1,872 research outputs found
Reduction of trimethylamine N-oxide to trimethylamine by the human gut microbiota: supporting evidence for ‘metabolic retroversion’
Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier
Visualising and quantifying 'excess deaths' in Scotland compared with the rest of the UK and the rest of Western Europe
BACKGROUND: Scotland has higher mortality rates than the rest of Western Europe (rWE), with more cardiovascular disease and cancer among older adults; and alcohol-related and drug-related deaths, suicide and violence among younger adults. METHODS: We obtained sex, age-specific and year-specific all-cause mortality rates for Scotland and other populations, and explored differences in mortality both visually and numerically. RESULTS: Scotland's age-specific mortality was higher than the rest of the UK (rUK) since 1950, and has increased. Between the 1950s and 2000s, 'excess deaths' by age 80 per 100 000 population associated with living in Scotland grew from 4341 to 7203 compared with rUK, and from 4132 to 8828 compared with rWE. UK-wide mortality risk compared with rWE also increased, from 240 'excess deaths' in the 1950s to 2320 in the 2000s. Cohorts born in the 1940s and 1950s throughout the UK including Scotland had lower mortality risk than comparable rWE populations, especially for males. Mortality rates were higher in Scotland than rUK and rWE among younger adults from the 1990s onwards suggesting an age-period interaction. CONCLUSIONS: Worsening mortality among young adults in the past 30 years reversed a relative advantage evident for those born between 1950 and 1960. Compared with rWE, Scotland and rUK have followed similar trends but Scotland has started from a worse position and had worse working age-period effects in the 1990s and 2000s
A physics-based life prediction methodology for thermal barrier coating systems
A novel mechanistic approach is proposed for the prediction of the life of
thermal barrier coating (TBC) systems. The life prediction methodology is based
on a criterion linked directly to the dominant failure mechanism. It relies on
a statistical treatment of the TBC's morphological characteristics,
non-destructive stress measurements and on a continuum mechanics framework to
quantify the stresses that promote the nucleation and growth of microcracks
within the TBC. The last of these accounts for the effects of TBC constituents'
elasto-visco-plastic properties, the stiffening of the ceramic due to sintering
and the oxidation at the interface between the thermally insulating yttria
stabilized zirconia (YSZ) layer and the metallic bond coat. The mechanistic
approach is used to investigate the effects on TBC life of the properties and
morphology of the top YSZ coating, metallic low-pressure plasma sprayed bond
coat and the thermally grown oxide. Its calibration is based on TBC damage
inferred from non-destructive fluorescence measurements using
piezo-spectroscopy and on the numerically predicted local TBC stresses
responsible for the initiation of such damage. The potential applicability of
the methodology to other types of TBC coatings and thermal loading conditions
is also discussed
A Qualitative Systematic Review of the Role of N-Methyl-D-Aspartate Receptor Antagonists in Preventive Analgesia
We evaluated in a qualitative systematic review the effect of N-methyl-D-aspartate (NMDA) receptor antagonists on reducing postoperative pain and analgesic consumption beyond the clinical duration of action of the target drug (preventive analgesia). Randomized trials examining the use of an NMDA antagonist in the perioperative period were sought by using a MEDLINE (1966–2003) and EMBASE (1985–2003) search. Reference sections of relevant articles were reviewed, and additional articles were obtained if they evaluated postoperative analgesia after the administration of NMDA antagonists. The primary outcome was a reduction in pain, analgesic consumption, or both in a time period beyond five half-lives of the drug under examination. Secondary outcomes included time to first analgesic request and adverse effects. Forty articles met the inclusion criteria (24 ketamine, 12 dextromethorphan, and 4 magnesium). The evidence in favor of preventive analgesia was strongest in the case of dextromethorphan and ketamine, with 67% and 58%, respectively, of studies demonstrating a reduction in pain, analgesic consumption, or both beyond the clinical duration of action of the drug concerned. None of the four studies examining magnesium demonstrated preventive analgesia
An evaluation of the Goddard Space Flight Center Library
The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis
Protein Tyrosine Phosphorylation in the Cyanobacterium Anabaena PCC 7120
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [g-32P]ATP but not [a-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density
Explaining trends in alcohol-related harms in Scotland 1991–2011 (II): policy, social norms, the alcohol market, clinical changes and a synthesis
Objective:
To provide a basis for evaluating post-2007 alcohol policy in Scotland, this paper tests the extent to which pre-2007 policy, the alcohol market, culture or clinical changes might explain differences in the magnitude and trends in alcohol-related mortality outcomes in Scotland compared to England & Wales (E&W).
Study design:
Rapid literature reviews, descriptive analysis of routine data and narrative synthesis.
Methods:
We assessed the impact of pre-2007 Scottish policy and policy in the comparison areas in relation to the literature on effective alcohol policy. Rapid literature reviews were conducted to assess cultural changes and the potential role of substitution effects between alcohol and illicit drugs. The availability of alcohol was assessed by examining the trends in the number of alcohol outlets over time. The impact of clinical changes was assessed in consultation with key informants. The impact of all the identified factors were then summarised and synthesised narratively.
Results:
The companion paper showed that part of the rise and fall in alcohol-related mortality in Scotland, and part of the differing trend to E&W, were predicted by a model linking income trends and alcohol-related mortality. Lagged effects from historical deindustrialisation and socio-economic changes exposures also remain plausible from the available data.
This paper shows that policy differences or changes prior to 2007 are unlikely to have been important in explaining the trends. There is some evidence that aspects of alcohol culture in Scotland may be different (more concentrated and home drinking) but it seems unlikely that this has been an important driver of the trends or the differences with E&W other than through interaction with changing incomes and lagged socio-economic effects. Substitution effects with illicit drugs and clinical changes are unlikely to have substantially changed alcohol-related harms: however, the increase in alcohol availability across the UK is likely to partly explain the rise in alcohol-related mortality during the 1990s.
Conclusions:
Future policy should ensure that alcohol affordability and availability, as well as socio-economic inequality, are reduced, in order to maintain downward trends in alcohol-related mortality in Scotland
Reduction of trimethylamine N-oxide to trimethylamine by the human gut microbiota: supporting evidence for ‘metabolic retroversion’
Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier
Coupled Numerical Analysis of Variations in the Capacity of Driven Energy Piles in Clay
Energy piles are an emerging alternative for the reduction of energy consumption to heat and cool buildings. Most of the research to date has focused on thermodynamic properties or axial and radial stress and strain of piles. This paper focuses on the effects of temperature fluctuation on the capacity of driven energy piles in clayey soils. Consolidation of clay surrounding driven piles affects the pile capacity (i.e., set up in clay). The heating and cooling periods of energy piles can create the excess pore-water pressure (EPWP, ue) or relax the existing one (e.g., due to pile driving or previous thermal loads) in clayey soils (due to the contraction and expansion of water) affecting the pile capacity. In the meantime, the thermal expansion and contraction of the pile also generate or relax the EPWP in the soil, which can be computed using the cavity-expansion theory. This paper studies the resulting changes in the pile capacity due to the daily and seasonal thermal cycles. The results show that thermal cycles in an energy pile can cause a decrease in the pile capacity leading to a delay in reaching the capacity after a complete clay set up
Intellectual ability in tuberous sclerosis complex correlates with predicted effects of mutations on TSC1 and TSC2 proteins.
BACKGROUND: Tuberous sclerosis complex is a multisystem genetic disease, caused by mutation in the TSC1 or TSC2 genes, associated with many features, including intellectual disability (ID). We examined psychometric profiles of patients with TSC1 or TSC2 mutations and tested whether different mutation types were associated with different degrees of intellectual ability. METHODS: One hundred subjects with known TSC1/TSC2 mutations were assessed using a range of IQ or developmental quotient (DQ) measures. Effects of mutations on TSC1/TSC2 proteins were inferred from sequence data and published biochemical studies. RESULTS: Most individuals with TSC1 mutations fell on a normal distribution identical to the general population, with ∼10% showing profound ID. Of individuals with TSC2 mutations, 34% showed profound ID, and the remainder a pattern of IQ/DQ more variable and shifted to the left than in TSC1 or the general population. Truncating TSC1 mutations were all predicted to be subject to nonsense-mediated mRNA decay. Mutations predicted to result in unstable protein were associated with less severe effects on IQ/DQ. There was a statistically significant negative correlation between length of predicted aberrant C-terminal tails arising from frameshift mutations in TSC1 and IQ/DQ; for TSC2 a positive but not statistically significant correlation was observed. CONCLUSION: We propose a model where (i) IQ/DQ correlates inversely with predicted levels and/or deleterious biochemical effects of mutant TSC1 or TSC2 protein, and (ii) longer aberrant C-terminal tails arising from frameshift mutations are more detrimental for TSC1 and less for TSC2. Predictions of the model require replication and biochemical testing.We thank the Tuberous Sclerosis Association, the Wales Gene Park, the National Research Foundation of South Africa and the Struengmann Fund for financial support. We thank Prof Chris Smith for helpful comments on the manuscript.This is the author accepted manuscript. The final version is available from the British Medical Journal via http://dx.doi.org/10.1136/jmedgenet-2015-10315
- …