 days starting one day after adoptive transfer, and sacrificed 31 days 
later. (A) Differences in spleen sizes between isotype and aPD-L1 treated mice. (B) Spleen 
weights in aPD-L1 treated and isotype treated mice. (C) Relative frequency of CD19+CD5+ CLL 
lymphocytes in all examined organs. (D) CLL loads in different organs in individual mice. All 
graphs shows median with interquartile range (IQR); (E) shows medians only.  

 

As expected, the specific MFI of PD-L1 was significantly reduced in all examined 

organs in aPD-L1treated mice compared to WT mice, reflecting the partial blockade of 

the binding site of the fluorochrome-labelled PD-L1 antibody used for flow cytometry 

(clone MIH5) by the in vivo PD-L1 antibody (clone 10F.9G2, Figure 63 A). Confirming 

previous findings, isotype treated mice showed significantly upregulated PD-L1 on CLL 

cells in all examined organs, as compared to normal B cells from WT mice. As the CLL 

population was notably absent in aPD-L1 treated mice compared to isotype treated 

mice (1.6% vs. 71.7% CLL cells), we compared the expression of PD-L2 on normal B 

cells in aPD-L1 treated mice to expression on CLL cells in isotype treated mice. 

Although we demonstrated in Chapter 6 that aberrant PD-L2 expression is exclusive to 

CLL cells, we hypothesized that B cells in aPD-L1 treated mice might still show 

upregulated PD-L2 as a result of the AT procedure or the immunological challenge by 

tumour. Interestingly, PD-L2 expression was comparable in aPD-L1 treated and 

healthy WT mice in all examined organs, and was significantly lower than in isotype 

treated mice (Figure 63 B). 
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Figure 63: Effect of in vivo aPD-L1 treatment on PD-L1 and PD-L2 expression. PD-L1 and 
PD-L2 were gated on CD19+CD5+ CLL cells in isotype treated mice, and on CD19+ B cells in 
aPD-L1 treated and healthy WT mice (hWT), as treatment had resulted in the significant 
reduction of the CLL population. (A) aPD-L1 treatment partially blocked binding of fluorochrome 
labelled PD-L1 on a different clone (MIH5), while PD-L1 expression was significantly increased 
on CLL cells from isotype treated mice compared to B cells from healthy mice. (B) PD-L2 
expression was comparable in normal B cells from aPD-L1 treated and WT mice, and was 
significantly increased in isotype treated mice. All graphs show median with IQR. ns = non-
significant, *p<.05, **p<.001, ***p<.0001.  

 

Table 23 summarizes the p-values of statistical comparisons of specific MFIs for PD-L1 

and PD-L2 between the experimental groups for all organs examined. 

 

    
aPD-L1 vs. 

isotype 
aPD-L1 vs. 

hWT 
isotype vs. 

hWT 

MFI PD-L1 spleen <.0001 .0005 .0002 

  peripheral blood <.0001 .0005 .0004 

  bone marrow <.0001 .0005 .0002 

  lymph node .0003 .0095 .0043 

MFI PD-L2 spleen <.0001 .0091 .0002 

  peripheral blood <.0001 .1990 .0004 

  bone marrow <.0001 .9578 .0002 

  lymph node .0009 .1143 .0043 

Table 23: Summary of p-values of statistical comparisons of specific MFIs for PD-L1 and 
PD-L2 between aPD-L1 and isotype treated mice and healthy WT mice (hWT). Significant 
p-values are highlighted in bold.  
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8.4.2 In vivo anti-PD-L1 treatment prevents development of the typical CLL-

induced aberrant T-cell phenotype 

The effective CLL control by in vivo aPD-L1 was reflected by significant changes in the 

T-cell phenotype. Compared to isotype treated mice, the relative frequencies of CD3+, 

CD3+CD4+ and CD3+CD8+ T cells in all examined organs were comparable in aPD-

L1 treated mice and in healthy WT mice (data for percentages of CD3+, CD4+ and 

CD8+ cells not shown). This was reflected in a normalization of the CD4+/CD8+ ratio in 

spleen (Figure 64 A), PB (Figure 64 B) and BM (Figure 64 C), indicating that aPD-L1 

treatment prevented typical CLL-induced broad phenotypic T-cell defects. Due to the 

shortcomings of the AT model to mirror LN involvement consistently, T-cell phenotype 

was not examined in LN. 

 

 

Figure 64: Prevention of typical CLL-induced aberrant T-cell phenotype in CD3+, CD4+ 
and CD8+ cells by in vivo anti-PD-L1 treatment. CD4 and CD8 were gated on CD3+ viable 
single MNC. aPD-L1 treatment led to a normalization of the CD4+/CD8+ ratio in (A) spleen, (B) 
PB and (C) BM. All graphs show median with IQR. ns = non-significant, *p<.05, **p<.001, 
***p<.0001. hWT=healthy WT mice. 

 

Similarly, the loss of naïve (CD44-) CD3+CD8+ cells in spleen, and shift to antigen-

experienced (CD44+) CD3+CD8+ cells with a relative expansion of effector and EM 

cells, was prevented by aPD-L1 treatment (Figure 65 A and B). However, aPD-L1 only 

moderately prevented the loss of CM cells. This was largely recapitulated in PB (Figure 

65 C) and BM (Figure 65 D), although the loss of naïve cells was more pronounced in 

these organs than in spleen (note: phenotyping in PB and BM excluded CM and EM 

cells). Memory cells appeared to be slightly promoted by aPD-L1 treatment in spleen, 

but this was not consistently observed in the other organs.  
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Figure 65: Prevention of typical CLL-induced aberrant T-cell phenotype in CD3+CD8+ 
naïve and antigen experienced cells by in vivo anti-PD-L1 treatment. Naïve (CD44-
CD62L+), effector (CD44+CD62L-), memory (CD44+CD62L+), effector memory (EM) 
(CD44+CD62L-CCR7-) and central memory (CM) (CD44+CD62L+CCR7+) cells were gated on 
CD3+CD8+ cells. FMO controls for CCR7 and CD44 were included in all experiments to 
discriminate positive and negative populations. (A) Changes in T-cell subsets in spleen 
lymphocytes with aPD-L1 treatment. (B) Data from (A) shown as stacked graph to depict shifts 
in cell subsets. (C) T-cell subset changes in PB. (D) T-cell subset changes in BM. All graphs 
except (B) show median with IQR. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 
hWT=healthy WT mice. 

 

Table 24 summarizes the p-values of statistical comparisons of T-cell subsets between 

the experimental groups for all organs examined. 
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organ T-cell immunophenotype aPD-L1 vs. isotype aPD-L1 vs. hWT isotype vs. hWT 

spleen % CD3 .0002 .0322 .0002 

% CD3+CD4+ <.0001 .0565 .0002 

% CD3+CD8+ <.0001 .1713 .0002 

CD4+/CD8+ ratio <.0001 .0683 .0012 

% Naïve CD3+CD8+ <.0001 .0391 .0002 

% Effector CD3+CD8+ <.0001 .0005 .0002 

% Memory CD3+CD8+ <.0001 .0471 .0575 

% EM CD3+CD8+ <.0001 .0005 .0002 

% CM CD3+CD8+ .6492 .0005 .0002 

peripheral 
blood 

% CD3 .0244 .0265 .0008 

% CD3+CD4+ <.0001 .9070 .0004 

% CD3+CD8+ <.0001 .7853 .0004 

CD4+/CD8+ ratio <.0001 .9690 .0004 

% Naïve CD3+CD8+ .0548 .0007 .0004 

% Effector CD3+CD8+ .0018 .0005 .0004 

% Memory CD3+CD8+ .7366 .4137 .0987 

bone 
marrow 

% CD3 .6842 1.0 .5622 

% CD3+CD4+ .9118 .0110 .0005 

% CD3+CD8+ <.0001 .8749 .0002 

CD4+/CD8+ ratio .0002 .0569 .0013 

% Naïve CD3+CD8+ .0006 .0002 .0002 

% Effector CD3+CD8+ .0005 .0002 .0002 

% Memory CD3+CD8+ .1211 .0005 .0010 

Table 24: Summary of p-values for T-cell subset comparisons between aPD-L1 and 
isotype treated mice and healthy WT mice (hWT). Significant p-values are in bold. 

 

8.4.3 In vivo anti-PD-L1 treatment prevents development of typical CLL-induced 

exhaustion-like T-cell phenotype  

After confirming the ability of in vivo PD-L1 blockade to prevent the development of 

aberrant T-cell subset distributions, its effect on the expression of typical exhaustion-

like surface markers was determined. This experiment included the exhaustion markers 

we confirmed in previous experiments of this project to be aberrantly expressed by 

CD3CD8+CD44+ T cells, namely PD-1, CD160, KLRG-1, 2B4 and LAG-3. Compared 

to isotype treated mice, aPD-L1 treatment significantly reduced the aberrant expression 

of PD-1, KLRG-1, 2B4, and LAG-3, but not CD160, in spleen (Figure 66 A). With the 

exception of PD-1, expression levels were comparable between healthy WT and aPD-

L1 treated mice. The prevention of aberrant PD-1 expression was recapitulated in PB 

and BM, with other exhaustion markers not examined in these organs (Figure 66 B).  
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Figure 66: Prevention of typical CLL-induced exhaustion-like phenotype in 
CD3+CD8+CD44+ cells by in vivo anti-PD-L1 treatment. Exhaustion markers PD-1, KRLG-1, 
CD160, LAG-3 and 2B4 were gated on CD3+CD8+CD44+ cells. FMO controls for all exhaustion 
markers were included in all experiments to discriminate positive and negative populations. (A) 
aPD-L1 treatment prevented the aberrant expression of all exhaustion markers in aPD-L1 
treated mice compared to isotype treated mice, with the exception of CD160. (B) Similar 
patterns for PD-1 expression were observed in PB and in BM. All graphs show median with 
IQR. ns = non-significant, *p<.05, **p<.001, ***p<.0001. hWT=healthy WT mice.  

 

Table 25 summarizes the p-values of statistical comparisons of T-cell exhaustion 

markers between the experimental groups for all organs examined. 

 

organ T-cell immunophenotype 
aPD-L1 vs. 

isotype 
aPD-L1 vs. 

hWT 
isotype vs. 

hWT 

spleen %PD-1+CD3+CD8+CD44+ <.0001 .0005 .0002 

 
%KLRG-1+CD3+CD8+CD44+ <.0001 .3705 .0002 

 
%CD160+CD3+CD8+CD44+ .8185 .0007 .0014 

 
%2B4+CD3+CD8+CD44+ <.0001 .0565 .0002 

 
%LAG3+CD3+CD8+CD44+ <.0001 .4137 .0002 

peripheral blood %PD-1+CD3+CD8+CD44+ .0029 .0175 .0018 

bone marrow %PD-1+CD3+CD8+CD44+ <.0001 .0002 .0002 

Table 25: Summary of p-values for comparisons of T-cell surface exhaustion markers 
between aPD-L1 and isotype treated mice and healthy WT mice (hWT). Significant p-values 
are highlighted in bold font. 

 

8.4.4 In vivo anti-PD-L1 treatment corrects key T-cell effector functions 

After confirming that aPD-L1 treatment prevents the development of typical CLL-

induced T-cell phenotypic changes, we examined the effect on T-cell effector functions 

in spleen. In line with previous experiments in this project, CD107a degranulation, 

intracellular GrB, IL-2, IL-4 and IFN-γ production, in vivo and ex vivo proliferation and 

immune synapse formation were determined. In CD3+CD4+ T cells, aPD-L1 treatment 

reduced the typical CLL-induced loss of IL-2 (Figure 67 A) producing, and the increase 

of IL-4 (Figure 67 B) and IFN-γ (Figure 67 C) producing cells compared to isotype 
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treated mice. However, this was still markedly different compared to WT mice, probably 

indicating a cytokine reaction of CD3+CD4+ cells to CLL.  

 

 

Figure 67: Prevention of typical CLL-induced CD4+ cytokine production by in vivo anti-
PD-L1 treatment. Fresh splenocytes were stimulated for 6 hours with PMA/Ionomycin (P/I), in 
the presence of Brefeldin/Monensin for the last 5 hours of culture. Cells were then harvested, 
surface stained, fixed, permeabilised and stained with antibodies against IL-2, IL-4 and IFN-γ. 
Data show the effects of aPD-L1 treatment, compared to isotype treatment or healthy WT mice 
(hWT), on the percentage of CD3+CD4+ T cells producing (A) IL-2, (B) IL-4, and (C) IFN-γ. All 
graphs show median with IQR. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 

 

In CD3+CD8+CD44+ T cells, aPD-L1 treatment prevented the loss of cells able to 

degranulate, as indicated by comparable CD107a ratios between healthy WT and aPD-

L1 treated mice (Figure 68 A). In contrast, no effect on changes in intracellular IFN-γ 

production was observed (Figure 68 B). However, work done in this project (Chapter 5) 

demonstrates that the CLL-induced increase of IFN-γ producing cells observed in 

ageing TCL1 mice and in CLL patients is inadequately modelled in mice after AT.  

aPD-L1 treatment also showed an effect on T-cell proliferation, as it significantly 

reduced the CLL-induced increased ki67 ratio (Figure 68 C) and the percentages of 

Alexa488-labelled EdU-positive CD4+ and CD8+ cells (Figure 68 D). In addition, the 

proliferation of normal CD19+CD5- B cells was comparable between healthy WT and 

aPD-1 treated mice, while it was significantly increased in CD19+CD5+ CLL cells from 

isotype treated mice (Figure 68 E). Importantly, aPD-L1 treatment restored the ability of 

CLL T cells to form immunological synapses with normal syngeneic B cells to the level 

of autologous cells from healthy WT mice (Figure 68 F). 
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Figure 68: Prevention of typical CLL-induced effector cell defects by in vivo anti-PD-L1 
treatment. Compared to isotype, aPD-L1 treatment corrected key CD3+CD8+CD44+ T-cell 
effector functions. (A) Ratio of CD107a+ to CD107a- cells, reflecting the ability to degranulate; 
(B) Ratio of IFN-γ+ to IFN-γ- cells; (C) Ratio ki67+ to ki67-, reflecting proliferation ex vivo;  (D) 
Percent EdU+ T cells, reflecting in vivo proliferation. (E) Percent EdU+ CLL and normal B cells. 
(F) Immune synapse formation of CLL T cells with normal syngeneic B cells, as assessed by F-
actin area. All graphs show median with IQR. ns = non-significant, *p<.05, **p<.001, ***p<.0001. 

 

Table 26 summarizes the p-values of statistical comparisons of key T-cell effector 

functions between the experimental groups. 

 

T-cell functional markers aPD-L1 vs. 
isotype 

aPD-L1 vs.  
hWT 

isotype vs.  
hWT 

% CD3+CD4+/IL-2+ .0091 .0265 .0005 

% CD3+CD4+/IL-4+ .0305 .0005 .0002 

% CD3+CD4+/IFN-γ+ .0002 .0007 .0002 

ratio CD107a+:CD107a-CD3+CD8+CD44+ <.0001 .199 .0005 

ratio IFN-γ+:IFN-γ- CD3+CD8+CD44+ .1539 .3281 .3283 

ratio ki67+:ki67-CD3+CD8+CD44+ <.0001 .0214 .0016 

% CD5+EdU+ <.0001 .0088 .0007 

% CD5+CD8+EdU+ .0213 .0194 .0002 

% CD5+CD8-EdU+ <.0001 .0057 .0002 

Immune synapse area <.0001 .7178 <.0001 

Table 26: Summary of p-values for comparisons of key T-cell effector functions between 
aPD-L1 and isotype treated mice and healthy WT mice (hWT). Significant p-values are in 
bold. 
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8.4.5 In vivo anti-PD-L1 treatment corrects key effector functions attributed to 

PD-1 expression 

Although PD-1 expression was significantly lower in aPD-L1 treated than in isotype 

control treated mice, they still had a higher percentage of CD3+CD8+CD44+PD-1+ T 

cells than healthy WT mice (see Chapter 8.4.3). To investigate the associations 

between PD-1 expression and T-cell effector function, we next compared effector 

function ratios between PD-1high and PD-1low cells in isotype versus aPD-L1 treated 

mice. The CD107a ratio was significantly higher in both PD-1high and PD-1low cells in 

aPD-L1 treated mice compared to isotype treated mice, indicating that in vivo PD-L1 

treatment increased the percentage of antigen experienced CD8+ cells with the ability 

to localize CD107a to their cell surface, also in cells with PD-1 expression (Figure 69 

A).  

The IFN-γ ratio was not different among PD-1high cells, but was significantly reduced 

among PD-1low cells in aPD-L1 treated mice compared to isotype (Figure 69 B). aPD-

L1 therefore appeared to correct the physiological predominance of the PD-1high over 

the PD-1low subset in being enriched for cells containing intracellular IFN-γ that we 

observed in ageing WT mice (see Chapter 6). In isotype treated mice, the median IFN-

γ ratio in PD-1high cells was 3.7 (range 2.8-5.0), and in PD-1low cells 1.3 (range .7-1.9), 

leading to an approximately 3-fold higher ratio in PD-1high cells. In aPD-L1 treated mice, 

the median IFN-γ ratio in PD-1high cells was 2.9 (range 1.4-7.8) versus .6 (range .4-1.8) 

in PD-1low cells, resulting in a 4.6-fold higher ratio in PD-1high cells. 

GrB ratios were significantly reduced in both PD-1high and PD-1low cells in aPD-L1 

treated mice compared to isotype treated mice (Figure 69 C). In addition, aPD-L1 

treatment also corrected the physiological predominance of the PD-1high over the PD-

1low subset in being enriched for cells containing intracellular GrB; in isotype treated 

mice, the median GrB ratio in PD-1high cells was 2.2 (range 1.7-3.2), and in PD-1low cells 

.6 (range .45-.68), leading to a 3.8-fold higher ratio in PD-1high cells. In aPD-L1 treated 

mice, the median GrB ratio in PD-1high cells was 1.1 (range .4-2.8) and in PD-1low cells 

.17 (range .09-.37), resulting in a 6-fold higher ratio in PD-1high cells.  

The EdU ratio was significantly lower in both PD-1high and PD-1low cells in aPD-L1 

treated mice compared to isotype treated mice, indicating that in vivo PD-L1 treatment 

abrogated the enrichment of proliferating cells, also in cells with PD-1 expression 

(Figure 69 D).  
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Figure 69: Differences in effector function between PD-1high and PD-1low cells in aPD-L1 
and isotype treated mice. To correlate PD-1 expression and T-cell effector function markers, 
ratios of key effector function markers between PD-1high and PD-1low cells in aPD-L1 treated 
versus isotype treated mice were compared. Graphs show percentages and ratios of antigen 
experienced (CD44+) CD8+ T cells expressing: (A) cell surface CD107a; (B) intracellular IFN-γ; 
and (C) intracellular GrB; as well as (D) EdU+ (proliferating) cells, among PD-1high and PD-1low 
subsets. 

 

Table 27 summarizes the p-values of statistical comparisons of key T-cell effector 

functions according to PD-1 expression between aPD-L1 and isotype treated mice. 

 

functional marker  
(ratio of positive vs. negative) 

p-value, aPD-L1 vs. isotype treatment 

PD-1high PD-1low 

CD107a .0002 .0003 

IFN-γ .07437 .0022 

GrB .0014 <.0001 

EdU <.0001 <.0001 

Table 27: Summary of p-values of statistical comparisons of key T-cell effector function 
markers according to PD-1 expression between aPD-L1 and isotype treated mice. 
Significant p-values are highlighted in bold. 

 

8.5 Summary of effect of in vivo PD-L1 blockade on T-cell dysfunction and T-

cell exhaustion in TCL1 mice 

In summary, we were able to demonstrate that in vivo anti-PD-L1 treatment led to very 

effective CLL control, while significantly improving the T-cell immune functional 

phenotype in mice adoptively transferred with CLL. Effective CLL control was 

demonstrated by remarkably reduced spleen sizes, significantly lower spleen weights, 

and a significantly lower relative frequency of CD19+CD5+ CLL lymphocytes in spleen, 

PB and BM in aPD-L1 treated mice compared to isotype control treated mice. PD-L1 

expression was significantly increased on CLL cells in isotype treated mice compared 

to B cells from healthy mice; however, this could not be accurately assessed in aPD-L1 

treated mice, as in vivo treatment partially blocked the binding of fluorochrome labelled 

PD-L1 on a different clone. Aberrant PD-L2 expression by normal B cells, however, 

was prevented in all examined organs by aPD-L1 treatment. 

The effective CLL control by in vivo aPD-L1 was reflected by remarkable corrections of 

the CLL-associated T-cell phenotype: aPD-L1 treatment prevented the reduction of the 

CD4+/CD8+ ratio. Similarly, the loss of naïve CD8+ cells and shift to antigen-

experienced cells, with a relative expansion of effector and EM cells, was reduced. This 

was recapitulated in spleen, PB and BM. Treatment with aPD-L1 also significantly 
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reduced the aberrant expression of PD-1, KLRG-1, 2B4, and LAG-3, but not CD160, in 

spleen CD8+ T cells. The effect on reducing aberrant PD-1 expression was also 

recapitulated in CD8+ T cells in PB and BM.  

Functionally, aPD-L1 treatment reduced the CLL-mediated reduction in IL-2 producing, 

and increase in IL-4 and IFN-γ producing, CD4+ T cells. In CD8+ cells, it prevented the 

loss of cells with the ability to degranulate, but had no effect on intracellular IFN-γ 

production. CLL-mediated increased ex vivo and in vivo proliferation was reduced both 

in CD4+ and CD8+ T-cell subsets, and the proliferation of normal CD19+CD5- B cells 

was comparable between aPD-L1 treated and hWT mice. Lastly, the ability of CLL T 

cells to form immunological synapses with normal syngeneic B cells was restored to 

normal levels by aPD-L1 treatment.  

The comparison of key effector functions in PD-1high and PD-1low cells from isotype and 

aPD-L1 treated mice demonstrated that in vivo PD-L1 treatment increased the 

percentage of antigen experienced CD8+ cells with the ability to localize CD107a to 

their cell surface even in cells with PD-1 expression, corrected the physiological 

predominance of the PD-1high over the PD-1low subset in being enriched for cells 

containing intracellular IFN-γ and GrB, and abrogated the enrichment of proliferating 

cells in both PD-1high and PD-1low cells. 

 

8.6 Discussion 

The goal of this part of the project was to provide a rationale for the clinical evaluation 

of targeted PD-L1/PD-1 blockade in human CLL by investigating if in vivo blockage in 

mice corrects CLL-induced T-cell dysfunction and enhances anti-tumour T-cell 

responses. The PD-L1/PD-1 pathway can be targeted from two directions: PD-1 

blockade inhibits binding of PD-1 to PD-L1 and PD-L2, but has no effect on binding of 

PD-L1 to the co-stimulatory molecule CD80, with CD80 having a greater affinity for PD-

L1 than for CD28 and about one third the affinity of PD-L1 for PD-1480. PD-L1 blockade 

inhibits binding of PD-L1 to CD80 and PD-1, while having no effect on binding of PD-1 

to PD-L2. As the PD-1-mediated inhibition of lymphocyte function is initiated upon 

binding to its ligands rather than by PD-1 expression per se, it is reasonable to 

counteract the aberrant expression of PD-L1 on tumour cells by blocking PD-L1, 

especially if it is hypothesized that PD-1 expression by T cells is important to maintain 

physiological T-cell homeostasis. In addition, several studies have now demonstrated 

that aberrant PD-L1 expression by MDSCs and TAMs in the tumour microenvironment 

also has an effect on T-cell effector function199, 298, 477, 478. Blocking PD-L1 therefore may 
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abrogate the inhibitory effects on T cells mediated not just by tumour cells, but also by 

non-malignant cells in the microenvironment. However, this approach still allows 

binding of PD-1 to PD-L2, which means that an immunosuppressive effect can be 

maintained via PD-1/PD-L2 signalling. While PD-L1 blockade has been clinically 

evaluated in a number of solid tumours361, experiences in haematological malignancies 

and especially CLL are still sparse. PD-1 blockade has recently been demonstrated to 

be well tolerated and effective in patients with DLBCL and relapsed FL, and correlative 

studies have provided some insights into the immunological effects of this treatment359, 

360. Without a randomized trial, however, no conclusive statements can be made 

regarding the safety and activity of agents targeting PD-1 versus those targeting PD-

L1.  

In the current study, mice were treated with murine anti-PD-L1 antibody from the day 

after CLL adoptive transfer to assess its ability to control disease and to normalize 

effector function. PD-L1 rather than PD-1 blockade was selected as we have 

demonstrated that aberrant PD-L1 expression is utilized by both human79 and mouse 

CLL cells (see Chapter 6), leading to impaired T-cell function. In addition, mouse 

experiments we conducted together with collaborators in Germany have shown that 

PD-L1 is also aberrantly expressed by myeloid cells and TAMs in this mouse model, 

and that this has an inhibitory effect on T-cell function in vitro [PhD work from B. 

Hanna, DKFZ Heidelberg, personal communication]. While both in vitro PD-L1 and PD-

1 blockade were able to restore T-cell effector function79, work produced in this project 

has demonstrated that subsets of CLL T cells are still functional effector cells despite 

PD-1 expression (see Chapter 6). To investigate the full potential of PD-L1/PD-1 

immune checkpoint blockade to repair defects and enhance T-cell subset functions, 

PD-L1 blockade appears to be a reasonable choice to counteract the inhibitory effect of 

PD-L1 expression by both tumour and myeloid cells without affecting T-cell receptor 

signalling itself, therefore allowing the investigation of the full potential of immune 

checkpoint blockade to influence T-cell function.  

The rationale to initiate treatment early after adoptive transfer was based on the 

hypothesis that this time point represents a state of low-volume disease, during which 

remodelling and corruption of the immune system are likely to start. Early PD-L1 

blockade was therefore hypothesized to protect the immune system from such 

inhibitory tumour-mediated effects. This assumption is supported by preclinical data 

from our group, which demonstrated that functional defects observed in T cells from 

patients with CLL could be induced in previously normal allogeneic T cells after just 48 

hours by co-culturing them in direct cell-cell contact with CLL cells77. Moreover, T-cell 
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defects that were very similar to the defects observed in T cells from ageing TCL1 mice 

with CLL could be induced by adoptive transfer after just 7 days on a molecular level in 

young previously healthy TCL1 mice216.  

Here we demonstrate that early PD-L1 blockade effectively controls CLL and prevents 

aberrant PD-L2 expression of normal B cells even after immunological challenge by 

CLL. However, we were not able to determine the effect on PD-L1 expression per se in 

aPD-L1 treated mice, as the in vivo treatment with 10F.9G2 partially blocked the 

binding site of fluorochrome labelled MIH5 PD-L1. 10F.9G2 and MIH5 were previously 

found to prevent binding of PD-L1 to both PD-1 and CD80, while 10F.2H11 prevented 

binding of PD-L1 to CD80 only480, 481. To assess whether these clones bound to 

overlapping epitopes on PD-L1, Paterson et al. pre-incubated 300.19-PD-L1 

transfectants with saturating concentrations of purified 10F.9G2, 10F.2H11 or isotype 

monoclonal antibody and then stained with fluorescently labelled 10F.9G2, 10F.2H11, 

or MIH5 antibodies481. They found that 10F.2H11 was not able to block 10F.9G2 

binding to PD-L1 and vice versa, suggesting that the 10F.2H11 and 10F.9G2 recognize 

distinct epitopes on PD-L1, and that pre-incubation with 10F.2H11 had no effect on 

MIH5 binding. In contrast, 10F.9G2 pre-incubation reduced the level of MIH5 binding, 

suggesting that the 10F.9G2 and MIH5 dual blockers bind to overlapping epitopes that 

are distinct from the epitope recognized by 10F.2H11. Based on these data, we 

attempted to obtain 10F.2H11 for our experiments, either in purified form or 

fluorescently labelled, to allow us to determine the effect of in vivo treatment on PD-L1 

expression. However, we were not successful, and this question remains open. 

