66 research outputs found

    Toward a Comprehensive Model of Yeast Stress Response Pathway

    Get PDF
    Cells rely on cyto-protection programs to survive exposure to external stressors. In eukaryotes, many of these programs are regulated by Mitogen-Activated Protein Kinases (MAPK). Aberrant signaling in MAPK pathways is associated with pathologies including cancer and neurodegenerative disease. Thus understanding how MAPKs are dynamically regulated is critical for human health. We leverage the simplicity and genetic tractability of S. cerevisiae (yeast) to experimentally investigate and mathematically model MAPK activity in the prototypical High Osmolarity Glycerol (HOG) pathway. The HOG pathway transmits osmostress to Hog1, a MAPK which is homologous to the p38 and JNK kinases, via two distinct signaling branches (Sho1, Sln1). Once phosphorylated, Hog1 induces activation of the hyper-osmotic stress adaptation program. Our goal was to identify and characterize the feedback network that regulates Hog1 activity during hyper-osmotic stress. We previously demonstrated that Hog1 phosphorylation is encoded via positive feedback, and in agreement with previous studies, we showed that Hog1 dephosphorylation is encoded via negative feedback. We used mathematical modeling to define simplified MAPK feedback networks that featured various combinations of negative and positive feedback loops. We then used a modified Approximate Bayesian Computation (ABC) parameter estimation and model selection algorithm to rank each feedback network based on its ability to reproduce the Hog1 phosphorylation training data. We then used the top models to design a set of experiments that could be used to further differentiate the likelihood of each model to be selected as the consensus model. Our simulations suggested that the likelihood of each model could be further differentiated if yeast were exposed to dynamic hyper-osmotic stress conditions. Our simulations also suggested that the HOG pathway would be most sensitive to hyper-osmotic stress if the positive feedback operates at the level of the MAPK. To test our model predictions, we used live-cell fluorescence microscopy and a microfluidic device to measure nuclear accumulation of a Hog1-GFP fusion protein as a function of the dynamic hyper-osmotic stress conditions suggested by our simulations. We observed that nuclear accumulation of Hog1-GFP was most consistent with the model that suggested positive feedback operates at the level of the MAPK. These findings further suggest that positive feedback directly amplifies Hog1 phosphorylation. Furthermore our study exemplifies the power of integrating mathematical models into an existing quantitative experimental framework.Doctor of Philosoph

    A shadow detector for photosynthesis efficiency

    Get PDF
    Plants tolerate large variations in the intensity of the light environment by controlling the efficiency of solar to chemical energy conversion. To do this, plants have a mechanism to detect the intensity, duration, and change in light as they experience moving shadows, flickering light, and cloud cover. Sugars are the primary products of CO2 fixation, a metabolic pathway that is rate limited by this solar energy conversion. We propose that sugar is a signal encoding information about the intensity, duration and change in the light environment. We previously showed that the Arabidopsis heterotrimeric G protein complex including its receptor-like Regulator of G signaling protein, AtRGS1, detects both the concentration and the exposure time of sugars [Fu, et al 2014 Cell 156: 1084–1095]. This unique property, designated dose-duration reciprocity, is a behavior that emerges from the system architecture / system motif. Here, we show that another property of the signaling system is to detect large changes in light while at the same time, filtering types of fluctuation in light that do not affect photosynthesis efficiency. When AtRGS1 is genetically ablated, photosynthesis efficiency is reduced in a changing-but not a constant-light environment. Mathematical modeling revealed that information about changes in the light environment is encoded in the amount of free AtRGS1 that becomes compartmentalized following stimulation. We propose that this property determines when to adjust photosynthetic efficiency in an environment where light intensity changes abruptly caused by moving shadows on top of a background of light changing gradually from sun rise to sun set and fluctuating light such as that caused by fluttering leaves

    Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK

    Get PDF
    MAPKs are activated by dual phosphorylation. Much of the MAPK Fus3 is monophosphorylated and acts to inhibit signaling in vivo. Computational models reveal how a kinase scaffold and phosphatase act together to dynamically regulate dual-phosphorylated and monophosphorylated MAPKs and the downstream signal.Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling

    Expression of an S phase-stabilized version of the CDK inhibitor Dacapo can alter endoreplication

    Get PDF
    In developing organisms, divergence from the canonical cell division cycle is often necessary to ensure the proper growth, differentiation, and physiological function of a variety of tissues. An important example is endoreplication, in which endocycling cells alternate between G and S phase without intervening mitosis or cytokinesis, resulting in polyploidy. Although significantly different from the canonical cell cycle, endocycles use regulatory pathways that also function in diploid cells, particularly those involved in S phase entry and progression. A key S phase regulator is the Cyclin E-Cdk2 kinase, which must alternate between periods of high (S phase) and low (G phase) activity in order for endocycling cells to achieve repeated rounds of S phase and polyploidy. The mechanisms that drive these oscillations of Cyclin E-Cdk2 activity are not fully understood. Here, we show that the Drosophila Cyclin E-Cdk2 inhibitor Dacapo (Dap) is targeted for destruction during S phase via a PIP degron, contributing to oscillations of Dap protein accumulation during both mitotic cycles and endocycles. Expression of a PIP degron mutant Dap attenuates endocycle progression but does not obviously affect proliferating diploid cells. A mathematical model of the endocycle predicts that the rate of destruction of Dap during S phase modulates the endocycle by regulating the length of G phase. We propose from this model and our in vivo data that endo S phase-coupled destruction of Dap reduces the threshold of Cyclin E-Cdk2 activity necessary to trigger the subsequent G-S transition, thereby influencing endocycle oscillation frequency and the extent of polyploidy

    Expanding the Reach of an Evidence-Based, System-Level, Racial Equity Intervention: Translating ACCURE to the Maternal Healthcare and Education Systems

    Get PDF
    The abundance of literature documenting the impact of racism on health disparities requires additional theoretical, statistical, and conceptual contributions to illustrate how anti-racist interventions can be an important strategy to reduce racial inequities and improve population health. Accountability for Cancer Care through Undoing Racism and Equity (ACCURE) was an NIH-funded intervention that utilized an antiracism lens and community-based participatory research (CBPR) approaches to address Black-White disparities in cancer treatment completion. ACCURE emphasized change at the institutional level of healthcare systems through two primary principles of antiracism organizing: transparency and accountability. ACCURE was successful in eliminating the treatment completion disparity and improved completion rates for breast and lung cancer for all participants in the study. The structural nature of the ACCURE intervention creates an opportunity for applications in other health outcomes, as well as within educational institutions that represent social determinants of health. We are focusing on the maternal healthcare and K-12 education systems in particular because of the dire racial inequities faced by pregnant people and school-aged children. In this article, we hypothesize cross-systems translation of a system-level intervention exploring how key characteristics of ACCURE can be implemented in different institutions. Using core elements of ACCURE (i.e., community partners, milestone tracker, navigator, champion, and racial equity training), we present a framework that extends ACCURE's approach to the maternal healthcare and K-12 school systems. This framework provides practical, evidence-based antiracism strategies that can be applied and evaluated in other systems to address widespread structural inequities

    Pseudomonas syringae pv. actinidiae (PSA) Isolates from Recent Bacterial Canker of Kiwifruit Outbreaks Belong to the Same Genetic Lineage

    Get PDF
    Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks

    Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress

    Get PDF
    A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components

    Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential

    Get PDF
    The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin) that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins). Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth). Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi), suggesting a common parasitic behavior and a possible conservation of function between metazoan parasites of plants and animals

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore