14 research outputs found

    Compression Behavior of Fluted-Core Composite Panels

    Get PDF
    In recent years, fiber-reinforced composites have become more accepted for aerospace applications. Specifically, during NASA s recent efforts to develop new launch vehicles, composite materials were considered and baselined for a number of structures. Because of mass and stiffness requirements, sandwich composites are often selected for many applications. However, there are a number of manufacturing and in-service concerns associated with traditional honeycomb-core sandwich composites that in certain instances may be alleviated through the use of other core materials or construction methods. Fluted-core, which consists of integral angled web members with structural radius fillers spaced between laminate face sheets, is one such construction alternative and is considered herein. Two different fluted-core designs were considered: a subscale design and a full-scale design sized for a heavy-lift-launch-vehicle interstage. In particular, axial compression of fluted-core composites was evaluated with experiments and finite-element analyses (FEA); axial compression is the primary loading condition in dry launch-vehicle barrel sections. Detailed finite-element models were developed to represent all components of the fluted-core construction, and geometrically nonlinear analyses were conducted to predict both buckling and material failures. Good agreement was obtained between test data and analyses, for both local buckling and ultimate material failure. Though the local buckling events are not catastrophic, the resulting deformations contribute to material failures. Consequently, an important observation is that the material failure loads and modes would not be captured by either linear analyses or nonlinear smeared-shell analyses. Compression-after-impact (CAI) performance of fluted core composites was also investigated by experimentally testing samples impacted with 6 ft.-lb. impact energies. It was found that such impacts reduced the ultimate load carrying capability by approximately 40% on the subscale test articles and by less than 20% on the full-scale test articles. Nondestructive inspection of the damage zones indicated that the detectable damage was limited to no more than one flute on either side of any given impact. More study is needed, but this may indicate that an inherent damage-arrest capability of fluted core could provide benefits over traditional sandwich designs in certain weight-critical applications

    Design, Manufacture and Test of Cryotank Components

    Get PDF
    On the composite cryotank technology development (CCTD) project, the Boeing Company built two cryotanks as a means of advancing technology and manufacturing readiness levels (TRL and MRL) and lowering the risk of fabricating full-scale fuel containment vessels.1 CCTD focused on upper stage extended duration applications where long term storage of propellants is required. The project involved the design, analysis, fabrication, and test of manufacturing demonstration units (MDU), a 2.4 m (precursor) and a 5.5 m composite cryotank. Key design features included one-piece wall construction to minimize overall weight (eliminating the need for a bellyband joint), 3-dimensionally (3D) reinforced y-joint material to alleviate stress concentrations at the tank to skirt interface and a purge-able uted core skirt to carry high axial launch loads. The tanks were made with OoA curing pre-impregnated (prepreg) carbon/epoxy (C/E) slit-tape tow (STT) that contained thin micro-crack resistant plies in the tank wall center to impede permeation. The tanks were fabricated at Boeing's Seattle-based Advanced Development Center (ADC) using RAFP and multipiece break-down tooling. The tooling was designed and built by Janicki Industries (JI) at Sedro Woolley, Washington. Tank assemblage consisted of co-bonded dome covers, one-piece uted core skirts and mechanical fastened cover/sump. Ultrasonic inspection was performed after every cure or bond and a structural health monitoring system (SHMS) was installed to identify potential impact damage events (in-process and/or during transportation). The tanks were low temperature tested at NASA's George C. Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The testing, which consisted of a sequence of ll/drain pressure and thermal cycles using LH2, was successfully concluded in 2012 on the 2.4 m tank and in 2014 on the 5.5 m tank. Structural, thermal, and permeation performance data was obtained. 2 Critical design features and manufacturing advancements, which helped to validate 25% weight and 30% cost reduction projections, were matured. These advancements will help to guide future composite tank integration activities on next generation long duration aircraft and space launch vehicles. Because CCTD addressed innovative design features, heavy lift size scale-up, multipiece captured tooling, new generation automated material placement (AMP) equipment and OoA materials, this chapter should be of interest to educators, students and manufacturers of composite hardware and ight vehicles

    Fabrication and Testing of Durable Redundant and Fluted-Core Joints for Composite Sandwich Structures

    Get PDF
    The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Local Control For High-Grade Nonrhabdomyosarcoma Soft Tissue Sarcoma Assigned to Radiation Therapy on ARST0332: A Report From the Childrens Oncology Group

    No full text
    PurposeThe ARST0332 trial for pediatric and young adults with nonrhabdomyosarcoma soft tissue sarcoma (NRSTS) used risk-based treatment including primary resection with lower-than-standard radiation doses to optimize local control (LC) while minimizing long-term toxicity in those requiring radiation therapy (RT). RT for high-grade NRSTS was based on extent of resection (R0: negative margins, R1: microscopic margins, R2/U: gross disease/unresectable); those with >5 cm tumors received chemotherapy (CT; ifosfamide/doxorubicin). This analysis evaluates LC for patients assigned to RT and prognostic factors associated with local recurrence (LR).Methods and materialsPatients aged <30 years with high-grade NRSTS received RT (55.8 Gy) for R1 ≤5 cm tumor (arm B); RT (55.8 Gy)/CT for R0/R1 >5 cm tumor (arm C); or neoadjuvant RT (45 Gy)/CT plus delayed surgery, CT, and postoperative boost to 10.8 Gy R0 <5 mm margins/R1 or 19.8 Gy for R2/unresected tumors (arm D).ResultsOne hundred ninety-three eligible patients had 24 LRs (arm B 1/15 [6.7%], arm C 7/65 [10.8%], arm D 16/113 [14.2%]) at median time to LR of 1.1 years (range, 0.11-5.27). Of 95 eligible for delayed surgery after neoadjuvant therapy, 89 (93.7%) achieved R0/R1 margins. Overall LC after RT were as follows: R0, 106 of 109 (97%); R1, 51 of 60 (85%); and R2/unresectable, 2 of 6 (33%). LR predictors include extent of delayed resection (P <.001), imaging response before delayed surgery (P < .001), histologic subtype (P <.001), and no RT (P = .046). The 5-year event-free survival was significantly lower (P = .0003) for patients unable to undergo R0/R1 resection.ConclusionsRisk-based treatment for young patients with high-grade NRSTS treated on ARST0332 produced very high LC, particularly after R0 resection (97%), despite lower-than-standard RT doses. Neoadjuvant CT/RT enabled delayed R0/R1 resection in most patients and is preferred over adjuvant therapy due to the lower RT dose delivered
    corecore