As PD-L1 expression on tumour cells has been demonstrated to be linked with poor 

prognosis and tumour aggressiveness in a number of malignancies, it might serve as a 

useful predictive biomarker332, 482. Significantly increased PD-L1 expression on CLL 

cells was found in poor-prognosis patients with a median survival of 38 months 

compared with good-prognosis patients with a median survival of more than 10 years79. 

More recently, soluble PD-L1 (sPD-L1) has been explored as a biomarker, with 

elevated sPD-L1 being a predictive biomarker for poorer overall survival in patients with 

DLBCL483. Assessing PD-L1 expression changes might also be beneficial in the context 

of targeted PD-L1/PD-1 therapy. In a Phase I study of single agent anti-PD-1, tumour 

PD-L1 expression was found to be a predictive biomarker of response to treatment: 

while none of the PD-L1 negative patients achieved a tumour response, an overall 

response rate of 36% was observed in patients with PD-L1 positive tumours363.  

Although targeted PD-L1 blockade did not prevent binding of PD-1 to PD-L2, our data 

clearly demonstrate that the effective CLL control by in vivo aPD-L1 was reflected by 
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remarkable corrections of phenotypic and functional T-cell defects: in vivo anti-PD-L1 

treatment prevented the development of typical aberrant T-cell phenotypes and 

normalized key T-cell effector functions, even in less functional cells with PD-1 

expression. However, this was achieved by initiating treatment at an early stage of 

disease, and mice were only treated for a total of 31 days, with antibody being 

administered every three days. It is possible that this improved immune status might 

not be achieved with less intense or later treatment or be sustained over a longer 

period of treatment, especially if other immune-escape mechanisms are developed or 

cells become resistant to PD-L1 blockade and inhibitory signalling shifts towards (for 

example) PD-L2. Therefore, it is important to consider options for combination 

therapies. Several preclinical studies have indicated that the combination of PD-L1 

antibodies with blockade of other immune checkpoints may increase the quality of T-

cell responses474-476. This is supported by the observation that PD-1 positive T cells 

also express other inhibitory receptors such as CTLA-4, TIM-3, LAG-3, BTLA, CD160, 

and 2B4404. It is therefore likely that blocking of PD-L1/PD-1 mediated inhibitory 

signalling alone might not fully restore the function of anti-tumour T cells. In a mouse 

model of AML, CD8+ T cells co-expressing PD-1 and TIM-3 were found to be deficient 

in their ability to produce IFN-γ, TNF-α, and IL-2, with blocking the PD-1/PDL1 or Tim-

3/galectin-9 pathway alone being insufficient to rescue mice from AML lethality419. 

However, an additive effect was seen in reducing tumour burden and lethality when 

both pathways were blocked. Similarly, NY-ESO-1-specific CD8+ T cells from patients 

with epithelial ovarian cancer demonstrated impaired effector function, preferential 

usage of dominant T-cell receptors, and enriched co-expression of LAG-3 and PD-1484. 

CD8+LAG-3+PD-1+ T cells were more impaired in IFN-γ/TNF-α production compared 

with single positive subsets, and dual blockade of LAG-3 and PD-1 during T-cell 

priming efficiently augmented proliferation and cytokine production by NY-ESO-1-

specific CD8+ T cells. Co-expression of PD-1 and LAG-3 was also demonstrated on 

tumour-infiltrating CD4+ and CD8+ T cells in different transplantable tumours, with dual 

LAG-3/PD-1 blockade curing most mice of established tumours that were largely 

resistant to single antibody treatment420. Interestingly, dual PD-L1 and LAG-3 blockade 

also appears to have implications in other disease. For example, this approach was 

recently shown to rapidly clear established blood-stage Plasmodium infection in mice, 

to have an effect on the number of follicular helper T cells and germinal-centre B cells 

and plasmablasts, and to enhance protective antibodies485.  

CTLA-4 was the first immune checkpoint receptor to be clinically targeted, and CTLA-4 

antibodies were the first to achieve FDA approval486, 487. In a Phase I dose-escalation 
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trial of the anti-CTLA-4 antibody ipilimumab in patients with relapsed/refractory B-cell 

lymphoma, treatment was well tolerated and resulted in clinical response in two of 18 

patients, while in 31% of patients, T-cell proliferation to recall antigens was significantly 

increased488. The concept of enhanced efficacy by combination was recently supported 

by data from a clinical trial in which patients with melanoma were treated with 

ipilimumab and PD-1 antibody489. This combination produced durable tumour 

regression, with evidence of clinical activity being observed in 65% of patients. In 

preclinical carcinoma models, blockade of both PD-1 and CTLA-4 resulted in reversal 

of CD8+ T-cell dysfunction and led to tumour rejection in two thirds of mice. In 

physiological settings, CTLA-4 is critically required by TRegs to suppress immune 

responses by affecting the potency of antigen-presenting cells to activate other T 

cells181. The number of TRegs is increased and correlated with aggressive disease in 

CLL176, and could be significantly reduced by in vitro CD200 blockade, which also 

stimulated antigen-specific T cell responses towards the CLL-associated antigen 

fibromodulin490. Therefore, it is possible that the combination of CTLA-4 blockade with 

antibodies targeting PD-L1/PD-1 or CD200/CD200R might be especially beneficial in 

CLL.  

In DLBCL and FL, PD-L1/PD-1 blockade has been combined with other immune-

modulating strategies such as autologous haematopoietic stem cell transplantation and 

rituximab359, 360. Given the potential of novel substances targeting BCR signalling to 

also overcome CLL-induced immune dysfunction, the combination of PD-L1/PD-1 

blockade with agents such as the BTK inhibitor ibrutinib or the PI3kδ inhibitor idelalisib 

might represent attractive treatment strategies, especially in older or heavily pre-treated 

patients unable to tolerate aggressive therapy168. In addition, several pre-clinical and 

clinical studies have demonstrated that lenalidomide can correct typical PD-L1/PD-1 

mediated immune deficiencies in CLL77, 79-81. Our work supports and extends these 

findings, confirming that PD-L1 mediated defective immune synapse formation and 

some T-cell effector dysfunctions can be corrected by in vivo lenalidomide treatment. 

Other combinations could include immune stimulatory agents such as vaccines491, 492, 

cytokines432, or even soluble forms of co-stimulatory molecules such as soluble 

CD80493. 

In sum, our in vivo experiments have provided a strong rationale for the clinical 

assessment of PD-L1/PD-1 immune checkpoint blockade in CLL, and this could be 

promoted by further in vivo preclinical studies examining the combination of PD-L1 

antibodies with additional antibodies or novel agents.  
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9 Overall Discussion 

The central hypothesis of this thesis project was that specific T-cell defects result from 

the interaction of malignant CLL cells with the immune system, and that repairing the 

defects in T-cell function will be required to activate an effective T-cell mediated anti-

tumour immune response. As this was addressed using the TCL1 mouse model of 

CLL, it is important to first consider the limitations of this model.  

