462 research outputs found

    Solving Problems, Ensuring Relevance, and Facilitating Change: The Evolution of Needs Assessment Within Cooperative Extension

    Get PDF
    Helping people solve the practical problems of everyday life while maintaining contemporary relevance describes the mission of Cooperative Extension. To achieve that mission, Extension professionals have increasingly relied on information gathered from stakeholders to identify relevant problems and potential educational solutions. The methods, efforts, and activities to understand people and their problems are collectively referred to as needs assessment. This article explores the history and evolution of needs assessment in Cooperative Extension, as well as in a broader educational context. While tracing needs assessment through the decades, this article examines the needs assessment opportunities and challenges faced by Cooperative Extension. Emerging trends and implications for the future of Extension needs assessment are also discussed

    Linguistics

    Get PDF
    Contains reports on seven research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-03)U. S. Air Force (Electronics Systems Division) under Contract AF19(628)-248

    Calnexin, an ER-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer.

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer mortality in the Western world and commonly treated with genotoxic chemotherapy. Stress in the endoplasmic reticulum (ER) was implicated to contribute to chemotherapeutic resistance. Hence, ER stress related protein may be of prognostic or therapeutic significance. METHODS: The expression levels of ER stress proteins calnexin, calreticulin, GRP78 and GRP94 were determined in n = 23 Stage II and III colon cancer fresh frozen tumour and matched normal tissue samples. Data were validated in a cohort of n = 11 rectal cancer patients treated with radiochemotherapy in the neoadjuvant setting. The calnexin gene was silenced using siRNA in HCT116 cells. RESULTS: There were no increased levels of ER stress proteins in tumour compared to matched normal tissue samples in Stage II or III CRC. However, increased calnexin protein levels were predictive of poor clinical outcome in the patient cohort. Data were validated in the rectal cancer cohort treated in the neoadjuvant setting. Calnexin gene-silencing significantly reduced cell survival and increased cancer cell susceptibility to 5FU chemotherapy. CONCLUSION: Increased tumour protein levels of calnexin may be of prognostic significance in CRC, and calnexin may represent a potential target for future therapies

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Overexpression of cathepsin f, matrix metalloproteinases 11 and 12 in cervical cancer

    Get PDF
    BACKGROUND: Cervical carcinoma (CC) is one of the most common cancers among women worldwide and the first cause of death among the Mexican female population. CC progression shows a continuum of neoplastic transitions until invasion. Matrix metalloproteinases (MMPs) and cathepsins play a central role on the enhancement of tumor-induced angiogenesis, cell migration, proliferation, apoptosis and connective tissue degradation. MMPs -2 and -9 expression has been widely studied in cervical cancer. Nevertheless, no other metalloproteinases or cathepsins have been yet related with the progression and/or invasion of this type of cancer. METHODS: Three HPV18 CC cell lines, two HPV16 CC cell lines and three HPV16 tumor CC tissues were compared with three morphologically normal, HPV negative, cervical specimens by cDNA arrays. Overexpression of selected genes was confirmed by end point semiquantitative reverse transcription-PCR with densitometry. In situ hybridization and protein expression of selected genes was further studied by means of two tissue microarrays, one consisting of 10 HSIL and 15 CC and the other one of 15 normal cervical and 10 LSIL tissues. RESULTS: TIMP1, Integrins alpha 1 and 4, cadherin 2 and 11, Cathepsins F, B L2, MMP 9, 10 11 and 12 were upregulated and Cathepsin S, L, H and C, Cadherins 3 and 4, TIMP3, MMP 13, Elastase 2 and Integrin beta 8 were found to be downregulated by cDNA arrays. Endpoint RT-PCR with densitometry gave consistent results with the cDNA array findings for all three genes selected for study (CTSF, MMP11 and MMP12). In situ hybridization of all three genes confirmed overexpression in all the HSIL and CC. Two of the selected proteins were detected in LSIL, HSIL and CC by immunohistochemistry. CONCLUSION: Novel undetected CC promoting genes have been identified. Increased transcription of these genes may result in overexpression of proteins, such as CTSF, MMP11 and MMP12 which could contribute to the pathogenesis of CC

    Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor

    Get PDF
    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries
    corecore