15 research outputs found

    A Dynamic Model Investigation of the Effect of a Sharp-Edge Vertical Gust on Blade Periodic Flapping Angles and Bending Moments of a Two-Blade Rotor

    Get PDF
    A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was subjected to sharp-edge vertical gusts while being operated at various forward speeds to study the effect of the gusts on the blade periodic bending moments and flapping angles. Variables studied included gust velocity, collective pitch angle, flapping hinge offset, and tip-speed ratio. Dimensionless coefficients are derived for the periodic components of the incremental changes in blade flapping angles and bending moments which arise when a rotor blade penetrates a sharp-edge gust. Mental changes in both the flapping angles and bending moments are essentially proportional to gust velocity, and the coefficients express the ratio of these increments to gust velccity. The results show that the flapping coefficient usually increases with an increase in collective pitch angle, is generally dependent on tip-speed ratio, and is essentially independent of the amount of flapping hinge offset. The bending-moment coefficient is also dependent on collective pitch angle and tip-speed ratio. Expected reductions in bending moments are realized by the use of flapping hinges, and further reductions in bending moments are achieved as the amount of flapping hinge offset is increased. Comparison of the experimental results of this investigation with limited available theoretical results shows substantial agreement but indicates that the assumption that the response of the rotor to a sharp-edge gust is independent of the collective pitch angle prior to gust entry is probably inadequate

    Wind-Tunnel Investigation of the Effect of Angle of Attack and Flapping-Hinge Offset on Periodic Bending Moments and Flapping of a Small Rotor

    Get PDF
    A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region

    Adult Consequences of Late Adolescent Alcohol Consumption: A Systematic Review of Cohort Studies

    Get PDF
    In a systematic review of cohort studies of adolescent drinking and later outcomes, Jim McCambridge and colleagues show that although studies suggest links to worse adult physical and mental health and social consequences, existing evidence is of poor quality

    Study of stress concentration on the fatigue life of magnesium alloys

    Get PDF
    M.S.George K. William

    Experimental Investigation of the Natural Frequencies of Liquids in Toroidal Tanks

    No full text
    Several toroidal configurations applicable to missile and space-vehicle liquid storage systems were oscillated to study the natural frequencies of the antisymmetric modes of contained liquids over a range of liquid depths and tank sizes. Natural frequencies for tank oscillations parallel to the free surface of both vertical and horizontal tank orientations. Natural frequencies were obtained. The data are presented in terms of dimensionless parameters which are obtained by relating experimentally determined natural liquid frequencies to analytical expressions developed through consideration of the physics of the problem and from existing solutions for liquids in tanks having similar boundaries at the liquid surface. The experimental results obtained for the toroids indicate that these parameters are applicable to the prediction of the natural frequencies of fluids in toroids of general geometry and size
    corecore