As outlined in Chapter 1.2, the TCL1 model is a well-established and widely used tool 

to mirror the biology and therapeutic responses of aggressive human CLL. A variety of 

alternative models have been created in which specific genes and gene products, 

transcription factors, or components of signalling pathways that drive CLL development 

and progression have been manipulated. However, all of these are inferior to TCL1 

mice with regards to disease penetrance and the ability to mirror biological properties 

of human CLL. Xenograft models of CLL allow the investigation of the direct effect of 

selected immune cell components and therapeutic interventions on the disease in its 

natural complexity, but these fall short in their ability to provide the host components of 

a complete tumour microenvironment. The TCL1 gene is now recognized as a clinically 

relevant oncogene in the vast majority of human CLL cases. For example, Herling et al. 

found TCL1 expression to be correlated with markers of poor prognosis and shorter 

PFS494, 495, while another group indicated that TCL1 expression serves, in addition to 

other clinical and genetic factors, as a predictor of OS496. Several studies have 

demonstrated that TCL1 acts on multiple cellular targets in CLL, such as the 

serine/threonine kinase AKT pathway249, the NF-κB pathway250, 251, the transcription 

factor AP-1250, the p53 modulator Atm497, and the methyltransferases DNMT3A and 

3B252.  

As CLL is a very heterogeneous and dynamic disease, however, genetically 

engineered mice driven by selected oncogenes such as TCL1 might be insufficient to 

mirror the genetic complexity and clonal evolution that is now recognized as a major 

hallmark of human CLL498. Early experiments demonstrated that transformed TCL1 

murine CLL cells have a wild-type p53 status215, which might render the TCL1 model 

inadequate to investigate p53-associated resistance mechanisms. The extent to which 

clonal evolution and novel mutations such as SF3B1 or NOTCH1 can be recapitulated 

in TCL1 mice is however not yet known. Despite these apparent limitations, our group 

pioneered studies highlighting the suitability of this model to mirror T-cell defects of 

human CLL, both on a molecular and functional level216. This was recently expanded to 

include defects in myeloid cells [PhD work from B. Hanna, DKFZ Heidelberg, personal 

communication], and several crosses, for example with MIF-/-200, CD44-/-261, rhoH-/-263 
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or hs1-/- mice264, have emphasized the suitability of TCL1-driven CLL in mice to depict 

and allow investigation of microenvironmental interactions observed in human CLL. 

However, with a disease latency of more than one year, the TCL1 model is very time- 

and cost-intensive. The fact that disease is readily transplantable and develops in 

healthy recipient mice is therefore a major benefit and enables the investigation of the 

pathomechanistic role of specific molecular targets as well as the efficacy and 

mechanism of action of novel therapies. Although the transplant of TCL1 leukaemia 

cells is now well-established and is utilized by groups worldwide, considerable 

variability exists in the timing, dose, and application route of donor cells. These 

variables impact the reproducibility of preclinical studies between experiments and 

between laboratories, hampering interpretation and comparison of results. An important 

contribution from this PhD project was therefore the characterization of adoptive 

transfer procedures and conditions, along with the biological course of disease after 

adoptive transfer in the absence of treatment. This work resulted in the generation and 

validation of standardized conditions that enable the investigation of complex disease-

related immune and microenvironmental interactions and how these are affected by 

therapeutic approaches such as lenalidomide and PD-L1 blockade. 

Early work from our group demonstrated the similarities between gene-expression 

profiles of T cells from leukaemic TCL1 mice and CLL patients, as well as the rapid 

reproduction of these profiles following adoptive transfer of TCL1 leukaemic cells into 

young disease-free mice216. Among the various defects of T cells in human CLL 

patients (see Chapter 1.1.4), aberrant subsets and phenotypes, such as a CD4+/CD8+ 

ratio inversion, a loss of naïve CD3+CD8+ T cells with a shift towards effector cells, 

and a similarity to exhausted T cells found in chronically infected patients have been 

described118-120, 133, 134. Although aspects of this are already published to be 

recapitulated in TCL1 mice backcrossed to the genetic B6 background220, no studies 

have been done regarding the effect of different microenvironments (i.e. peripheral 

blood, bone marrow and secondary lymphoid organs) on T-cell subsets and phenotype 

and how closely adoptive transfer mirrors those defects observed in ageing TCL1 mice. 

This is particularly interesting, as CLL is now understood as a disease that develops 

and is maintained due to complex interactions with the microenvironment499, indicating 

that T-cell defects themselves might undergo dynamic alterations depending on their 

site of contact with the disease. In addition, careful and thorough investigation of the 

dynamic development of phenotypic T-cell subsets and characterization of functional T-

cell defects alongside progressing disease have not been conducted before. This 

project demonstrated for the first time that the previously documented phenotypic 
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changes in T-cell subsets are equally modelled in backcrossed B6 TCL1 and C3H 

TCL1 mice, that the patterns regarding CD4+ and CD8+ (naïve and antigen-

experienced) T cells are observed regardless of microenvironment, and that this is 

recapitulated in young mice with CLL after adoptive transfer. Moreover, instead of 

“snapshot” characterizations of T-cell function in different patients with a certain 

disease stage, this work has produced for the first time a longitudinal characterization 

of the dynamic development of T-cell defects in the context of developing disease 

using a genetically uniform mouse model. This led to novel findings characterizing the 

stage of B-cell expansion in which T-cell defects emerge, how they evolve over the 

course of the disease, and how this is influenced by the different microenvironment that 

peripheral blood, bone marrow and secondary lymphoid organs provide. 

Previous work from our group identified PD-L1 as an important mediator of impaired T-

cell function in human CLL patients79. In addition, circulating T cells from CLL patients 

were found to exhibit features of T-cell exhaustion, with increased expression of 

exhaustion markers such as PD-1, a skew towards antigen experienced subsets, an 

altered transcription factor profile, and functional defects in proliferation and 

cytotoxicity133, highlighting the role of the PD-L1/PD-1 inhibitory signalling axis. 

However, several studies have indicated that the T-cell compartment in CLL might be 

very heterogeneous and is potentially influenced by a variety of other factors such as 

age and/or infection. Although differences in human CD8+ lymphocyte subsets were 

previously thought to be explained by the presence of CMV144, work from our group 

confirmed that impaired T-cell function and altered subset composition were 

irrespective of CMV serostatus133. This finding was further supported by a recently 

published study suggesting that CMV-specific CD8+ T cells were indeed functionally 

intact, while CLL-induced global T-cell defects were still present148. Moreover, data 

from “classical” exhaustion models indicated that the T-cell exhaustion state is neither 

a fixed, irreversible, terminal differentiation state, nor an unresponsive T-cell state, and 

several studies have demonstrated that exhausted T cells represent a very 

heterogeneous population containing several subsets of cells that, despite PD-1 

expression, are able to exert certain effector functions.  

Work from this PhD project highlighted that aberrant PD-L1 over-expression in human 

CLL is mirrored in the TCL1 model, and identified aberrant PD-L2 expression as an 

additional inhibitory ligand of potential functional relevance in CLL. The mechanisms of 

how these molecules are over-expressed require further investigation. Similar to T-cell 

defects, both ligands were characterized over the course of developing disease, and in 

the context of different microenvironments. The TCL1 model was further utilized to 
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identify ageing as a substantial confounding factor for PD-1 associated patterns of T-

cell defects, and this was fully unmasked by applying our rigorously characterized 

adoptive transfer methods. In addition, this project significantly adds to existing 

knowledge by the comparison of the molecular profiles of CLL T cells with exhausted 

and functional memory and effector CD8+ T cells. This work clearly demonstrated that 

CLL T cells are very heterogeneous, with features of both exhaustion and functional 

effector cells. Interestingly, this comparison also revealed that CLL T-cell genes 

enriched in the exhaustion signature appear to be also involved in pathways of T-cell 

metabolism and bioenergetics. These areas of T-cell defects have not been well 

studied in CLL, and our findings show that these pathways demand further 

investigation. 

Our randomized adoptive transfer experiments also demonstrated that CLL-induced 

aberrant PD-1 expression on CD3+CD8+ T cells could be associated with different 

abilities of cells to exert effector functions. In general, intracellular cytokines IL-2, IL-4, 

IFN-γ and TNF-α were detected in both PD-1high and PD-1low cells, and both PD-1high 

and PD-1low cells maintained their ability to degranulate and to proliferate, contradicting 

the notion that PD-1 expression would lead to a loss of these effector functions. In 

addition, we demonstrated that the increase in IFN-γ production frequently observed in 

CLL T cells appeared to be attributed to PD-1high cells, while this subset was depleted 

of cells producing TNF-α compared to PD-1low cells and showed an impaired ability to 

form immunological synapses with normal B cells. The TCL1 model also allowed us to 

better understand the functional impact of the difference in PD-1 expression on CLL 

CD8+ T cells compared to normal T cells. Linking PD-1 expression with effector 

function of PD-1high cells in ageing WT mice and comparing this to effector function of 

PD-1high cells in ageing TCL1 mice developing CLL demonstrated that despite similar 

PD-1 expression patterns, PD-1 expressing cells are markedly different in their 

composition of cells able to exert selected effector functions. 

After previous studies using CLL patient samples indicated that both in vivo and ex vivo 

lenalidomide treatment can modulate T-cell subsets and function442, 443, as well as PD-

L1/PD-1-mediated inhibitory signalling79, 80, 441, we conducted a comprehensive analysis 

in vivo linking the effect of single agent lenalidomide to aberrant PD-L1/PD-1 

expression and functional T-cell defects. Despite a lack of CLL control, resulting in the 

persistence of typical CLL-induced T-cell phenotypic alterations and T-cell effector 

dysfunction, we demonstrated that lenalidomide has an effect on the expression of PD-

1 and immune synapse formation between autologous T and CLL cells. This important 

observation highlights that the repair of cytoskeleton defects is a prominent mechanism 



Fabienne McClanahan                                                                                       Overall Discussion 

Page 235 of 258 

 

of action of lenalidomide that is recapitulated in mice with CLL. Additionally, we 

demonstrated that ex vivo PD-L1 blockade on CLL cells restores immune synapses to 

sizes comparable to those in cells from healthy WT mice, prompting us to investigate 

PD-L1 blockade in vivo. 

Given the lack of clinical studies exploring PD-L1/PD-1 blockade in CLL, our work 

provides both rationale and preclinical evidence for evaluating targeted PD-L1/PD-1 

blockade in patients with this disease. Our findings suggest that blocking PD-L1 in mice 

with CLL can re-activate the immune system by counteracting CLL-induced changes in 

T-cell populations and functions, resulting in very effective disease control and 

significant reduction of tumour load in disease-affected tissues. Consequently, further 

immune defects induced by chronic antigenic stimulation were resolved. It is tempting 

to speculate on the advantage of blocking PD-1 versus PD-L1, as PD-1 blockade 

would inhibit the binding of PD-1 both to PD-L1 and PD-L2 expressed by tumours and 

microenvironmental components. However, no conclusive statements can be made 

regarding the relative activity of these two approaches on the immune system in the 

absence of a direct head-to-head comparison. In addition, it is not clear how 

pronounced the effect of PD-L1/PD-1 blockade on re-activating immune effector cells 

would be in the context of more established disease. These questions clearly need to 

be addressed in further pre-clinical studies. Nevertheless, our in vivo findings confirm 

that PD-L1/PD-1 immune checkpoint blockade is a very promising clinical approach in 

CLL, potentially in combination with agents targeting BCR signaling. Based on 

experience to date with BCR inhibitory agents such as ibrutinib and idelalisib, these 

could be used to mobilize and clear tumour bulks, while residual disease could be 

eradicated and durable remission achieved by the re-activation and restoration of anti-

tumour immune responses via PD-1/PD-L1 blockade. Similarly, in patients undergoing 

HSCT or CAR therapy, PD-1/PD-L1 blockade could be administered in the setting of 

low tumour volume to re-activate immune responses. 

In collaboration with another group, the effect of PD-L1 blockade was also 

demonstrated in this project to abrogate the CLL-induced differentiation blockade of 

myeloid cells. This is particularly important in view of very recent findings highlighting 

that T-cell defects in CLL are not only induced by direct contact with the tumour cells, 

but that other components of the microenvironment such as TAMs and MDSCs also 

negatively regulate T-cell function, partly via PD-L1/PD-1 inhibitory signalling199. To 

fully understand the complexity of T-cell defects and their contribution to disease 

development and progression, it is important to further characterize the interactions 

between T cells and TAMs and/or MDSCs in vivo, to identify the stage(s) during 
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disease development at which they occur and what the underlying mechanisms are. In 

fact, we have already conducted preliminary experiments using in vivo macrophage 

depletion with liposomal clodronate after adoptive transfer of murine CLL to address 

those questions. We observed that in comparison to vehicle-treated mice, clodronate-

treated mice had significantly lower spleen weights and a lower percentage of CLL 

tumour cells in peripheral blood and secondary lymphoid organs, suggesting that 

macrophages are indeed important, albeit not vital, for disease development. Typical 

phenotypic and functional T-cell defects were still present in clodronate-treated mice, 

but were less pronounced than in vehicle-treated mice, confirming that T-cell defects 

are caused by malignant cells but might be magnified and/or promoted by interactions 

with macrophages and monocytes. In addition, it is possible that dynamic shifts 

towards immunosuppressive and tolerogenic phenotypes within myeloid cells 

determine the point at which CLL cells evade T-cell effector function, as observed in 

other entities500. Further studies will be needed to address the exact contributions of 

different components of the myeloid compartment, for example by adoptive transfer 

experiments into myeloid-deficient recipients such as the CX3CR1 mouse model, 

which is deficient for patrolling monocytes. Complementing our previous gene-

expression profiling studies, it would also be attractive to compare the molecular 

profiles of T cells from mice after adoptive transfer in the absence of macrophages 

(either from clodronate depletion or by the use CX3CR1 recipients) versus those from 

fully immune competent recipients as used throughout this project. 

An important question still to be addressed is the mechanism(s) underlying aberrant 

PD-L1 expression in CLL. In line with the adaptive immune resistance hypothesis, 

which is based on the observation that immune and bystander cells produce cytokines 

as a result of activation by a tumour, prompting the upregulation of PD-L1 by both the 

tumour and the tumour microenvironment, it is possible that additional signals might be 

involved in this process. Dr. Croce’s group recently reported that circulating miRNAs 

shed from tumours are a novel aspect of miRNA biology and play an important role in 

the interaction between cancer cells and the microenvironment501. Their work 

demonstrated that due to their structural similarity with natural ligands, circulating 

miRNAs bind to intracellular TLR7 in macrophages and induce pro-metastatic 

inflammatory responses. Given the established role of miRNAs in CLL pathogenesis 

and progression (see Chapter 1.2.2), aberrant TLR expression in CLL502, and published 

findings linking TLR stimulation in B cells to expression of PD-L1 in patients with 

seasonal allergic rhinitis503, it is tempting to speculate that aberrant PD-L1 expression 
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in CLL is the result of continuous TLR7 signalling mediated by specific circulating 

miRNAs shed by tumour cells at an early stage of disease.  

We tested this hypothesis using cells from young TCL1, age-matched WT and TLR7-/- 

mice, as well as primary human CLL and normal B cells, and DOTAP liposomal 

formulations of synthetic miRNAs reported to have an effect on immune cells and to be 

released by CLL cells. Indeed, we demonstrated that PD-L1 surface expression on 

murine and human B cells was strongly induced by miRs -21 and -29, and moderately 

by -150 and -155. The degree of PD-L1 upregulation by miRs -21 and -29 was 

comparable to that observed with direct TLR7 and TLR9 binding by specific agonists. 

Similar patterns were seen for CD69 and CD86 expression, and across treatment 

conditions, PD-L1 expression was highly correlated with the expression of CD69 and 

CD86. This observation strongly suggests that PD-L1 expression after TLR 

engagement is a marker of activation/costimulation, and therefore a physiological 

adaptive immune response to TLR binding in healthy B cells. Functionally, miRNA 

treatments resulted in increased IL-6, IL-10 and TNF-α. To elucidate when in the 

course of CLL development PD-L1 expression becomes aberrant and if it ceases to be 

inducible by miRNA treatment, we sacrificed mice at regular intervals following 

adoptive transfer to simulate tumour development. With increasing CLL the magnitude 

of the change of PD-L1 expression following miRNA treatment decreased substantially, 

and the baseline expression of PD-L1 in miRNA-untreated B cells increased 

consistently, until a median tumour load of about 70%. Importantly, miRNA treatment 

did not result in increased PD-L1, CD69 or CD86 expression in B cells from TLR7-/- 

mice, indicating that the miRNA/PD-L1 interactions are indeed mediated by TLR7. 

These findings therefore support the hypothesis that PD-L1 expression on B cells can 

be induced by specific miRNAs known to be produced by CLL cells, and that this effect 

is mediated via TLR7. Future work will focus on the molecular mechanisms of this 

effect, and the interactions between chronically active BCR signalling and TLR 

signalling.  

In conclusion, this dissertation project not only meaningfully improves our ability to 

make further discoveries by extensively characterising and validating the use of 

adoptive transfer to mimic CLL-induced T-cell defects in mice, but also provides 

substantial new and translationally relevant information to the field of CLL immunology. 

It is important to note that in CLL, as in other malignancies, immunotherapy is 

increasingly being recognised as the most likely route to long-term disease control, 

which results from our increasing understanding of the specificity and potency that can 

be achieved with proper immune education and activation. 
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10 Appendix 

genes represented in 
exhaustion signature 

genes represented in 
effector signature 

genes represented in 
memory signature 

gene function 

Alcam 
  

cell surface receptor/ligand 

Anxa2 Anxa2 Anxa2 apoptosis 

 
Apobec 

 
metabolism 

  
Aqp9 metabolism 

Ccnb1 Ccnb1 
 

cell cycle 

Ccnb2 Ccnb2 
 

cell cycle 

CD1d1 
  

cell surface receptor/ligand 

CD72 CD72 
 

cell surface receptor/ligand 

 
Cdc6 

 
cell cycle 

  
Ddit4 DNA repair 

Dnajb9 
  

regulating  ATPase activity of 
70 kDa heat shock proteins 

 
Dstn 

 
miscellaneous 

Egr2 
  

transcription factor 

 
Emp1 Emp1 miscellaneous 

 
Fcgr2b Fcgr2b cell surface receptor/ligand 

Fignl1 Fignl1 
 

miscellaneous 

Gzmb Gzmb Gzmb effector function 

  
Gzmm effector function 

 
H2-Aa H2-Aa MHC 

H2-D1 
  

histocompatibility antigen 

 
Hba-a1 

 
metabolism 

Hbb-b1 Hbb-b1 
 

metabolism 

Hist1h2ac Hist1h2ac 
 

transcription 

Ifrd1 
  

Interferon signalling 

IgK-V28 
 

IgK-V28 antigen receptors 

IL6st IL6st IL6st cytokine signalling 

 
Il18rap Il18rap cytokine signalling 

Irf4 
  

IFN response 

 
Itga4 

 
cell surface receptor/ligand 

 
Kctd12 

 
metabolism 

  
Klf4 transcription 

Lgals3 Lgals3 
 

  

Mad2l1 Mad2l1 
 

cell cycle 

Mox2 = CD200 
  

cell surface receptor/ligand 

 
Myo1f Myo1f cytoskeleton 

 
Nedd4l 

 
proteases 

Nedd4l 
  

transcription 

Nfatc1 
  

transcription 
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Nr1d2 
  

transcription 

Nr4a2 
  

transcription 

Nrp 
  

cell surface receptor/ligand 

Pglyrp1 
  

cell surface receptor/ligand 

Psmd13 
  

proteasome enzyme 

 
Racgab1 

 
signalling 

 
Rpa2 

 
DNA repair 

Rrm2 
  

metabolism 

S100a6 S100a6 S100a6 signalling 

Sema4a = kallikrein 
  

cell surface receptor/ligand 

Sesn1 Sesn1 Sesn1 miscellaneous 

Slc12a2 
  

ion  transporter 

 
Stard10 

 
miscellaneous 

St6gal1 St6gal1 St6gal1 glycosylation 

Stk38 
  

signalling 

TCRb-J 
  

signalling 

Tfdp1 
  

transcription 

 
Tm4SF13  

 
cell surface receptor/ligand 

Smarca2 Smarca2 
 

transcription 

Nusap1 Nusap1 
 

cell cycle 

 
clk1 

 
cell cycle 

  
kcnj8 metabolism 

Slc4a7 Slc4a7 
 

metabolism 

 
csda 

 
metabolism 

cmah 
  

metabolism 

ell2 ell2 ell2 translation 

 
Prpf39 

 
translation 

bach=acot7 bach=acot7 bach=acot7 miscellaneous 

Cst7 
  

miscellaneous 

Mcm3 
  

miscellaneous 

 
Birc5 

 
miscellaneous 

Tacc3 Tacc3 
 

miscellaneous 

Cxxc5 Cxxc5 Cxxc5 miscellaneous 

Spnb2 
  

miscellaneous 

Cnn3 Cnn3 Cnn3 miscellaneous 

Table 28: Gene list of overlapping genes in CLL T cell and exhausted/ effector/ memory T 
cell signature.  
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